fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
num_gt_mina x y : Num.min x%:num y%:num < a = (x%:num < a) || (y%:num < a). Proof. by rewrite -comparable_gt_min// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_gt_min
num_abs_lea x : 0 <= a -> (`|a|%:nng <= x) = (a <= x%:num). Proof. by move=> a0; rewrite -num_le//= ger0_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_abs_le
num_abs_lta x : 0 <= a -> (`|a|%:nng < x) = (a < x%:num). Proof. by move=> a0; rewrite -num_lt/= ger0_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_abs_lt
itvnum_subdef: num_spec (Itv.Real (Interval l u)) x. Proof. by apply/and3P. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
itvnum_subdef
ItvNum: num_def R (Itv.Real (Interval l u)) := Itv.mk itvnum_subdef.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
ItvNum
itvreal_subdef: num_spec (Itv.Real (Interval l u)) x. Proof. by apply/and3P; split; first exact: num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
itvreal_subdef
ItvReal: num_def R (Itv.Real (Interval l u)) := Itv.mk itvreal_subdef.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
ItvReal
itv01_subdef: num_spec (Itv.Real `[0%Z, 1%Z]) x. Proof. by apply/and3P; split; rewrite ?bnd_simp// ger0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
itv01_subdef
Itv01: num_def R (Itv.Real `[0%Z, 1%Z]) := Itv.mk itv01_subdef.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
Itv01
posnum_subdef: num_spec (Itv.Real `]0, +oo[) x. Proof. by apply/and3P; rewrite /= gtr0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
posnum_subdef
PosNum: {posnum R} := Itv.mk posnum_subdef.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
PosNum
nngnum_subdef: num_spec (Itv.Real `[0, +oo[) x. Proof. by apply/and3P; rewrite /= ger0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nngnum_subdef
NngNum: {nonneg R} := Itv.mk nngnum_subdef.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
NngNum
posnum_spec(R : numDomainType) (x : R) : R -> bool -> bool -> bool -> Type := | IsPosnum (p : {posnum R}) : posnum_spec x (p%:num) false true true.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
posnum_spec
posnumP(R : numDomainType) (x : R) : 0 < x -> posnum_spec x x (x == 0) (0 <= x) (0 < x). Proof. move=> x_gt0; case: real_ltgt0P (x_gt0) => []; rewrite ?gtr0_real // => _ _. by rewrite -[x]/(PosNum x_gt0)%:num; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
posnumP
nonneg_spec(R : numDomainType) (x : R) : R -> bool -> Type := | IsNonneg (p : {nonneg R}) : nonneg_spec x (p%:num) true.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nonneg_spec
nonnegP(R : numDomainType) (x : R) : 0 <= x -> nonneg_spec x x (0 <= x). Proof. by move=> xge0; rewrite xge0 -[x]/(NngNum xge0)%:num; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nonnegP
s_of_pq(p q : {i01 R}) : {i01 R} := (1 - ((1 - p%:num)%:i01%:num * (1 - q%:num)%:i01%:num))%:i01.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
s_of_pq
s_of_p0(p : {i01 R}) : s_of_pq p 0%:i01 = p. Proof. by apply/val_inj; rewrite /= subr0 mulr1 subKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
s_of_p0
matrix: predArgType := Matrix of {ffun 'I_m * 'I_n -> R}.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix
mx_valA := let: Matrix g := A in g. HB.instance Definition _ := [isNew for mx_val].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mx_val
fun_of_matrixA (i : 'I_m) (j : 'I_n) := mx_val A (i, j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
fun_of_matrix
fun_of_matrix: matrix >-> Funclass.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
fun_of_matrix
matrix_of_funR (m n : nat) (k : unit) (F : 'I_m -> 'I_n -> R) := @Matrix R m n [ffun ij => F ij.1 ij.2].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_of_fun
matrix_unlockable:= Unlockable matrix_of_fun.unlock.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_unlockable
mxEk F : matrix_of_fun k F =2 F. Proof. by move=> i j; rewrite unlock /fun_of_matrix /= ffunE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxE
matrixP(A B : matrix R m n) : A =2 B <-> A = B. Proof. rewrite /fun_of_matrix; split=> [/= eqAB | -> //]. by apply/val_inj/ffunP=> [[i j]]; apply: eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrixP
eq_mxk F1 F2 : (F1 =2 F2) -> matrix_of_fun k F1 = matrix_of_fun k F2. Proof. by move=> eq_F; apply/matrixP => i j; rewrite !mxE eq_F. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_mx
Definition_ (R : eqType) m n := [Equality of 'M[R]_(m, n) by <:]. HB.instance Definition _ (R : choiceType) m n := [Choice of 'M[R]_(m, n) by <:]. HB.instance Definition _ (R : countType) m n := [Countable of 'M[R]_(m, n) by <:]. HB.instance Definition _ (R : finType) m n := [Finite of 'M[R]_(m, n) by <:].
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
card_mx(F : finType) m n : (#|{: 'M[F]_(m, n)}| = #|F| ^ (m * n))%N. Proof. by rewrite card_sub card_ffun card_prod !card_ord. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
card_mx
const_mxm n a : 'M[R]_(m, n) := \matrix[const_mx_key]_(i, j) a. Arguments const_mx {m n}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
const_mx
castmxm' n' (eq_mn : (m = m') * (n = n')) A : 'M_(m', n') := let: erefl in _ = m' := eq_mn.1 return 'M_(m', n') in let: erefl in _ = n' := eq_mn.2 return 'M_(m, n') in A.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmx
conform_mxm' n' B A := match m =P m', n =P n' with | ReflectT eq_m, ReflectT eq_n => castmx (eq_m, eq_n) A | _, _ => B end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
conform_mx
trmxA := \matrix[trmx_key]_(i, j) A j i.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx
row_perm(s : 'S_m) A := \matrix[row_perm_key]_(i, j) A (s i) j. Fact col_perm_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_perm
col_perm(s : 'S_n) A := \matrix[col_perm_key]_(i, j) A i (s j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_perm
xrowi1 i2 := row_perm (tperm i1 i2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xrow
xcolj1 j2 := col_perm (tperm j1 j2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xcol
rowi0 A := \row_j A i0 j.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row
colj0 A := \col_i A i j0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col
row'i0 A := \matrix_(i, j) A (lift i0 i) j.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'
col'j0 A := \matrix_(i, j) A i (lift j0 j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'
mxsubm' n' f g A := \matrix_(i < m', j < n') A (f i) (g j). Local Notation colsub g := (mxsub id g). Local Notation rowsub f := (mxsub f id).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub
castmx_constm' n' (eq_mn : (m = m') * (n = n')) a : castmx eq_mn (const_mx a) = const_mx a. Proof. by case: eq_mn; case: m' /; case: n' /. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmx_const
trmx_consta : trmx (const_mx a) = const_mx a. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_const
row_perm_consts a : row_perm s (const_mx a) = const_mx a. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_perm_const
col_perm_consts a : col_perm s (const_mx a) = const_mx a. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_perm_const
xrow_consti1 i2 a : xrow i1 i2 (const_mx a) = const_mx a. Proof. exact: row_perm_const. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xrow_const
xcol_constj1 j2 a : xcol j1 j2 (const_mx a) = const_mx a. Proof. exact: col_perm_const. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xcol_const
rowP(u v : 'rV[R]_n) : u 0 =1 v 0 <-> u = v. Proof. by split=> [eq_uv | -> //]; apply/matrixP=> i; rewrite ord1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowP
rowKu_ i0 : row i0 (\matrix_i u_ i) = u_ i0. Proof. by apply/rowP=> i'; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowK
row_matrixPA B : (forall i, row i A = row i B) <-> A = B. Proof. split=> [eqAB | -> //]; apply/matrixP=> i j. by move/rowP/(_ j): (eqAB i); rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_matrixP
colP(u v : 'cV[R]_m) : u^~ 0 =1 v^~ 0 <-> u = v. Proof. by split=> [eq_uv | -> //]; apply/matrixP=> i j; rewrite ord1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colP
row_consti0 a : row i0 (const_mx a) = const_mx a. Proof. by apply/rowP=> j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_const
col_constj0 a : col j0 (const_mx a) = const_mx a. Proof. by apply/colP=> i; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_const
row'_consti0 a : row' i0 (const_mx a) = const_mx a. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'_const
col'_constj0 a : col' j0 (const_mx a) = const_mx a. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'_const
col_perm1A : col_perm 1 A = A. Proof. by apply/matrixP=> i j; rewrite mxE perm1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_perm1
row_perm1A : row_perm 1 A = A. Proof. by apply/matrixP=> i j; rewrite mxE perm1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_perm1
col_permMs t A : col_perm (s * t) A = col_perm s (col_perm t A). Proof. by apply/matrixP=> i j; rewrite !mxE permM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_permM
row_permMs t A : row_perm (s * t) A = row_perm s (row_perm t A). Proof. by apply/matrixP=> i j; rewrite !mxE permM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_permM
col_row_permCs t A : col_perm s (row_perm t A) = row_perm t (col_perm s A). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_row_permC
rowEsubi : row i = rowsub (fun=> i). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowEsub
colEsubj : col j = colsub (fun=> j). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colEsub
row'Esubi : row' i = rowsub (lift i). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'Esub
col'Esubj : col' j = colsub (lift j). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'Esub
row_permEsubs : row_perm s = rowsub s. Proof. by rewrite /row_perm /mxsub !unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_permEsub
col_permEsubs : col_perm s = colsub s. Proof. by rewrite /col_perm /mxsub !unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_permEsub
xrowEsubi1 i2 : xrow i1 i2 = rowsub (tperm i1 i2). Proof. exact: row_permEsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xrowEsub
xcolEsubj1 j2 : xcol j1 j2 = colsub (tperm j1 j2). Proof. exact: col_permEsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xcolEsub
mxsub_id: mxsub id id =1 id. Proof. by move=> A; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_id
eq_mxsubm' n' f f' g g' : f =1 f' -> g =1 g' -> @mxsub m' n' f g =1 mxsub f' g'. Proof. by move=> eq_f eq_g A; apply/matrixP => i j; rewrite !mxE eq_f eq_g. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_mxsub
eq_rowsubm' (f f' : 'I_m' -> 'I_m) : f =1 f' -> rowsub f =1 rowsub f'. Proof. by move=> /eq_mxsub; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_rowsub
eq_colsubn' (g g' : 'I_n' -> 'I_n) : g =1 g' -> colsub g =1 colsub g'. Proof. by move=> /eq_mxsub; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_colsub
mxsub_eq_idf g : f =1 id -> g =1 id -> mxsub f g =1 id. Proof. by move=> fid gid A; rewrite (eq_mxsub fid gid) mxsub_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_eq_id
mxsub_eq_colsubn' f g : f =1 id -> @mxsub _ n' f g =1 colsub g. Proof. by move=> f_id; apply: eq_mxsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_eq_colsub
mxsub_eq_rowsubm' f g : g =1 id -> @mxsub m' _ f g =1 rowsub f. Proof. exact: eq_mxsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_eq_rowsub
mxsub_ffunlm' n' f g : @mxsub m' n' (finfun f) g =1 mxsub f g. Proof. by apply: eq_mxsub => // i; rewrite ffunE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_ffunl
mxsub_ffunrm' n' f g : @mxsub m' n' f (finfun g) =1 mxsub f g. Proof. by apply: eq_mxsub => // i; rewrite ffunE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_ffunr
mxsub_ffunm' n' f g : @mxsub m' n' (finfun f) (finfun g) =1 mxsub f g. Proof. by move=> A; rewrite mxsub_ffunl mxsub_ffunr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_ffun
mxsub_constm' n' f g a : @mxsub m' n' f g (const_mx a) = const_mx a. Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_const
castmx_idm n erefl_mn (A : 'M_(m, n)) : castmx erefl_mn A = A. Proof. by case: erefl_mn => e_m e_n; rewrite [e_m]eq_axiomK [e_n]eq_axiomK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmx_id
castmx_compm1 n1 m2 n2 m3 n3 (eq_m1 : m1 = m2) (eq_n1 : n1 = n2) (eq_m2 : m2 = m3) (eq_n2 : n2 = n3) A : castmx (eq_m2, eq_n2) (castmx (eq_m1, eq_n1) A) = castmx (etrans eq_m1 eq_m2, etrans eq_n1 eq_n2) A. Proof. by case: m2 / eq_m1 eq_m2; case: m3 /; case: n2 / eq_n1 eq_n2; case: n3 /. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmx_comp
castmxKm1 n1 m2 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) : cancel (castmx (eq_m, eq_n)) (castmx (esym eq_m, esym eq_n)). Proof. by case: m2 / eq_m; case: n2 / eq_n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmxK
castmxKVm1 n1 m2 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) : cancel (castmx (esym eq_m, esym eq_n)) (castmx (eq_m, eq_n)). Proof. by case: m2 / eq_m; case: n2 / eq_n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmxKV
castmx_symm1 n1 m2 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) A1 A2 : A1 = castmx (eq_m, eq_n) A2 -> A2 = castmx (esym eq_m, esym eq_n) A1. Proof. by move/(canLR (castmxK _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmx_sym
eq_castmxm1 n1 m2 n2 (eq_mn eq_mn' : (m1 = m2) * (n1 = n2)) : castmx eq_mn =1 castmx eq_mn'. Proof. case: eq_mn eq_mn' => [em en] [em' en'] A. by apply: (canRL (castmxKV _ _)); rewrite castmx_comp castmx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_castmx
castmxEm1 n1 m2 n2 (eq_mn : (m1 = m2) * (n1 = n2)) A i j : castmx eq_mn A i j = A (cast_ord (esym eq_mn.1) i) (cast_ord (esym eq_mn.2) j). Proof. by do [case: eq_mn; case: m2 /; case: n2 /] in A i j *; rewrite !cast_ord_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmxE
conform_mx_idm n (B A : 'M_(m, n)) : conform_mx B A = A. Proof. by rewrite /conform_mx; do 2!case: eqP => // *; rewrite castmx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
conform_mx_id
nonconform_mxm m' n n' (B : 'M_(m', n')) (A : 'M_(m, n)) : (m != m') || (n != n') -> conform_mx B A = B. Proof. by rewrite /conform_mx; do 2!case: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
nonconform_mx
conform_castmxm1 n1 m2 n2 m3 n3 (e_mn : (m2 = m3) * (n2 = n3)) (B : 'M_(m1, n1)) A : conform_mx B (castmx e_mn A) = conform_mx B A. Proof. by do [case: e_mn; case: m3 /; case: n3 /] in A *. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
conform_castmx
trmxKm n : cancel (@trmx m n) (@trmx n m). Proof. by move=> A; apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmxK
trmx_injm n : injective (@trmx m n). Proof. exact: can_inj (@trmxK m n). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_inj
trmx_castm1 n1 m2 n2 (eq_mn : (m1 = m2) * (n1 = n2)) A : (castmx eq_mn A)^T = castmx (eq_mn.2, eq_mn.1) A^T. Proof. by case: eq_mn => eq_m eq_n; apply/matrixP=> i j; rewrite !(mxE, castmxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_cast
trmx_conformm' n' m n (B : 'M_(m', n')) (A : 'M_(m, n)) : (conform_mx B A)^T = conform_mx B^T A^T. Proof. rewrite /conform_mx; do !case: eqP; rewrite ?mxE// => en em. by rewrite trmx_cast. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_conform
tr_row_permm n s (A : 'M_(m, n)) : (row_perm s A)^T = col_perm s A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_row_perm
tr_col_permm n s (A : 'M_(m, n)) : (col_perm s A)^T = row_perm s A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_col_perm
tr_xrowm n i1 i2 (A : 'M_(m, n)) : (xrow i1 i2 A)^T = xcol i1 i2 A^T. Proof. exact: tr_row_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_xrow
tr_xcolm n j1 j2 (A : 'M_(m, n)) : (xcol j1 j2 A)^T = xrow j1 j2 A^T. Proof. exact: tr_col_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_xcol
row_idn i (V : 'rV_n) : row i V = V. Proof. by apply/rowP=> j; rewrite mxE [i]ord1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_id