tokenspace / generate-distances.py
ppbrown's picture
convert to handle dictionary format
7b5e170 verified
raw
history blame
2.71 kB
#!/usr/bin/python3
""" Work in progress
Plan:
Read in fullword.json for list of words and token
Read in pre-calculated "proper" embedding for each token from safetensor file
Generate a tensor array of distance for each token, to every other token/embedding
Save it out
"""
import sys
import json
import torch
from safetensors import safe_open
from transformers import CLIPProcessor,CLIPModel
clipsrc="openai/clip-vit-large-patch14"
processor=None
model=None
device=torch.device("cuda")
def init():
global processor
global model
# Load the processor and model
print("loading processor from "+clipsrc,file=sys.stderr)
processor = CLIPProcessor.from_pretrained(clipsrc)
print("done",file=sys.stderr)
print("loading model from "+clipsrc,file=sys.stderr)
model = CLIPModel.from_pretrained(clipsrc)
print("done",file=sys.stderr)
model = model.to(device)
embed_file="embeddings.safetensors"
device=torch.device("cuda")
print("read in words from dictionary now",file=sys.stderr)
with open("dictionary","r") as f:
tokendict = f.readlines()
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
print(len(wordlist),"lines read")
print("read in embeddings now",file=sys.stderr)
model = safe_open(embed_file,framework="pt",device="cuda")
embs=model.get_tensor("embeddings")
embs.to(device)
print("Shape of loaded embeds =",embs.shape)
def standard_embed_calc(text):
if processor == None:
init()
inputs = processor(text=text, return_tensors="pt")
inputs.to(device)
with torch.no_grad():
text_features = model.get_text_features(**inputs)
embedding = text_features[0]
return embedding
def print_distances(targetemb):
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
print("shape of distances...",targetdistances.shape)
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
smallest_distances=smallest_distances.tolist()
smallest_indices=smallest_indices.tolist()
for d,i in zip(smallest_distances,smallest_indices):
print(wordlist[i],"(",d,")")
# Find 10 closest tokens to targetword.
# Will include the word itself
def find_closest(targetword):
try:
targetindex=wordlist.index(targetword)
targetemb=embs[targetindex]
print_distances(targetemb)
return
except ValueError:
print(targetword,"not found in cache")
print("Now doing with full calc embed")
targetemb=standard_embed_calc(targetword)
print_distances(targetemb)
print("Input a word now:")
for line in sys.stdin:
input_text = line.rstrip()
find_closest(input_text)