fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
opp_row_mxm n1 n2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : - row_mx A1 A2 = row_mx (- A1) (- A2). Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
opp_row_mx
opp_col_mxm1 m2 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : - col_mx A1 A2 = col_mx (- A1) (- A2). Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
opp_col_mx
opp_block_mxm1 m2 n1 n2 (Aul : 'M_(m1, n1)) Aur Adl (Adr : 'M_(m2, n2)) : - block_mx Aul Aur Adl Adr = block_mx (- Aul) (- Aur) (- Adl) (- Adr). Proof. by rewrite opp_col_mx !opp_row_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
opp_block_mx
diag_mx_is_additive:= diag_mx_is_zmod_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
diag_mx_is_additive
scalar_mx_is_additive:= scalar_mx_is_zmod_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalar_mx_is_additive
mxtrace_is_additive:= mxtrace_is_zmod_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxtrace_is_additive
map_mxNA : (- A)^f = - A^f. Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mxN
map_mxBA B : (A - B)^f = A^f - B^f. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mxB
scalemxx A := \matrix[scalemx_key]_(i, j) (x * A i j).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemx
delta_mxi0 j0 : 'M[R]_(m, n) := \matrix[delta_mx_key]_(i, j) ((i == i0) && (j == j0))%:R. Local Notation "x *m: A" := (scalemx x A) (at level 40) : ring_scope. Fact scale0mx A : 0 *m: A = 0. Proof. by apply/matrixP=> i j; rewrite !mxE mul0r. Qed. Fact scale1mx A : 1 *m: A = A. Proof. by apply/matrixP=> i j; rewrite !mxE mul1r. Qed. Fact scalemxDl A x y : (x + y) *m: A = x *m: A + y *m: A. Proof. by apply/matrixP=> i j; rewrite !mxE mulrDl. Qed. Fact scalemxDr x A B : x *m: (A + B) = x *m: A + x *m: B. Proof. by apply/matrixP=> i j; rewrite !mxE mulrDr. Qed. Fact scalemxA x y A : x *m: (y *m: A) = (x * y) *m: A. Proof. by apply/matrixP=> i j; rewrite !mxE mulrA. Qed. HB.instance Definition _ := GRing.Nmodule_isLSemiModule.Build R 'M[R]_(m, n) scalemxA scale0mx scale1mx scalemxDr scalemxDl.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
delta_mx
scalemx_consta b : a *: const_mx b = const_mx (a * b). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemx_const
matrix_sum_deltaA : A = \sum_(i < m) \sum_(j < n) A i j *: delta_mx i j. Proof. apply/matrixP=> i j. rewrite summxE (bigD1_ord i) // summxE (bigD1_ord j) //= !mxE !eqxx mulr1. rewrite !big1 ?addr0 //= => [i' | j'] _. by rewrite summxE big1// => j' _; rewrite !mxE eq_liftF mulr0. by rewrite !mxE eqxx eq_liftF mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_sum_delta
trmx_deltam n i j : (delta_mx i j)^T = delta_mx j i :> 'M[R]_(n, m). Proof. by apply/matrixP=> i' j'; rewrite !mxE andbC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_delta
delta_mx_lshiftm n1 n2 i j : delta_mx i (lshift n2 j) = row_mx (delta_mx i j) 0 :> 'M_(m, n1 + n2). Proof. apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inl _ _)). by case: split => ?; rewrite mxE ?andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
delta_mx_lshift
delta_mx_rshiftm n1 n2 i j : delta_mx i (rshift n1 j) = row_mx 0 (delta_mx i j) :> 'M_(m, n1 + n2). Proof. apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inr _ _)). by case: split => ?; rewrite mxE ?andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
delta_mx_rshift
delta_mx_ushiftm1 m2 n i j : delta_mx (lshift m2 i) j = col_mx (delta_mx i j) 0 :> 'M_(m1 + m2, n). Proof. apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inl _ _)). by case: split => ?; rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
delta_mx_ushift
delta_mx_dshiftm1 m2 n i j : delta_mx (rshift m1 i) j = col_mx 0 (delta_mx i j) :> 'M_(m1 + m2, n). Proof. apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inr _ _)). by case: split => ?; rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
delta_mx_dshift
vec_mx_deltam n i j : vec_mx (delta_mx 0 (mxvec_index i j)) = delta_mx i j :> 'M_(m, n). Proof. by apply/matrixP=> i' j'; rewrite !mxE /= [_ == _](inj_eq enum_rank_inj). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
vec_mx_delta
mxvec_deltam n i j : mxvec (delta_mx i j) = delta_mx 0 (mxvec_index i j) :> 'rV_(m * n). Proof. by rewrite -vec_mx_delta vec_mxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec_delta
split_mxE:= apply/matrixP=> i j; do ![rewrite mxE | case: split => ?].
Ltac
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
split_mxE
trmx1n : (1%:M)^T = 1%:M :> 'M[R]_n. Proof. exact: tr_scalar_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx1
row1n i : row i (1%:M : 'M_n) = delta_mx 0 i. Proof. by apply/rowP=> j; rewrite !mxE eq_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row1
col1n i : col i (1%:M : 'M_n) = delta_mx i 0. Proof. by apply/colP => j; rewrite !mxE eqxx andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col1
mulmx{m n p} (A : 'M_(m, n)) (B : 'M_(n, p)) : 'M[R]_(m, p) := \matrix[mulmx_key]_(i, k) \sum_j (A i j * B j k). Local Notation "A *m B" := (mulmx A B) : ring_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx
mulmxAm n p q (A : 'M_(m, n)) (B : 'M_(n, p)) (C : 'M_(p, q)) : A *m (B *m C) = A *m B *m C. Proof. apply/matrixP=> i l /[!mxE]; under eq_bigr do rewrite mxE big_distrr/=. rewrite exchange_big; apply: eq_bigr => j _; rewrite mxE big_distrl /=. by under eq_bigr do rewrite mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxA
mul0mxm n p (A : 'M_(n, p)) : 0 *m A = 0 :> 'M_(m, p). Proof. by apply/matrixP=> i k; rewrite !mxE big1 //= => j _; rewrite mxE mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul0mx
mulmx0m n p (A : 'M_(m, n)) : A *m 0 = 0 :> 'M_(m, p). Proof. by apply/matrixP=> i k; rewrite !mxE big1 // => j _; rewrite mxE mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx0
mulmxDlm n p (A1 A2 : 'M_(m, n)) (B : 'M_(n, p)) : (A1 + A2) *m B = A1 *m B + A2 *m B. Proof. apply/matrixP=> i k; rewrite !mxE -big_split /=. by apply: eq_bigr => j _; rewrite !mxE -mulrDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxDl
mulmxDrm n p (A : 'M_(m, n)) (B1 B2 : 'M_(n, p)) : A *m (B1 + B2) = A *m B1 + A *m B2. Proof. apply/matrixP=> i k; rewrite !mxE -big_split /=. by apply: eq_bigr => j _; rewrite mxE mulrDr. Qed. HB.instance Definition _ m n p A := GRing.isNmodMorphism.Build 'M_(n, p) 'M_(m, p) (mulmx A) (mulmx0 _ A, mulmxDr A).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxDr
scalemxAlm n p a (A : 'M_(m, n)) (B : 'M_(n, p)) : a *: (A *m B) = (a *: A) *m B. Proof. apply/matrixP=> i k; rewrite !mxE big_distrr /=. by apply: eq_bigr => j _; rewrite mulrA mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemxAl
mulmx_sumlm n p (A : 'M_(n, p)) I r P (B_ : I -> 'M_(m, n)) : (\sum_(i <- r | P i) B_ i) *m A = \sum_(i <- r | P i) B_ i *m A. Proof. by apply: (big_morph (mulmx^~ A)) => [B C|]; rewrite ?mul0mx ?mulmxDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_suml
mulmx_sumrm n p (A : 'M_(m, n)) I r P (B_ : I -> 'M_(n, p)) : A *m (\sum_(i <- r | P i) B_ i) = \sum_(i <- r | P i) A *m B_ i. Proof. exact: raddf_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_sumr
rowEm n i (A : 'M_(m, n)) : row i A = delta_mx 0 i *m A. Proof. apply/rowP=> j; rewrite !mxE (bigD1_ord i) //= mxE !eqxx mul1r. by rewrite big1 ?addr0 // => i'; rewrite mxE /= lift_eqF mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowE
colEm n i (A : 'M_(m, n)) : col i A = A *m delta_mx i 0. Proof. apply/colP=> j; rewrite !mxE (bigD1_ord i) //= mxE !eqxx mulr1. by rewrite big1 ?addr0 // => i'; rewrite mxE /= lift_eqF mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colE
mul_rVPm n A B : ((@mulmx 1 m n)^~ A =1 mulmx^~ B) <-> (A = B). Proof. by split=> [eqAB|->//]; apply/row_matrixP => i; rewrite !rowE eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_rVP
row_mulm n p (i : 'I_m) A (B : 'M_(n, p)) : row i (A *m B) = row i A *m B. Proof. by rewrite !rowE mulmxA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mul
mxsub_mulm n m' n' p f g (A : 'M_(m, p)) (B : 'M_(p, n)) : mxsub f g (A *m B) = rowsub f A *m colsub g B :> 'M_(m', n'). Proof. by split_mxE; under [RHS]eq_bigr do rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_mul
mul_rowsub_mxm n m' p f (A : 'M_(m, p)) (B : 'M_(p, n)) : rowsub f A *m B = rowsub f (A *m B) :> 'M_(m', n). Proof. by rewrite mxsub_mul mxsub_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_rowsub_mx
mulmx_colsubm n n' p g (A : 'M_(m, p)) (B : 'M_(p, n)) : A *m colsub g B = colsub g (A *m B) :> 'M_(m, n'). Proof. by rewrite mxsub_mul mxsub_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_colsub
mul_delta_mx_condm n p (j1 j2 : 'I_n) (i1 : 'I_m) (k2 : 'I_p) : delta_mx i1 j1 *m delta_mx j2 k2 = delta_mx i1 k2 *+ (j1 == j2). Proof. apply/matrixP => i k; rewrite !mxE (bigD1_ord j1) //=. rewrite mulmxnE !mxE !eqxx andbT -natrM -mulrnA !mulnb !andbA andbAC. by rewrite big1 ?addr0 // => j; rewrite !mxE andbC -natrM lift_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_delta_mx_cond
mul_delta_mxm n p (j : 'I_n) (i : 'I_m) (k : 'I_p) : delta_mx i j *m delta_mx j k = delta_mx i k. Proof. by rewrite mul_delta_mx_cond eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_delta_mx
mul_delta_mx_0m n p (j1 j2 : 'I_n) (i1 : 'I_m) (k2 : 'I_p) : j1 != j2 -> delta_mx i1 j1 *m delta_mx j2 k2 = 0. Proof. by rewrite mul_delta_mx_cond => /negPf->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_delta_mx_0
mul_diag_mxm n d (A : 'M_(m, n)) : diag_mx d *m A = \matrix_(i, j) (d 0 i * A i j). Proof. apply/matrixP=> i j; rewrite !mxE (bigD1 i) //= mxE eqxx big1 ?addr0 // => i'. by rewrite mxE eq_sym mulrnAl => /negPf->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_diag_mx
mul_mx_diagm n (A : 'M_(m, n)) d : A *m diag_mx d = \matrix_(i, j) (A i j * d 0 j). Proof. apply/matrixP=> i j; rewrite !mxE (bigD1 j) //= mxE eqxx big1 ?addr0 // => i'. by rewrite mxE eq_sym mulrnAr; move/negPf->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_mx_diag
mulmx_diagn (d e : 'rV_n) : diag_mx d *m diag_mx e = diag_mx (\row_j (d 0 j * e 0 j)). Proof. by apply/matrixP=> i j; rewrite mul_diag_mx !mxE mulrnAr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_diag
scalar_mxMn a b : (a * b)%:M = a%:M *m b%:M :> 'M_n. Proof. rewrite -[in RHS]diag_const_mx mul_diag_mx. by apply/matrixP => i j; rewrite !mxE mulrnAr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalar_mxM
mul1mxm n (A : 'M_(m, n)) : 1%:M *m A = A. Proof. by rewrite -diag_const_mx mul_diag_mx; apply/matrixP => i j; rewrite !mxE mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul1mx
mulmx1m n (A : 'M_(m, n)) : A *m 1%:M = A. Proof. by rewrite -diag_const_mx mul_mx_diag; apply/matrixP=> i j; rewrite !mxE mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx1
rowsubEm m' n f (A : 'M_(m, n)) : rowsub f A = rowsub f 1%:M *m A :> 'M_(m', n). Proof. by rewrite mul_rowsub_mx mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowsubE
mul_col_permm n p s (A : 'M_(m, n)) (B : 'M_(n, p)) : col_perm s A *m B = A *m row_perm s^-1 B. Proof. apply/matrixP=> i k; rewrite !mxE (reindex_perm s^-1). by apply: eq_bigr => j _ /=; rewrite !mxE permKV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_col_perm
mul_row_permm n p s (A : 'M_(m, n)) (B : 'M_(n, p)) : A *m row_perm s B = col_perm s^-1 A *m B. Proof. by rewrite mul_col_perm invgK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_row_perm
mul_xcolm n p j1 j2 (A : 'M_(m, n)) (B : 'M_(n, p)) : xcol j1 j2 A *m B = A *m xrow j1 j2 B. Proof. by rewrite mul_col_perm tpermV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_xcol
perm_mxn s : 'M_n := row_perm s (1%:M : 'M[R]_n).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
perm_mx
tperm_mxn i1 i2 : 'M_n := perm_mx (tperm i1 i2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tperm_mx
col_permEm n s (A : 'M_(m, n)) : col_perm s A = A *m perm_mx s^-1. Proof. by rewrite mul_row_perm mulmx1 invgK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_permE
row_permEm n s (A : 'M_(m, n)) : row_perm s A = perm_mx s *m A. Proof. by rewrite -[perm_mx _]mul1mx mul_row_perm mulmx1 -mul_row_perm mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_permE
xcolEm n j1 j2 (A : 'M_(m, n)) : xcol j1 j2 A = A *m tperm_mx j1 j2. Proof. by rewrite /xcol col_permE tpermV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xcolE
xrowEm n i1 i2 (A : 'M_(m, n)) : xrow i1 i2 A = tperm_mx i1 i2 *m A. Proof. exact: row_permE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
xrowE
perm_mxEsubn s : @perm_mx n s = rowsub s 1%:M. Proof. by rewrite /perm_mx row_permEsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
perm_mxEsub
tperm_mxEsubn i1 i2 : @tperm_mx n i1 i2 = rowsub (tperm i1 i2) 1%:M. Proof. by rewrite /tperm_mx perm_mxEsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tperm_mxEsub
tr_perm_mxn (s : 'S_n) : (perm_mx s)^T = perm_mx s^-1. Proof. by rewrite -[_^T]mulmx1 tr_row_perm mul_col_perm trmx1 mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_perm_mx
tr_tperm_mxn i1 i2 : (tperm_mx i1 i2)^T = tperm_mx i1 i2 :> 'M_n. Proof. by rewrite tr_perm_mx tpermV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_tperm_mx
perm_mx1n : perm_mx 1 = 1%:M :> 'M_n. Proof. exact: row_perm1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
perm_mx1
perm_mxMn (s t : 'S_n) : perm_mx (s * t) = perm_mx s *m perm_mx t. Proof. by rewrite -row_permE -row_permM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
perm_mxM
is_perm_mxn (A : 'M_n) := [exists s, A == perm_mx s].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mx
is_perm_mxPn (A : 'M_n) : reflect (exists s, A = perm_mx s) (is_perm_mx A). Proof. by apply: (iffP existsP) => [] [s /eqP]; exists s. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mxP
perm_mx_is_permn (s : 'S_n) : is_perm_mx (perm_mx s). Proof. by apply/is_perm_mxP; exists s. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
perm_mx_is_perm
is_perm_mx1n : is_perm_mx (1%:M : 'M_n). Proof. by rewrite -perm_mx1 perm_mx_is_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mx1
is_perm_mxMln (A B : 'M_n) : is_perm_mx A -> is_perm_mx (A *m B) = is_perm_mx B. Proof. case/is_perm_mxP=> s ->. apply/is_perm_mxP/is_perm_mxP=> [[t def_t] | [t ->]]; last first. by exists (s * t)%g; rewrite perm_mxM. exists (s^-1 * t)%g. by rewrite perm_mxM -def_t -!row_permE -row_permM mulVg row_perm1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mxMl
is_perm_mx_trn (A : 'M_n) : is_perm_mx A^T = is_perm_mx A. Proof. apply/is_perm_mxP/is_perm_mxP=> [[t def_t] | [t ->]]; exists t^-1%g. by rewrite -tr_perm_mx -def_t trmxK. by rewrite tr_perm_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mx_tr
is_perm_mxMrn (A B : 'M_n) : is_perm_mx B -> is_perm_mx (A *m B) = is_perm_mx A. Proof. case/is_perm_mxP=> s ->. rewrite -[s]invgK -col_permE -is_perm_mx_tr tr_col_perm row_permE. by rewrite is_perm_mxMl (perm_mx_is_perm, is_perm_mx_tr). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mxMr
pid_mx{m n} r : 'M[R]_(m, n) := \matrix[pid_mx_key]_(i, j) ((i == j :> nat) && (i < r))%:R.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx
pid_mx_0m n : pid_mx 0 = 0 :> 'M_(m, n). Proof. by apply/matrixP=> i j; rewrite !mxE andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_0
pid_mx_1r : pid_mx r = 1%:M :> 'M_r. Proof. by apply/matrixP=> i j; rewrite !mxE ltn_ord andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_1
pid_mx_rown r : pid_mx r = row_mx 1%:M 0 :> 'M_(r, r + n). Proof. apply/matrixP=> i j; rewrite !mxE ltn_ord andbT. by case: split_ordP => j' ->; rewrite !mxE// (val_eqE (lshift n i)) eq_shift. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_row
pid_mx_colm r : pid_mx r = col_mx 1%:M 0 :> 'M_(r + m, r). Proof. apply/matrixP=> i j; rewrite !mxE andbC. by case: split_ordP => ? ->; rewrite !mxE//. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_col
pid_mx_blockm n r : pid_mx r = block_mx 1%:M 0 0 0 :> 'M_(r + m, r + n). Proof. apply/matrixP=> i j; rewrite !mxE row_mx0 andbC. do ![case: split_ordP => ? -> /[!mxE]//]. by rewrite (val_eqE (lshift n _)) eq_shift. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_block
tr_pid_mxm n r : (pid_mx r)^T = pid_mx r :> 'M_(n, m). Proof. by apply/matrixP=> i j /[!mxE]; case: eqVneq => // ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_pid_mx
pid_mx_minvm n r : pid_mx (minn m r) = pid_mx r :> 'M_(m, n). Proof. by apply/matrixP=> i j; rewrite !mxE leq_min ltn_ord. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_minv
pid_mx_minhm n r : pid_mx (minn n r) = pid_mx r :> 'M_(m, n). Proof. by apply: trmx_inj; rewrite !tr_pid_mx pid_mx_minv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_minh
mul_pid_mxm n p q r : (pid_mx q : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx (minn n (minn q r)). Proof. apply/matrixP=> i k; rewrite !mxE !leq_min. have [le_n_i | lt_i_n] := leqP n i. rewrite andbF big1 // => j _. by rewrite -pid_mx_minh !mxE leq_min ltnNge le_n_i andbF mul0r. rewrite (bigD1 (Ordinal lt_i_n)) //= big1 ?addr0 => [|j]. by rewrite !mxE eqxx /= -natrM mulnb andbCA. by rewrite -val_eqE /= !mxE eq_sym -natrM => /negPf->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_pid_mx
pid_mx_idm n p r : r <= n -> (pid_mx r : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx r. Proof. by move=> le_r_n; rewrite mul_pid_mx minnn (minn_idPr _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mx_id
pid_mxErowm n (le_mn : m <= n) : pid_mx m = rowsub (widen_ord le_mn) 1%:M. Proof. by apply/matrixP=> i j; rewrite !mxE -!val_eqE/= ltn_ord andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mxErow
pid_mxEcolm n (le_mn : m <= n) : pid_mx n = colsub (widen_ord le_mn) 1%:M. Proof. by apply/matrixP=> i j; rewrite !mxE -!val_eqE/= ltn_ord andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
pid_mxEcol
mul_mx_rowm n p1 p2 (A : 'M_(m, n)) (Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) : A *m row_mx Bl Br = row_mx (A *m Bl) (A *m Br). Proof. apply/matrixP=> i k; rewrite !mxE. by case defk: (split k) => /[!mxE]; under eq_bigr do rewrite mxE defk. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_mx_row
mul_col_mxm1 m2 n p (Au : 'M_(m1, n)) (Ad : 'M_(m2, n)) (B : 'M_(n, p)) : col_mx Au Ad *m B = col_mx (Au *m B) (Ad *m B). Proof. apply/matrixP=> i k; rewrite !mxE. by case defi: (split i) => /[!mxE]; under eq_bigr do rewrite mxE defi. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_col_mx
mul_row_colm n1 n2 p (Al : 'M_(m, n1)) (Ar : 'M_(m, n2)) (Bu : 'M_(n1, p)) (Bd : 'M_(n2, p)) : row_mx Al Ar *m col_mx Bu Bd = Al *m Bu + Ar *m Bd. Proof. apply/matrixP=> i k; rewrite !mxE big_split_ord /=. congr (_ + _); apply: eq_bigr => j _; first by rewrite row_mxEl col_mxEu. by rewrite row_mxEr col_mxEd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_row_col
mul_col_rowm1 m2 n p1 p2 (Au : 'M_(m1, n)) (Ad : 'M_(m2, n)) (Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) : col_mx Au Ad *m row_mx Bl Br = block_mx (Au *m Bl) (Au *m Br) (Ad *m Bl) (Ad *m Br). Proof. by rewrite mul_col_mx !mul_mx_row. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_col_row
mul_row_blockm n1 n2 p1 p2 (Al : 'M_(m, n1)) (Ar : 'M_(m, n2)) (Bul : 'M_(n1, p1)) (Bur : 'M_(n1, p2)) (Bdl : 'M_(n2, p1)) (Bdr : 'M_(n2, p2)) : row_mx Al Ar *m block_mx Bul Bur Bdl Bdr = row_mx (Al *m Bul + Ar *m Bdl) (Al *m Bur + Ar *m Bdr). Proof. by rewrite block_mxEh mul_mx_row !mul_row_col. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_row_block
mul_block_colm1 m2 n1 n2 p (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2)) (Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2)) (Bu : 'M_(n1, p)) (Bd : 'M_(n2, p)) : block_mx Aul Aur Adl Adr *m col_mx Bu Bd = col_mx (Aul *m Bu + Aur *m Bd) (Adl *m Bu + Adr *m Bd). Proof. by rewrite mul_col_mx !mul_row_col. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_block_col
mulmx_blockm1 m2 n1 n2 p1 p2 (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2)) (Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2)) (Bul : 'M_(n1, p1)) (Bur : 'M_(n1, p2)) (Bdl : 'M_(n2, p1)) (Bdr : 'M_(n2, p2)) : block_mx Aul Aur Adl Adr *m block_mx Bul Bur Bdl Bdr = block_mx (Aul *m Bul + Aur *m Bdl) (Aul *m Bur + Aur *m Bdr) (Adl *m Bul + Adr *m Bdl) (Adl *m Bur + Adr *m Bdr). Proof. by rewrite mul_col_mx !mul_row_block. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_block
mulmx_lsubm n p k (A : 'M_(m, n)) (B : 'M_(n, p + k)) : A *m lsubmx B = lsubmx (A *m B). Proof. by rewrite !lsubmxEsub mulmx_colsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_lsub
mulmx_rsubm n p k (A : 'M_(m, n)) (B : 'M_(n, p + k)) : A *m rsubmx B = rsubmx (A *m B). Proof. by rewrite !rsubmxEsub mulmx_colsub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_rsub
mul_usub_mxm k n p (A : 'M_(m + k, n)) (B : 'M_(n, p)) : usubmx A *m B = usubmx (A *m B). Proof. by rewrite !usubmxEsub mul_rowsub_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_usub_mx
mul_dsub_mxm k n p (A : 'M_(m + k, n)) (B : 'M_(n, p)) : dsubmx A *m B = dsubmx (A *m B). Proof. by rewrite !dsubmxEsub mul_rowsub_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_dsub_mx
mxtrace1: \tr (1%:M : 'M[R]_n) = n%:R. Proof. exact: mxtrace_scalar. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxtrace1
mxtraceZa (A : 'M_n) : \tr (a *: A) = a * \tr A. Proof. by rewrite mulr_sumr; apply: eq_bigr=> i _; rewrite mxE. Qed. HB.instance Definition _ := GRing.isScalable.Build R 'M_n R _ (@mxtrace _ n) mxtraceZ.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxtraceZ
Definition_ m n p q f g k := GRing.isScalable.Build R 'M[R]_(m, n) 'M[R]_(p, q) *:%R (swizzle_mx f g k) (swizzle_mx_is_scalable f g k). Local Notation SwizzleLin op := (GRing.Linear.copy op (swizzle_mx _ _ _)). HB.instance Definition _ m n := SwizzleLin (@trmx R m n). HB.instance Definition _ m n i := SwizzleLin (@row R m n i). HB.instance Definition _ m n j := SwizzleLin (@col R m n j). HB.instance Definition _ m n i := SwizzleLin (@row' R m n i). HB.instance Definition _ m n j := SwizzleLin (@col' R m n j). HB.instance Definition _ m n m' n' f g := SwizzleLin (@mxsub R m n m' n' f g). HB.instance Definition _ m n s := SwizzleLin (@row_perm R m n s). HB.instance Definition _ m n s := SwizzleLin (@col_perm R m n s). HB.instance Definition _ m n i1 i2 := SwizzleLin (@xrow R m n i1 i2). HB.instance Definition _ m n j1 j2 := SwizzleLin (@xcol R m n j1 j2). HB.instance Definition _ m n1 n2 := SwizzleLin (@lsubmx R m n1 n2). HB.instance Definition _ m n1 n2 := SwizzleLin (@rsubmx R m n1 n2). HB.instance Definition _ m1 m2 n := SwizzleLin (@usubmx R m1 m2 n). HB.instance Definition _ m1 m2 n := SwizzleLin (@dsubmx R m1 m2 n). HB.instance Definition _ m n := SwizzleLin (@vec_mx R m n).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
mxvec_is_scalablem n := can2_scalable (@vec_mxK R m n) mxvecK. HB.instance Definition _ m n := GRing.isScalable.Build R 'M_(m, n) 'rV_(m * n) *:%R mxvec (@mxvec_is_scalable m n).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec_is_scalable
row_sum_deltan (u : 'rV_n) : u = \sum_(j < n) u 0 j *: delta_mx 0 j. Proof. by rewrite [u in LHS]matrix_sum_delta big_ord1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_sum_delta