fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
block_mxKdr: drsubmx A = Adr. Proof. by rewrite /drsubmx col_mxKd row_mxKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxKdr
block_mxEv: A = col_mx (row_mx Aul Aur) (row_mx Adl Adr). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxEv
trmx_ulsub: (ulsubmx A)^T = ulsubmx A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_ulsub
trmx_ursub: (ursubmx A)^T = dlsubmx A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_ursub
trmx_dlsub: (dlsubmx A)^T = ursubmx A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_dlsub
trmx_drsub: (drsubmx A)^T = drsubmx A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_drsub
tr_block_mx: (block_mx Aul Aur Adl Adr)^T = block_mx Aul^T Adl^T Aur^T Adr^T. Proof. rewrite -[_^T]submxK -trmx_ulsub -trmx_ursub -trmx_dlsub -trmx_drsub. by rewrite block_mxKul block_mxKur block_mxKdl block_mxKdr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_block_mx
block_mxEh: block_mx Aul Aur Adl Adr = row_mx (col_mx Aul Adl) (col_mx Aur Adr). Proof. by apply: trmx_inj; rewrite tr_block_mx tr_row_mx 2!tr_col_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxEh
block_mxAm1 m2 m3 n1 n2 n3 (A11 : 'M_(m1, n1)) (A12 : 'M_(m1, n2)) (A13 : 'M_(m1, n3)) (A21 : 'M_(m2, n1)) (A22 : 'M_(m2, n2)) (A23 : 'M_(m2, n3)) (A31 : 'M_(m3, n1)) (A32 : 'M_(m3, n2)) (A33 : 'M_(m3, n3)) : let cast := (esym (addnA m1 m2 m3), esym (addnA n1 n2 n3)) in let row1 := row_mx A12 A13 in let col1 := col_mx A21 A31 in let row3 := row_mx A31 A32 in let col3 := col_mx A13 A23 in block_mx A11 row1 col1 (block_mx A22 A23 A32 A33) = castmx cast (block_mx (block_mx A11 A12 A21 A22) col3 row3 A33). Proof. rewrite /= block_mxEh !col_mxA -cast_row_mx -block_mxEv -block_mxEh. rewrite block_mxEv block_mxEh !row_mxA -cast_col_mx -block_mxEh -block_mxEv. by rewrite castmx_comp etrans_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxA
block_mxAx:= block_mxA.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxAx
row_indm (P : forall n, 'M[R]_(m, n) -> Type) : (forall A, P 0 A) -> (forall n c A, P n A -> P (1 + n)%N (row_mx c A)) -> forall n A, P n A. Proof. move=> P0 PS; elim=> [//|n IHn] A. by rewrite -[n.+1]/(1 + n)%N in A *; rewrite -[A]hsubmxK; apply: PS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_ind
col_indn (P : forall m, 'M[R]_(m, n) -> Type) : (forall A, P 0 A) -> (forall m r A, P m A -> P (1 + m)%N (col_mx r A)) -> forall m A, P m A. Proof. move=> P0 PS; elim=> [//|m IHm] A. by rewrite -[m.+1]/(1 + m)%N in A *; rewrite -[A]vsubmxK; apply: PS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_ind
mx_ind(P : forall m n, 'M[R]_(m, n) -> Type) : (forall m A, P m 0 A) -> (forall n A, P 0 n A) -> (forall m n x r c A, P m n A -> P (1 + m)%N (1 + n)%N (block_mx x r c A)) -> forall m n A, P m n A. Proof. move=> P0l P0r PS; elim=> [|m IHm] [|n] A; do ?by [apply: P0l|apply: P0r]. by rewrite -[A](@submxK 1 _ 1); apply: PS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mx_ind
matrix_rect:= mx_ind.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_rect
matrix_rec:= mx_ind.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_rec
matrix_ind:= mx_ind.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_ind
sqmx_ind(P : forall n, 'M[R]_n -> Type) : (forall A, P 0 A) -> (forall n x r c A, P n A -> P (1 + n)%N (block_mx x r c A)) -> forall n A, P n A. Proof. by move=> P0 PS; elim=> [//|n IHn] A; rewrite -[A](@submxK 1 _ 1); apply: PS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
sqmx_ind
ringmx_ind(P : forall n, 'M[R]_n.+1 -> Type) : (forall x, P 0 x) -> (forall n x (r : 'rV_n.+1) (c : 'cV_n.+1) A, P n A -> P (1 + n)%N (block_mx x r c A)) -> forall n A, P n A. Proof. by move=> P0 PS; elim=> [//|n IHn] A; rewrite -[A](@submxK 1 _ 1); apply: PS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
ringmx_ind
mxsub_ind(weight : forall m n, 'M[R]_(m, n) -> nat) (sub : forall m n m' n', ('I_m' -> 'I_m) -> ('I_n' -> 'I_n) -> Prop) (P : forall m n, 'M[R]_(m, n) -> Type) : (forall m n (A : 'M[R]_(m, n)), (forall m' n' f g, weight m' n' (mxsub f g A) < weight m n A -> sub m n m' n' f g -> P m' n' (mxsub f g A)) -> P m n A) -> forall m n A, P m n A. Proof. move=> Psub m n A; have [k] := ubnP (weight m n A). elim: k => [//|k IHk] in m n A *. rewrite ltnS => lt_A_k; apply: Psub => m' n' f g lt_A'_A ?. by apply: IHk; apply: leq_trans lt_A_k. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_ind
mxvec_cast: #|{:'I_m * 'I_n}| = (m * n)%N. Proof. by rewrite card_prod !card_ord. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec_cast
mxvec_index(i : 'I_m) (j : 'I_n) := cast_ord mxvec_cast (enum_rank (i, j)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec_index
is_mxvec_index: 'I_(m * n) -> Type := isMxvecIndex i j : is_mxvec_index (mxvec_index i j).
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_mxvec_index
mxvec_indexPk : is_mxvec_index k. Proof. rewrite -[k](cast_ordK (esym mxvec_cast)) esymK. by rewrite -[_ k]enum_valK; case: (enum_val _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec_indexP
pair_of_mxvec_indexk (i_k : is_mxvec_index k) := let: isMxvecIndex i j := i_k in (i, j).
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pair_of_mxvec_index
mxvec(A : 'M[R]_(m, n)) := castmx (erefl _, mxvec_cast) (\row_k A (enum_val k).1 (enum_val k).2). Fact vec_mx_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec
vec_mx(u : 'rV[R]_(m * n)) := \matrix[vec_mx_key]_(i, j) u 0 (mxvec_index i j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
vec_mx
mxvecEA i j : mxvec A 0 (mxvec_index i j) = A i j. Proof. by rewrite castmxE mxE cast_ordK enum_rankK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvecE
mxvecK: cancel mxvec vec_mx. Proof. by move=> A; apply/matrixP=> i j; rewrite mxE mxvecE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvecK
vec_mxK: cancel vec_mx mxvec. Proof. by move=> u; apply/rowP=> k; case/mxvec_indexP: k => i j; rewrite mxvecE mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
vec_mxK
curry_mxvec_bij: {on 'I_(m * n), bijective (uncurry mxvec_index)}. Proof. exists (enum_val \o cast_ord (esym mxvec_cast)) => [[i j] _ | k _] /=. by rewrite cast_ordK enum_rankK. by case/mxvec_indexP: k => i j /=; rewrite cast_ordK enum_rankK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
curry_mxvec_bij
colsubg := (mxsub id g).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colsub
rowsubf := (mxsub f id). Arguments eq_mxsub [R m n m' n' f] f' [g] g' _. Arguments eq_rowsub [R m n m' f] f' _. Arguments eq_colsub [R m n n' g] g' _.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowsub
map_mxm n (A : 'M_(m, n)) := \matrix[map_mx_key]_(i, j) f (A i j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx
map_trmx: A^f^T = A^T^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_trmx
map_const_mxa : (const_mx a)^f = const_mx (f a) :> 'M_(m, n). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_const_mx
map_rowi : (row i A)^f = row i A^f. Proof. by apply/rowP=> j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_row
map_colj : (col j A)^f = col j A^f. Proof. by apply/colP=> i; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_col
map_row'i0 : (row' i0 A)^f = row' i0 A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_row'
map_col'j0 : (col' j0 A)^f = col' j0 A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_col'
map_mxsubm' n' g h : (@mxsub _ _ _ m' n' g h A)^f = mxsub g h A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mxsub
map_row_perms : (row_perm s A)^f = row_perm s A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_row_perm
map_col_perms : (col_perm s A)^f = col_perm s A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_col_perm
map_xrowi1 i2 : (xrow i1 i2 A)^f = xrow i1 i2 A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_xrow
map_xcolj1 j2 : (xcol j1 j2 A)^f = xcol j1 j2 A^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_xcol
map_castmxm' n' c : (castmx c A)^f = castmx c A^f :> 'M_(m', n'). Proof. by apply/matrixP=> i j; rewrite !(castmxE, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_castmx
map_conform_mxm' n' (B : 'M_(m', n')) : (conform_mx B A)^f = conform_mx B^f A^f. Proof. move: B; have [[<- <-] B|] := eqVneq (m, n) (m', n'). by rewrite !conform_mx_id. by rewrite negb_and => neq_mn B; rewrite !nonconform_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_conform_mx
map_mxvec: (mxvec A)^f = mxvec A^f. Proof. by apply/rowP=> i; rewrite !(castmxE, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mxvec
map_vec_mx(v : 'rV_(m * n)) : (vec_mx v)^f = vec_mx v^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_vec_mx
map_row_mx: (row_mx Aul Aur)^f = row_mx Aul^f Aur^f. Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_row_mx
map_col_mx: (col_mx Aul Adl)^f = col_mx Aul^f Adl^f. Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_col_mx
map_block_mx: (block_mx Aul Aur Adl Adr)^f = block_mx Aul^f Aur^f Adl^f Adr^f. Proof. by apply/matrixP=> i j; do 3![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_block_mx
map_lsubmx: (lsubmx Bh)^f = lsubmx Bh^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_lsubmx
map_rsubmx: (rsubmx Bh)^f = rsubmx Bh^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_rsubmx
map_usubmx: (usubmx Bv)^f = usubmx Bv^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_usubmx
map_dsubmx: (dsubmx Bv)^f = dsubmx Bv^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_dsubmx
map_ulsubmx: (ulsubmx B)^f = ulsubmx B^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_ulsubmx
map_ursubmx: (ursubmx B)^f = ursubmx B^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_ursubmx
map_dlsubmx: (dlsubmx B)^f = dlsubmx B^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_dlsubmx
map_drsubmx: (drsubmx B)^f = drsubmx B^f. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_drsubmx
map_mx_comp(f : R -> S) (g : S -> T) (M : 'M_(m, n)) : M ^ (g \o f) = (M ^ f) ^ g. Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_comp
eq_in_map_mx(g f : R -> S) (M : 'M_(m, n)) : (forall i j, f (M i j) = g (M i j)) -> M ^ f = M ^ g. Proof. by move=> fg; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_in_map_mx
eq_map_mx(g f : R -> S) : f =1 g -> forall (M : 'M_(m, n)), M ^ f = M ^ g. Proof. by move=> eq_fg M; apply/eq_in_map_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_map_mx
map_mx_id_in(f : R -> R) (M : 'M_(m, n)) : (forall i j, f (M i j) = M i j) -> M ^ f = M. Proof. by move=> fM; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_id_in
map_mx_id(f : R -> R) : f =1 id -> forall M : 'M_(m, n), M ^ f = M. Proof. by move=> fid M; rewrite map_mx_id_in. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_id
map2_mxm n (A : 'M_(m, n)) (B : 'M_(m, n)) := \matrix[map2_mx_key]_(i, j) f (A i j) (B i j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mx
map2_trmx: (map2_mx A B)^T = map2_mx A^T B^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_trmx
map2_const_mxa b : map2_mx (const_mx a) (const_mx b) = const_mx (f a b) :> 'M_(m, n). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_const_mx
map2_rowi : map2_mx (row i A) (row i B) = row i (map2_mx A B). Proof. by apply/rowP=> j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_row
map2_colj : map2_mx (col j A) (col j B) = col j (map2_mx A B). Proof. by apply/colP=> i; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_col
map2_row'i0 : map2_mx (row' i0 A) (row' i0 B) = row' i0 (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_row'
map2_col'j0 : map2_mx (col' j0 A) (col' j0 B) = col' j0 (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_col'
map2_mxsubm' n' g h : map2_mx (@mxsub _ _ _ m' n' g h A) (@mxsub _ _ _ m' n' g h B) = mxsub g h (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mxsub
map2_row_perms : map2_mx (row_perm s A) (row_perm s B) = row_perm s (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_row_perm
map2_col_perms : map2_mx (col_perm s A) (col_perm s B) = col_perm s (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_col_perm
map2_xrowi1 i2 : map2_mx (xrow i1 i2 A) (xrow i1 i2 B) = xrow i1 i2 (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_xrow
map2_xcolj1 j2 : map2_mx (xcol j1 j2 A) (xcol j1 j2 B) = xcol j1 j2 (map2_mx A B). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_xcol
map2_castmxm' n' c : map2_mx (castmx c A) (castmx c B) = castmx c (map2_mx A B) :> 'M_(m', n'). Proof. by apply/matrixP=> i j; rewrite !(castmxE, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_castmx
map2_conform_mxm' n' (A' : 'M_(m', n')) (B' : 'M_(m', n')) : map2_mx (conform_mx A' A) (conform_mx B' B) = conform_mx (map2_mx A' B') (map2_mx A B). Proof. move: A' B'; have [[<- <-] A' B'|] := eqVneq (m, n) (m', n'). by rewrite !conform_mx_id. by rewrite negb_and => neq_mn A' B'; rewrite !nonconform_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_conform_mx
map2_mxvec: map2_mx (mxvec A) (mxvec B) = mxvec (map2_mx A B). Proof. by apply/rowP=> i; rewrite !(castmxE, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mxvec
map2_vec_mx(v : 'rV_(m * n)) (w : 'rV_(m * n)) : map2_mx (vec_mx v) (vec_mx w) = vec_mx (map2_mx v w). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_vec_mx
map2_row_mx: map2_mx (row_mx Aul Aur) (row_mx A'ul A'ur) = row_mx (map2_mx Aul A'ul) (map2_mx Aur A'ur). Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_row_mx
map2_col_mx: map2_mx (col_mx Aul Adl) (col_mx A'ul A'dl) = col_mx (map2_mx Aul A'ul) (map2_mx Adl A'dl). Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_col_mx
map2_block_mx: map2_mx (block_mx Aul Aur Adl Adr) (block_mx A'ul A'ur A'dl A'dr) = block_mx (map2_mx Aul A'ul) (map2_mx Aur A'ur) (map2_mx Adl A'dl) (map2_mx Adr A'dr). Proof. by apply/matrixP=> i j; do 3![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_block_mx
map2_lsubmx: map2_mx (lsubmx Bh) (lsubmx B'h) = lsubmx (map2_mx Bh B'h). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_lsubmx
map2_rsubmx: map2_mx (rsubmx Bh) (rsubmx B'h) = rsubmx (map2_mx Bh B'h). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_rsubmx
map2_usubmx: map2_mx (usubmx Bv) (usubmx B'v) = usubmx (map2_mx Bv B'v). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_usubmx
map2_dsubmx: map2_mx (dsubmx Bv) (dsubmx B'v) = dsubmx (map2_mx Bv B'v). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_dsubmx
map2_ulsubmx: map2_mx (ulsubmx B) (ulsubmx B') = ulsubmx (map2_mx B B'). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_ulsubmx
map2_ursubmx: map2_mx (ursubmx B) (ursubmx B') = ursubmx (map2_mx B B'). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_ursubmx
map2_dlsubmx: map2_mx (dlsubmx B) (dlsubmx B') = dlsubmx (map2_mx B B'). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_dlsubmx
map2_drsubmx: map2_mx (drsubmx B) (drsubmx B') = drsubmx (map2_mx B B'). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_drsubmx
eq_in_map2_mx(f g : R -> S -> T) (M : 'M[R]_(m, n)) (M' : 'M[S]_(m, n)) : (forall i j, f (M i j) (M' i j) = g (M i j) (M' i j)) -> map2_mx f M M' = map2_mx g M M'. Proof. by move=> fg; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_in_map2_mx
eq_map2_mx(f g : R -> S -> T) : f =2 g -> @map2_mx _ _ _ f m n =2 @map2_mx _ _ _ g m n. Proof. by move=> eq_fg M M'; apply/eq_in_map2_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_map2_mx
map2_mx_left_in(f : R -> R -> R) (M : 'M_(m, n)) (M' : 'M_(m, n)) : (forall i j, f (M i j) (M' i j) = M i j) -> map2_mx f M M' = M. Proof. by move=> fM; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mx_left_in
map2_mx_left(f : R -> R -> R) : f =2 (fun x _ => x) -> forall (M : 'M_(m, n)) (M' : 'M_(m, n)), map2_mx f M M' = M. Proof. by move=> fl M M'; rewrite map2_mx_left_in// =>i j; rewrite fl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mx_left
map2_mx_right_in(f : R -> R -> R) (M : 'M_(m, n)) (M' : 'M_(m, n)) : (forall i j, f (M i j) (M' i j) = M' i j) -> map2_mx f M M' = M'. Proof. by move=> fM; apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mx_right_in
map2_mx_right(f : R -> R -> R) : f =2 (fun _ x => x) -> forall (M : 'M_(m, n)) (M' : 'M_(m, n)), map2_mx f M M' = M'. Proof. by move=> fr M M'; rewrite map2_mx_right_in// =>i j; rewrite fr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mx_right
map2_mxA{opm : Monoid.law idm} : associative (@map2_mx _ _ _ opm m n). Proof. by move=> A B C; apply/matrixP=> i j; rewrite !mxE Monoid.mulmA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mxA
map2_1mx{opm : Monoid.law idm} : left_id (const_mx idm) (@map2_mx _ _ _ opm m n). Proof. by move=> A; apply/matrixP=> i j; rewrite !mxE Monoid.mul1m. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_1mx
map2_mx1{opm : Monoid.law idm} : right_id (const_mx idm) (@map2_mx _ _ _ opm m n). Proof. by move=> A; apply/matrixP=> i j; rewrite !mxE Monoid.mulm1. Qed. HB.instance Definition _ {opm : Monoid.law idm} := Monoid.isLaw.Build 'M_(m, n) (const_mx idm) (@map2_mx _ _ _ opm _ _) map2_mxA map2_1mx map2_mx1.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map2_mx1