|
## Overview |
|
|
|
Original dataset [here](https://github.com/aylai/MultiPremiseEntailment). |
|
|
|
|
|
## Dataset curation |
|
Same data and splits as the original. The following columns have been added: |
|
|
|
- `premise`: concatenation of `premise1`, `premise2`, `premise3`, and `premise4` |
|
- `label`: encoded `gold_label` with the following mapping `{"entailment": 0, "neutral": 1, "contradiction": 2}` |
|
|
|
|
|
## Code to create the dataset |
|
|
|
```python |
|
import pandas as pd |
|
from datasets import Features, Value, ClassLabel, Dataset, DatasetDict |
|
from pathlib import Path |
|
|
|
|
|
# read data |
|
path = Path("<path to files>") |
|
datasets = {} |
|
for dataset_path in path.rglob("*.txt"): |
|
df = pd.read_csv(dataset_path, sep="\t") |
|
datasets[dataset_path.name.split("_")[1].split(".")[0]] = df |
|
|
|
|
|
ds = {} |
|
for name, df_ in datasets.items(): |
|
df = df_.copy() |
|
|
|
# fix parsing error for dev split |
|
if name == "dev": |
|
# fix parsing error |
|
df.loc[df["contradiction_judgments"] == "3 contradiction", "contradiction_judgments"] = 3 |
|
df.loc[df["gold_label"].isna(), "gold_label"] = "contradiction" |
|
|
|
# check no nan |
|
assert df.isna().sum().sum() == 0 |
|
|
|
# fix dtypes |
|
for col in ("entailment_judgments", "neutral_judgments", "contradiction_judgments"): |
|
df[col] = df[col].astype(int) |
|
|
|
# fix premise column |
|
for i in range(1, 4 + 1): |
|
df[f"premise{i}"] = df[f"premise{i}"].str.split("/", expand=True)[1] |
|
df["premise"] = df[[f"premise{i}" for i in range(1, 4 + 1)]].agg(" ".join, axis=1) |
|
|
|
# encode labels |
|
df["label"] = df["gold_label"].map({"entailment": 0, "neutral": 1, "contradiction": 2}) |
|
|
|
# cast to dataset |
|
features = Features({ |
|
"premise1": Value(dtype="string", id=None), |
|
"premise2": Value(dtype="string", id=None), |
|
"premise3": Value(dtype="string", id=None), |
|
"premise4": Value(dtype="string", id=None), |
|
"premise": Value(dtype="string", id=None), |
|
"hypothesis": Value(dtype="string", id=None), |
|
"entailment_judgments": Value(dtype="int32"), |
|
"neutral_judgments": Value(dtype="int32"), |
|
"contradiction_judgments": Value(dtype="int32"), |
|
"gold_label": Value(dtype="string"), |
|
"label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), |
|
}) |
|
|
|
ds[name] = Dataset.from_pandas(df, features=features) |
|
|
|
# push to hub |
|
ds = DatasetDict(ds) |
|
ds.push_to_hub("mpe", token="<token>") |
|
|
|
# check overlap between splits |
|
from itertools import combinations |
|
for i, j in combinations(ds.keys(), 2): |
|
print( |
|
f"{i} - {j}: ", |
|
pd.merge( |
|
ds[i].to_pandas(), |
|
ds[j].to_pandas(), |
|
on=["premise", "hypothesis", "label"], |
|
how="inner", |
|
).shape[0], |
|
) |
|
#> dev - test: 0 |
|
#> dev - train: 0 |
|
#> test - train: 0 |
|
``` |