sciarg / sciarg.py
ArneBinder's picture
integrate https://github.com/ArneBinder/pie-datasets/pull/103
2b58efe verified
import logging
from typing import Union
from pie_modules.document.processing import (
RegexPartitioner,
RelationArgumentSorter,
SpansViaRelationMerger,
TextSpanTrimmer,
)
from pie_modules.documents import (
TextDocumentWithLabeledMultiSpansAndBinaryRelations,
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
TextDocumentWithLabeledSpansAndBinaryRelations,
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)
from pytorch_ie.core import Document
from pie_datasets.builders import BratBuilder, BratConfig
from pie_datasets.builders.brat import BratDocument, BratDocumentWithMergedSpans
from pie_datasets.core.dataset import DocumentConvertersType
from pie_datasets.document.processing import Caster, Pipeline
logger = logging.getLogger(__name__)
URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
SPLIT_PATHS = {"train": "compiled_corpus"}
def get_common_converter_pipeline_steps(target_document_type: type[Document]) -> dict:
return dict(
cast=Caster(
document_type=target_document_type,
field_mapping={"spans": "labeled_spans", "relations": "binary_relations"},
),
trim_adus=TextSpanTrimmer(layer="labeled_spans"),
sort_symmetric_relation_arguments=RelationArgumentSorter(
relation_layer="binary_relations",
label_whitelist=["parts_of_same", "semantically_same"],
),
)
def get_common_converter_pipeline_steps_with_resolve_parts_of_same(
target_document_type: type[Document],
) -> dict:
return dict(
cast=Caster(
document_type=target_document_type,
field_mapping={"spans": "labeled_multi_spans", "relations": "binary_relations"},
),
trim_adus=TextSpanTrimmer(layer="labeled_multi_spans"),
sort_symmetric_relation_arguments=RelationArgumentSorter(
relation_layer="binary_relations",
label_whitelist=["semantically_same"],
),
)
def remove_duplicate_relations(document: Union[BratDocument, BratDocumentWithMergedSpans]) -> None:
if len(document.relations) > len(set(document.relations)):
added = set()
i = 0
while i < len(document.relations):
relation = document.relations[i]
if relation in added:
logger.warning(f"doc_id={document.id}: Removing duplicate relation: {relation}")
document.relations.pop(i)
else:
added.add(relation)
i += 1
class SciArgConfig(BratConfig):
def __init__(
self,
name: str,
resolve_parts_of_same: bool = False,
**kwargs,
):
super().__init__(name=name, merge_fragmented_spans=True, **kwargs)
self.resolve_parts_of_same = resolve_parts_of_same
class SciArg(BratBuilder):
BASE_DATASET_PATH = "DFKI-SLT/brat"
BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1"
# Overwrite the default config to merge the span fragments.
# The span fragments in SciArg come just from the new line splits, so we can merge them.
# Actual span fragments are annotated via "parts_of_same" relations.
BUILDER_CONFIGS = [
SciArgConfig(name=BratBuilder.DEFAULT_CONFIG_NAME),
SciArgConfig(name="resolve_parts_of_same", resolve_parts_of_same=True),
]
DOCUMENT_TYPES = {
BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans,
"resolve_parts_of_same": BratDocument,
}
# we need to add None to the list of dataset variants to support the default dataset variant
BASE_BUILDER_KWARGS_DICT = {
dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
for dataset_variant in ["default", "resolve_parts_of_same", None]
}
def _generate_document(self, example, **kwargs):
document = super()._generate_document(example, **kwargs)
if self.config.resolve_parts_of_same:
document = SpansViaRelationMerger(
relation_layer="relations",
link_relation_label="parts_of_same",
create_multi_spans=True,
result_document_type=BratDocument,
result_field_mapping={"spans": "spans", "relations": "relations"},
)(document)
else:
# some documents have duplicate relations, remove them
remove_duplicate_relations(document)
return document
@property
def document_converters(self) -> DocumentConvertersType:
regex_partitioner = RegexPartitioner(
partition_layer_name="labeled_partitions",
pattern="<([^>/]+)>.*</\\1>",
label_group_id=1,
label_whitelist=["Title", "Abstract", "H1"],
skip_initial_partition=True,
strip_whitespace=True,
)
if not self.config.resolve_parts_of_same:
return {
TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
**get_common_converter_pipeline_steps(
TextDocumentWithLabeledSpansAndBinaryRelations
)
),
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
**get_common_converter_pipeline_steps(
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
),
add_partitions=regex_partitioner,
),
}
else:
return {
# TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
# **get_common_converter_pipeline_steps_with_resolve_parts_of_same(
# TextDocumentWithLabeledSpansAndBinaryRelations
# )
# ),
# TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
# **get_common_converter_pipeline_steps_with_resolve_parts_of_same(
# TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
# ),
# add_partitions=regex_partitioner,
# ),
TextDocumentWithLabeledMultiSpansAndBinaryRelations: Pipeline(
**get_common_converter_pipeline_steps_with_resolve_parts_of_same(
TextDocumentWithLabeledMultiSpansAndBinaryRelations
)
),
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions: Pipeline(
**get_common_converter_pipeline_steps_with_resolve_parts_of_same(
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
),
add_partitions=regex_partitioner,
),
}