|
## Overview |
|
|
|
Original dataset page [here](https://abhilasharavichander.github.io/NLI_StressTest/) and dataset available [here](https://drive.google.com/open?id=1faGA5pHdu5Co8rFhnXn-6jbBYC2R1dhw). |
|
|
|
|
|
## Dataset curation |
|
Added new column `label` with encoded labels with the following mapping |
|
|
|
``` |
|
{"entailment": 0, "neutral": 1, "contradiction": 2} |
|
``` |
|
|
|
and the columns with parse information are dropped as they are not well formatted. |
|
|
|
Also, the name of the file from which each instance comes is added in the column `dtype`. |
|
|
|
|
|
## Code to create the dataset |
|
|
|
```python |
|
import pandas as pd |
|
from datasets import Dataset, ClassLabel, Value, Features, DatasetDict |
|
import json |
|
from pathlib import Path |
|
|
|
|
|
# load data |
|
ds = {} |
|
path = Path("<path to folder>") |
|
for i in path.rglob("*.jsonl"): |
|
print(i) |
|
name = str(i).split("/")[0].lower() |
|
dtype = str(i).split("/")[1].lower() |
|
|
|
# read data |
|
with i.open("r") as fl: |
|
df = pd.DataFrame([json.loads(line) for line in fl]) |
|
|
|
# select columns |
|
df = df.loc[:, ["sentence1", "sentence2", "gold_label"]] |
|
|
|
# add file name as column |
|
df["dtype"] = dtype |
|
|
|
# encode labels |
|
df["label"] = df["gold_label"].map({"entailment": 0, "neutral": 1, "contradiction": 2}) |
|
ds[name] = df |
|
|
|
# cast to dataset |
|
features = Features( |
|
{ |
|
"sentence1": Value(dtype="string"), |
|
"sentence2": Value(dtype="string"), |
|
"label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), |
|
"dtype": Value(dtype="string"), |
|
"gold_label": Value(dtype="string"), |
|
} |
|
) |
|
ds = DatasetDict({k: Dataset.from_pandas(v, features=features) for k, v in ds.items()}) |
|
ds.push_to_hub("pietrolesci/stress_tests_nli", token="<token>") |
|
|
|
|
|
# check overlap between splits |
|
from itertools import combinations |
|
for i, j in combinations(ds.keys(), 2): |
|
print( |
|
f"{i} - {j}: ", |
|
pd.merge( |
|
ds[i].to_pandas(), |
|
ds[j].to_pandas(), |
|
on=["sentence1", "sentence2", "label"], |
|
how="inner", |
|
).shape[0], |
|
) |
|
#> numerical_reasoning - negation: 0 |
|
#> numerical_reasoning - length_mismatch: 0 |
|
#> numerical_reasoning - spelling_error: 0 |
|
#> numerical_reasoning - word_overlap: 0 |
|
#> numerical_reasoning - antonym: 0 |
|
#> negation - length_mismatch: 0 |
|
#> negation - spelling_error: 0 |
|
#> negation - word_overlap: 0 |
|
#> negation - antonym: 0 |
|
#> length_mismatch - spelling_error: 0 |
|
#> length_mismatch - word_overlap: 0 |
|
#> length_mismatch - antonym: 0 |
|
#> spelling_error - word_overlap: 0 |
|
#> spelling_error - antonym: 0 |
|
#> word_overlap - antonym: 0 |
|
``` |