stress_tests_nli / README.md
pietrolesci's picture
Update README.md
fbd6fcc
## Overview
Original dataset page [here](https://abhilasharavichander.github.io/NLI_StressTest/) and dataset available [here](https://drive.google.com/open?id=1faGA5pHdu5Co8rFhnXn-6jbBYC2R1dhw).
## Dataset curation
Added new column `label` with encoded labels with the following mapping
```
{"entailment": 0, "neutral": 1, "contradiction": 2}
```
and the columns with parse information are dropped as they are not well formatted.
Also, the name of the file from which each instance comes is added in the column `dtype`.
## Code to create the dataset
```python
import pandas as pd
from datasets import Dataset, ClassLabel, Value, Features, DatasetDict
import json
from pathlib import Path
# load data
ds = {}
path = Path("<path to folder>")
for i in path.rglob("*.jsonl"):
print(i)
name = str(i).split("/")[0].lower()
dtype = str(i).split("/")[1].lower()
# read data
with i.open("r") as fl:
df = pd.DataFrame([json.loads(line) for line in fl])
# select columns
df = df.loc[:, ["sentence1", "sentence2", "gold_label"]]
# add file name as column
df["dtype"] = dtype
# encode labels
df["label"] = df["gold_label"].map({"entailment": 0, "neutral": 1, "contradiction": 2})
ds[name] = df
# cast to dataset
features = Features(
{
"sentence1": Value(dtype="string"),
"sentence2": Value(dtype="string"),
"label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]),
"dtype": Value(dtype="string"),
"gold_label": Value(dtype="string"),
}
)
ds = DatasetDict({k: Dataset.from_pandas(v, features=features) for k, v in ds.items()})
ds.push_to_hub("pietrolesci/stress_tests_nli", token="<token>")
# check overlap between splits
from itertools import combinations
for i, j in combinations(ds.keys(), 2):
print(
f"{i} - {j}: ",
pd.merge(
ds[i].to_pandas(),
ds[j].to_pandas(),
on=["sentence1", "sentence2", "label"],
how="inner",
).shape[0],
)
#> numerical_reasoning - negation: 0
#> numerical_reasoning - length_mismatch: 0
#> numerical_reasoning - spelling_error: 0
#> numerical_reasoning - word_overlap: 0
#> numerical_reasoning - antonym: 0
#> negation - length_mismatch: 0
#> negation - spelling_error: 0
#> negation - word_overlap: 0
#> negation - antonym: 0
#> length_mismatch - spelling_error: 0
#> length_mismatch - word_overlap: 0
#> length_mismatch - antonym: 0
#> spelling_error - word_overlap: 0
#> spelling_error - antonym: 0
#> word_overlap - antonym: 0
```