metadata
			viewer: false
tags:
  - ocr
  - document-processing
  - nanonets
  - markdown
  - uv-script
  - generated
Document OCR using Nanonets-OCR-s
This dataset contains markdown-formatted OCR results from images in /content/input using Nanonets-OCR-s.
Processing Details
- Source Dataset: /content/input
- Model: nanonets/Nanonets-OCR-s
- Number of Samples: 32
- Processing Time: 7.9 minutes
- Processing Date: 2025-08-14 04:32 UTC
Configuration
- Image Column: image
- Output Column: markdown
- Dataset Split: train
- Batch Size: 32
- Max Model Length: 8,192 tokens
- Max Output Tokens: 4,096
- GPU Memory Utilization: 80.0%
Model Information
Nanonets-OCR-s is a state-of-the-art document OCR model that excels at:
- π LaTeX equations - Mathematical formulas preserved in LaTeX format
- π Tables - Extracted and formatted as HTML
- π Document structure - Headers, lists, and formatting maintained
- πΌοΈ Images - Captions and descriptions included in <img>tags
- βοΈ Forms - Checkboxes rendered as β/β
- π Watermarks - Wrapped in <watermark>tags
- π Page numbers - Wrapped in <page_number>tags
Dataset Structure
The dataset contains all original columns plus:
- markdown: The extracted text in markdown format with preserved structure
- inference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr Nanonets OCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    /content/input \
    <output-dataset> \
    --image-column image \
    --batch-size 32 \
    --max-model-len 8192 \
    --max-tokens 4096 \
    --gpu-memory-utilization 0.8
Performance
- Processing Speed: ~0.1 images/second
- GPU Configuration: vLLM with 80% GPU memory utilization
Generated with π€ UV Scripts