ppbrown commited on
Commit
7b5e170
1 Parent(s): 045f082

convert to handle dictionary format

Browse files
.gitattributes CHANGED
@@ -54,3 +54,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
56
  embeddings.safetensors.fullword filter=lfs diff=lfs merge=lfs -text
 
 
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
56
  embeddings.safetensors.fullword filter=lfs diff=lfs merge=lfs -text
57
+ embeddings.safetensors.huge filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -12,17 +12,40 @@ which allows command-line browsing of words and their neighbours
12
  Loads the generated embeddings, calculates a full matrix
13
  of distances between all tokens, and then reads in a word, to show neighbours for.
14
 
15
- To run this requires the files "embeddings.safetensors" and "fullword.json"
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
 
19
  ## generate-embeddings.py
20
 
21
- Generates the "embeddings.safetensor" file. Takes a few minutes to run.
 
22
 
23
- Basically goes through the fullword.json file, and
24
- generates a standalone embedding for each word.
25
- Shape of the embeddings tensor, is
26
  [number-of-words][768]
27
 
28
  Note that yes, it is possible to directly pull a tensor from the CLIP model,
@@ -32,11 +55,6 @@ This will NOT GIVE YOU THE RIGHT DISTANCES!
32
  Hence why we are calculating and then storing the embedding weights actually
33
  generated by the CLIP process
34
 
35
- ## embeddings.safetensors
36
-
37
- Data file generated by generate-embeddings.py
38
-
39
-
40
 
41
  ## fullword.json
42
 
 
12
  Loads the generated embeddings, calculates a full matrix
13
  of distances between all tokens, and then reads in a word, to show neighbours for.
14
 
15
+ To run this requires the files "embeddings.safetensors" and "dictionary"
16
 
17
+ You will need to rename or copy appropriate files for this as mentioned below
18
+
19
+ ### embeddings.safetensors
20
+
21
+ You can either copy one of the provided files, or generate your own.
22
+ See generate-embeddings.py for that.
23
+
24
+ Note that you muist always use the "dictionary" file that matchnes your embeddings file
25
+
26
+ ### dictionary
27
+
28
+ Make sure to always use the dictionary file that matches your embeddings file.
29
+
30
+ The "dictionary.fullword" file is pulled from fullword.json, which is distilled from "full words"
31
+ present in the ViT-L/14 CLIP model's provided token dictionary, called "vocab.json".
32
+ Thus there are only around 30,000 words in it
33
+
34
+ If you want to use the provided "embeddings.safetensors.huge" file, you will want to use the matching
35
+ "dictionary.huge" file, which has over 300,000 words
36
+
37
+ This huge file comes from the linux "wamerican-huge" package, which delivers it under
38
+ /usr/share/dict/american-english-huge
39
+
40
+ There also exists a "american-insane" package
41
 
42
 
43
  ## generate-embeddings.py
44
 
45
+ Generates the "embeddings.safetensor" file, based on the "dictionary" file present.
46
+ Takes a few minutes to run, depending on size of the dictionary
47
 
48
+ The shape of the embeddings tensor, is
 
 
49
  [number-of-words][768]
50
 
51
  Note that yes, it is possible to directly pull a tensor from the CLIP model,
 
55
  Hence why we are calculating and then storing the embedding weights actually
56
  generated by the CLIP process
57
 
 
 
 
 
 
58
 
59
  ## fullword.json
60
 
dictionary.fullword ADDED
The diff for this file is too large to render. See raw diff
 
dictionary.huge ADDED
The diff for this file is too large to render. See raw diff
 
embeddings.safetensors.huge ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a848df65f451f2d1ae45484f3ad3751e18e8b5b160b107964bdf71a11f96c934
3
+ size 1070450784
generate-distances.py CHANGED
@@ -14,46 +14,88 @@ import json
14
  import torch
15
  from safetensors import safe_open
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  embed_file="embeddings.safetensors"
18
 
19
  device=torch.device("cuda")
20
 
21
- print("read in words from json now",file=sys.stderr)
22
- with open("fullword.json","r") as f:
23
- tokendict = json.load(f)
24
- wordlist = list(tokendict.keys())
 
25
 
26
  print("read in embeddings now",file=sys.stderr)
27
-
28
  model = safe_open(embed_file,framework="pt",device="cuda")
29
  embs=model.get_tensor("embeddings")
30
  embs.to(device)
31
  print("Shape of loaded embeds =",embs.shape)
32
 
33
- # ("calculate distances now")
34
- distances = torch.cdist(embs, embs, p=2)
35
- print("distances shape is",distances.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  # Find 10 closest tokens to targetword.
38
  # Will include the word itself
39
  def find_closest(targetword):
40
  try:
41
  targetindex=wordlist.index(targetword)
42
- except ValueError:
43
- print(targetword,"not found")
44
  return
 
 
45
 
46
- #print("index of",targetword,"is",targetindex)
47
- targetdistances=distances[targetindex]
48
 
49
- smallest_distances, smallest_indices = torch.topk(targetdistances, 10, largest=False)
 
 
50
 
51
- smallest_distances=smallest_distances.tolist()
52
- smallest_indices=smallest_indices.tolist()
53
- for d,i in zip(smallest_distances,smallest_indices):
54
- print(wordlist[i],"(",d,")")
55
- #print("The smallest distance values are",smallest_distances)
56
- #print("The smallest index values are",smallest_indices)
57
 
58
 
59
  print("Input a word now:")
 
14
  import torch
15
  from safetensors import safe_open
16
 
17
+ from transformers import CLIPProcessor,CLIPModel
18
+
19
+ clipsrc="openai/clip-vit-large-patch14"
20
+ processor=None
21
+ model=None
22
+
23
+ device=torch.device("cuda")
24
+
25
+
26
+ def init():
27
+ global processor
28
+ global model
29
+ # Load the processor and model
30
+ print("loading processor from "+clipsrc,file=sys.stderr)
31
+ processor = CLIPProcessor.from_pretrained(clipsrc)
32
+ print("done",file=sys.stderr)
33
+ print("loading model from "+clipsrc,file=sys.stderr)
34
+ model = CLIPModel.from_pretrained(clipsrc)
35
+ print("done",file=sys.stderr)
36
+
37
+ model = model.to(device)
38
+
39
+
40
+
41
  embed_file="embeddings.safetensors"
42
 
43
  device=torch.device("cuda")
44
 
45
+ print("read in words from dictionary now",file=sys.stderr)
46
+ with open("dictionary","r") as f:
47
+ tokendict = f.readlines()
48
+ wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
49
+ print(len(wordlist),"lines read")
50
 
51
  print("read in embeddings now",file=sys.stderr)
 
52
  model = safe_open(embed_file,framework="pt",device="cuda")
53
  embs=model.get_tensor("embeddings")
54
  embs.to(device)
55
  print("Shape of loaded embeds =",embs.shape)
56
 
57
+ def standard_embed_calc(text):
58
+ if processor == None:
59
+ init()
60
+
61
+ inputs = processor(text=text, return_tensors="pt")
62
+ inputs.to(device)
63
+ with torch.no_grad():
64
+ text_features = model.get_text_features(**inputs)
65
+ embedding = text_features[0]
66
+ return embedding
67
+
68
+
69
+ def print_distances(targetemb):
70
+ targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
71
+
72
+ print("shape of distances...",targetdistances.shape)
73
+
74
+ smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
75
+
76
+ smallest_distances=smallest_distances.tolist()
77
+ smallest_indices=smallest_indices.tolist()
78
+ for d,i in zip(smallest_distances,smallest_indices):
79
+ print(wordlist[i],"(",d,")")
80
+
81
+
82
 
83
  # Find 10 closest tokens to targetword.
84
  # Will include the word itself
85
  def find_closest(targetword):
86
  try:
87
  targetindex=wordlist.index(targetword)
88
+ targetemb=embs[targetindex]
89
+ print_distances(targetemb)
90
  return
91
+ except ValueError:
92
+ print(targetword,"not found in cache")
93
 
 
 
94
 
95
+ print("Now doing with full calc embed")
96
+ targetemb=standard_embed_calc(targetword)
97
+ print_distances(targetemb)
98
 
 
 
 
 
 
 
99
 
100
 
101
  print("Input a word now:")
generate-embeddings.py CHANGED
@@ -47,14 +47,14 @@ def standard_embed_calc(text):
47
 
48
  init()
49
 
50
- print("read in words from json now",file=sys.stderr)
51
- with open("fullword.json","r") as f:
52
- tokendict = json.load(f)
53
 
54
  print("generate embeddings for each now",file=sys.stderr)
55
  count=1
56
  all_embeddings = []
57
- for word in tokendict.keys():
58
  emb = standard_embed_calc(word)
59
  emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
60
  all_embeddings.append(emb)
 
47
 
48
  init()
49
 
50
+ with open("dictionary","r") as f:
51
+ tokendict = f.readlines()
52
+ tokendict = [token.strip() for token in tokendict] # Remove trailing newlines
53
 
54
  print("generate embeddings for each now",file=sys.stderr)
55
  count=1
56
  all_embeddings = []
57
+ for word in tokendict:
58
  emb = standard_embed_calc(word)
59
  emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
60
  all_embeddings.append(emb)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ safetensors
3
+ transformers