|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PMC Open Access Subset.""" |
|
|
|
import datetime |
|
|
|
import pandas as pd |
|
|
|
import datasets |
|
from datasets.tasks import LanguageModeling |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under |
|
license terms that allow reuse. |
|
|
|
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles |
|
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more |
|
liberal redistribution and reuse than a traditional copyrighted work. |
|
|
|
The PMC Open Access Subset is one part of the PMC Article Datasets |
|
""" |
|
|
|
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
_URL = "https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/{subset}/txt/" |
|
_SUBSETS = { |
|
"commercial": "oa_comm", |
|
"non_commercial": "oa_noncomm", |
|
"other": "oa_other", |
|
} |
|
_BASELINE_DATE = "2022-12-17" |
|
_BASELINE_MAX_RANGE = 10 |
|
|
|
|
|
class OpenAccessConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the PMC Open Access Subset.""" |
|
|
|
def __init__(self, subsets=None, **kwargs): |
|
"""BuilderConfig for the PMC Open Access Subset. |
|
|
|
Args: |
|
subsets (:obj:`List[str]`): List of subsets/groups to load. |
|
**kwargs: Keyword arguments forwarded to super. |
|
""" |
|
subsets = [subsets] if isinstance(subsets, str) else subsets |
|
super().__init__( |
|
name="+".join(subsets), **kwargs, |
|
) |
|
self.subsets = subsets if self.name != "all" else list(_SUBSETS.keys()) |
|
|
|
|
|
class OpenAccess(datasets.GeneratorBasedBuilder): |
|
"""PMC Open Access Subset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIG_CLASS = OpenAccessConfig |
|
BUILDER_CONFIGS = [OpenAccessConfig(subsets="all")] + [OpenAccessConfig(subsets=subset) for subset in _SUBSETS] |
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"pmid": datasets.Value("string"), |
|
"accession_id": datasets.Value("string"), |
|
"license": datasets.Value("string"), |
|
"last_updated": datasets.Value("string"), |
|
"retracted": datasets.Value("string"), |
|
"citation": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[LanguageModeling(text_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
incremental_paths = { |
|
"incremental_file_lists": [], |
|
"incremental_archives": [] |
|
} |
|
baseline_file_lists = [] |
|
baseline_archives = [] |
|
|
|
for subset in self.config.subsets: |
|
url = _URL.format(subset=_SUBSETS[subset]) |
|
basename = f"{_SUBSETS[subset]}_txt." |
|
|
|
baselines = [f"PMC00{i}xxxxxx.baseline.{_BASELINE_DATE}" for i in range(_BASELINE_MAX_RANGE)] |
|
|
|
|
|
|
|
|
|
|
|
for baseline in baselines: |
|
baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv" |
|
try: |
|
baseline_file_list = dl_manager.download(baseline_file_list_url) |
|
except FileNotFoundError: |
|
continue |
|
baseline_archive_url = f"{url}{basename}{baseline}.tar.gz" |
|
try: |
|
baseline_archive = dl_manager.download(baseline_archive_url) |
|
except FileNotFoundError: |
|
continue |
|
baseline_file_lists.append(baseline_file_list) |
|
baseline_archives.append(baseline_archive) |
|
|
|
date_delta = datetime.date.today() - datetime.date.fromisoformat(_BASELINE_DATE) |
|
incremental_dates = [ |
|
(datetime.date.fromisoformat(_BASELINE_DATE) + datetime.timedelta(days=i + 1)).isoformat() |
|
for i in range(date_delta.days) |
|
] |
|
incrementals = [f"incr.{date}" for date in incremental_dates] |
|
incremental_urls = { |
|
"incremental_file_lists": [ |
|
f"{url}{basename}{incremental}.filelist.csv" for incremental in incrementals |
|
], |
|
"incremental_archives": [f"{url}{basename}{incremental}.tar.gz" for incremental in incrementals], |
|
} |
|
paths = dl_manager.download(incremental_urls) |
|
incremental_paths["incremental_file_lists"].extend(paths["incremental_file_lists"]) |
|
incremental_paths["incremental_archives"].extend(paths["incremental_archives"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"baseline_file_lists": baseline_file_lists, |
|
"baseline_archives": [dl_manager.iter_archive(archive) for archive in baseline_archives], |
|
"incremental_file_lists": incremental_paths["incremental_file_lists"], |
|
"incremental_archives": [ |
|
dl_manager.iter_archive(archive) for archive in incremental_paths["incremental_archives"] |
|
], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, baseline_file_lists, baseline_archives, incremental_file_lists, incremental_archives): |
|
key = 0 |
|
|
|
for baseline_file_list, baseline_archive in zip(baseline_file_lists, baseline_archives): |
|
try: |
|
baselines = pd.read_csv(baseline_file_list, index_col="Article File").to_dict(orient="index") |
|
for path, file in baseline_archive: |
|
data = baselines.pop(path) |
|
content = file.read() |
|
try: |
|
text = content.decode("utf-8").strip() |
|
except UnicodeDecodeError as e: |
|
text = content.decode("latin-1").strip() |
|
data = { |
|
"text": text, |
|
"pmid": data["PMID"], |
|
"accession_id": data["AccessionID"], |
|
"license": data["License"], |
|
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"], |
|
"retracted": data["Retracted"], |
|
"citation": data["Article Citation"], |
|
} |
|
yield key, data |
|
key += 1 |
|
except FileNotFoundError: |
|
continue |
|
|
|
if incremental_file_lists: |
|
for incremental_file_list, incremental_archive in zip(incremental_file_lists, incremental_archives): |
|
incrementals = pd.read_csv(incremental_file_list, index_col="Article File").to_dict(orient="index") |
|
for path, file in incremental_archive: |
|
data = incrementals.pop(path) |
|
content = file.read() |
|
try: |
|
text = content.decode("utf-8").strip() |
|
except UnicodeDecodeError as e: |
|
text = content.decode("latin-1").strip() |
|
data = { |
|
"text": text, |
|
"pmid": data["PMID"], |
|
"accession_id": data["AccessionID"], |
|
"license": data["License"], |
|
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"], |
|
"retracted": data["Retracted"], |
|
"citation": data["Article Citation"], |
|
} |
|
yield key, data |
|
key += 1 |
|
|