ViHOS / ViHOS.py
phusroyal's picture
Update ViHOS.py
c9abf2e
raw
history blame
2.36 kB
"""ViHOS - Vietnamese Hate and Offensive Spans dataset"""
import pandas as pd
import datasets
_DESCRIPTION = """\
This is a dataset of Vietnamese Hate and Offensive Spans dataset from social media texts.
"""
_HOMEPAGE = "https://huggingface.co/datasets/phusroyal/ViHOS"
_LICENSE = "mit"
_URLS = [
"https://huggingface.co/datasets/phusroyal/ViHOS/blob/main/test/test.csv"
]
class ViHOS(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("2.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"content": datasets.Value("string"),
"index_spans": datasets.Value("string")
}
),
homepage=_HOMEPAGE,
license=_LICENSE
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir[0],
"split": "test",
},
)
]
def load_csv(filename):
data = list()
# Open file in read mode
file = open(filename,"r")
# Reading file
lines = reader(file)
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
data.append(row)
return data
def _generate_examples(self, filepath, split):
colnames=['id', 'Content', 'Span ids']
data = pd.read_csv(filepath, names=colnames, header=None, sep=",", on_bad_lines='skip')
# for i in range(len(data)):
# id_ = data.loc[i, 'id']
# content = data.loc[i, 'Content']
# span_ids = data.loc[i, 'Span ids']
# yield id_, {
# "id": id_,
# "content": content,
# "span_ids": span_ids,
# }
yield data
# data = pd.read_csv(filepath, colnames=colnames, header = None)
# yield data.iloc[:, 0], dataframe.iloc[:, 1], dataframe.iloc[:, 2]