ArneBinder commited on
Commit
06be6e9
1 Parent(s): d0a3f11

from https://github.com/ArneBinder/pie-datasets/pull/150

Browse files
Files changed (1) hide show
  1. drugprot.py +125 -13
drugprot.py CHANGED
@@ -30,7 +30,7 @@ class DrugprotBigbioDocument(TextBasedDocument):
30
 
31
 
32
  def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
33
- metadata = {"entity_ids": []}
34
  id2labeled_span: Dict[str, LabeledSpan] = {}
35
 
36
  document = DrugprotDocument(
@@ -40,6 +40,7 @@ def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
40
  id=example["document_id"],
41
  metadata=metadata,
42
  )
 
43
  for span in example["entities"]:
44
  labeled_span = LabeledSpan(
45
  start=span["offset"][0],
@@ -47,23 +48,30 @@ def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
47
  label=span["type"],
48
  )
49
  document.entities.append(labeled_span)
50
- document.metadata["entity_ids"].append(span["id"])
51
- id2labeled_span[span["id"]] = labeled_span
 
 
52
  for relation in example["relations"]:
 
 
53
  document.relations.append(
54
  BinaryRelation(
55
- head=id2labeled_span[relation["arg1_id"]],
56
- tail=id2labeled_span[relation["arg2_id"]],
57
  label=relation["type"],
58
  )
59
  )
 
 
 
60
  return document
61
 
62
 
63
  def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
64
  text = " ".join([" ".join(passage["text"]) for passage in example["passages"]])
65
  doc_id = example["document_id"]
66
- metadata = {"entity_ids": []}
67
  id2labeled_span: Dict[str, LabeledSpan] = {}
68
 
69
  document = DrugprotBigbioDocument(
@@ -79,7 +87,7 @@ def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
79
  label=passage["type"],
80
  )
81
  )
82
- # We sort labels and relation to always have an deterministic order for testing purposes.
83
  for span in example["entities"]:
84
  labeled_span = LabeledSpan(
85
  start=span["offsets"][0][0],
@@ -87,19 +95,114 @@ def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
87
  label=span["type"],
88
  )
89
  document.entities.append(labeled_span)
90
- document.metadata["entity_ids"].append(span["id"])
91
- id2labeled_span[span["id"]] = labeled_span
 
 
92
  for relation in example["relations"]:
 
 
93
  document.relations.append(
94
  BinaryRelation(
95
- head=id2labeled_span[relation["arg1_id"]],
96
- tail=id2labeled_span[relation["arg2_id"]],
97
  label=relation["type"],
98
  )
99
  )
 
 
 
100
  return document
101
 
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  class Drugprot(GeneratorBasedBuilder):
104
  DOCUMENT_TYPES = {
105
  "drugprot_source": DrugprotDocument,
@@ -144,8 +247,7 @@ class Drugprot(GeneratorBasedBuilder):
144
  raise ValueError(f"Unknown dataset name: {self.config.name}")
145
 
146
  def _generate_document(
147
- self,
148
- example: Dict[str, Any],
149
  ) -> Union[DrugprotDocument, DrugprotBigbioDocument]:
150
  if self.config.name == "drugprot_source":
151
  return example2drugprot(example)
@@ -153,3 +255,13 @@ class Drugprot(GeneratorBasedBuilder):
153
  return example2drugprot_bigbio(example)
154
  else:
155
  raise ValueError(f"Unknown dataset config name: {self.config.name}")
 
 
 
 
 
 
 
 
 
 
 
30
 
31
 
32
  def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
33
+ metadata = {"entity_ids": [], "relation_ids": []}
34
  id2labeled_span: Dict[str, LabeledSpan] = {}
35
 
36
  document = DrugprotDocument(
 
40
  id=example["document_id"],
41
  metadata=metadata,
42
  )
43
+
44
  for span in example["entities"]:
45
  labeled_span = LabeledSpan(
46
  start=span["offset"][0],
 
48
  label=span["type"],
49
  )
50
  document.entities.append(labeled_span)
51
+ entity_id = span["id"].split("_")[1]
52
+ document.metadata["entity_ids"].append(entity_id)
53
+ id2labeled_span[entity_id] = labeled_span
54
+
55
  for relation in example["relations"]:
56
+ arg1_id = relation["arg1_id"].split("_")[1]
57
+ arg2_id = relation["arg2_id"].split("_")[1]
58
  document.relations.append(
59
  BinaryRelation(
60
+ head=id2labeled_span[arg1_id],
61
+ tail=id2labeled_span[arg2_id],
62
  label=relation["type"],
63
  )
64
  )
65
+ relation_id = "R" + relation["id"].split("_")[1]
66
+ document.metadata["relation_ids"].append(relation_id)
67
+
68
  return document
69
 
70
 
71
  def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
72
  text = " ".join([" ".join(passage["text"]) for passage in example["passages"]])
73
  doc_id = example["document_id"]
74
+ metadata = {"entity_ids": [], "relation_ids": []}
75
  id2labeled_span: Dict[str, LabeledSpan] = {}
76
 
77
  document = DrugprotBigbioDocument(
 
87
  label=passage["type"],
88
  )
89
  )
90
+ # We sort labels and relation to always have a deterministic order for testing purposes.
91
  for span in example["entities"]:
92
  labeled_span = LabeledSpan(
93
  start=span["offsets"][0][0],
 
95
  label=span["type"],
96
  )
97
  document.entities.append(labeled_span)
98
+ entity_id = span["id"].split("_")[1]
99
+ document.metadata["entity_ids"].append(entity_id)
100
+ id2labeled_span[entity_id] = labeled_span
101
+
102
  for relation in example["relations"]:
103
+ arg1_id = relation["arg1_id"].split("_")[1]
104
+ arg2_id = relation["arg2_id"].split("_")[1]
105
  document.relations.append(
106
  BinaryRelation(
107
+ head=id2labeled_span[arg1_id],
108
+ tail=id2labeled_span[arg2_id],
109
  label=relation["type"],
110
  )
111
  )
112
+ relation_id = "R" + relation["id"].split("_")[1]
113
+ document.metadata["relation_ids"].append(relation_id)
114
+
115
  return document
116
 
117
 
118
+ def drugprot2example(doc: DrugprotDocument) -> Dict[str, Any]:
119
+ entities = []
120
+ for i, entity in enumerate(doc.entities):
121
+ entities.append(
122
+ {
123
+ "id": doc.id + "_" + doc.metadata["entity_ids"][i],
124
+ "type": entity.label,
125
+ "text": doc.text[entity.start : entity.end],
126
+ "offset": [entity.start, entity.end],
127
+ }
128
+ )
129
+
130
+ relations = []
131
+ for i, relation in enumerate(doc.relations):
132
+ relations.append(
133
+ {
134
+ "id": doc.id + "_" + doc.metadata["relation_ids"][i][1:],
135
+ "arg1_id": doc.id
136
+ + "_"
137
+ + doc.metadata["entity_ids"][doc.entities.index(relation.head)],
138
+ "arg2_id": doc.id
139
+ + "_"
140
+ + doc.metadata["entity_ids"][doc.entities.index(relation.tail)],
141
+ "type": relation.label,
142
+ }
143
+ )
144
+
145
+ return {
146
+ "document_id": doc.id,
147
+ "title": doc.title,
148
+ "abstract": doc.abstract,
149
+ "text": doc.text,
150
+ "entities": entities,
151
+ "relations": relations,
152
+ }
153
+
154
+
155
+ def drugprot_bigbio2example(doc: DrugprotBigbioDocument) -> Dict[str, Any]:
156
+ entities = []
157
+ for i, entity in enumerate(doc.entities):
158
+ entities.append(
159
+ {
160
+ "id": doc.id + "_" + doc.metadata["entity_ids"][i],
161
+ "normalized": [],
162
+ "offsets": [[entity.start, entity.end]],
163
+ "type": entity.label,
164
+ "text": [doc.text[entity.start : entity.end]],
165
+ }
166
+ )
167
+
168
+ relations = []
169
+ for i, relation in enumerate(doc.relations):
170
+ relations.append(
171
+ {
172
+ "id": doc.id + "_" + doc.metadata["relation_ids"][i][1:],
173
+ "arg1_id": doc.id
174
+ + "_"
175
+ + doc.metadata["entity_ids"][doc.entities.index(relation.head)],
176
+ "arg2_id": doc.id
177
+ + "_"
178
+ + doc.metadata["entity_ids"][doc.entities.index(relation.tail)],
179
+ "normalized": [],
180
+ "type": relation.label,
181
+ }
182
+ )
183
+
184
+ passages = []
185
+ for passage in doc.passages:
186
+ passages.append(
187
+ {
188
+ "id": doc.id + "_" + passage.label,
189
+ "text": [doc.text[passage.start : passage.end]],
190
+ "offsets": [[passage.start, passage.end]],
191
+ "type": passage.label,
192
+ }
193
+ )
194
+
195
+ return {
196
+ "coreferences": [],
197
+ "document_id": doc.id,
198
+ "entities": entities,
199
+ "events": [],
200
+ "id": doc.id,
201
+ "passages": passages,
202
+ "relations": relations,
203
+ }
204
+
205
+
206
  class Drugprot(GeneratorBasedBuilder):
207
  DOCUMENT_TYPES = {
208
  "drugprot_source": DrugprotDocument,
 
247
  raise ValueError(f"Unknown dataset name: {self.config.name}")
248
 
249
  def _generate_document(
250
+ self, example: Dict[str, Any], **kwargs
 
251
  ) -> Union[DrugprotDocument, DrugprotBigbioDocument]:
252
  if self.config.name == "drugprot_source":
253
  return example2drugprot(example)
 
255
  return example2drugprot_bigbio(example)
256
  else:
257
  raise ValueError(f"Unknown dataset config name: {self.config.name}")
258
+
259
+ def _generate_example(
260
+ self, document: Union[DrugprotDocument, DrugprotBigbioDocument], **kwargs
261
+ ) -> Dict[str, Any]:
262
+ if isinstance(document, DrugprotBigbioDocument):
263
+ return drugprot_bigbio2example(document)
264
+ elif isinstance(document, DrugprotDocument):
265
+ return drugprot2example(document)
266
+ else:
267
+ raise ValueError(f"Unknown document type: {type(document)}")