fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
opp_row_mxm n1 n2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
- row_mx A1 A2 = row_mx (- A1) (- A2).
Proof. by split_mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
opp_row_mx
| |
opp_col_mxm1 m2 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
- col_mx A1 A2 = col_mx (- A1) (- A2).
Proof. by split_mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
opp_col_mx
| |
opp_block_mxm1 m2 n1 n2 (Aul : 'M_(m1, n1)) Aur Adl (Adr : 'M_(m2, n2)) :
- block_mx Aul Aur Adl Adr = block_mx (- Aul) (- Aur) (- Adl) (- Adr).
Proof. by rewrite opp_col_mx !opp_row_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
opp_block_mx
| |
diag_mx_is_additive:= diag_mx_is_zmod_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
diag_mx_is_additive
| |
scalar_mx_is_additive:= scalar_mx_is_zmod_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalar_mx_is_additive
| |
mxtrace_is_additive:= mxtrace_is_zmod_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxtrace_is_additive
| |
map_mxNA : (- A)^f = - A^f.
Proof. exact: raddfN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mxN
| |
map_mxBA B : (A - B)^f = A^f - B^f.
Proof. exact: raddfB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mxB
| |
scalemxx A := \matrix[scalemx_key]_(i, j) (x * A i j).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalemx
| |
delta_mxi0 j0 : 'M[R]_(m, n) :=
\matrix[delta_mx_key]_(i, j) ((i == i0) && (j == j0))%:R.
Local Notation "x *m: A" := (scalemx x A) (at level 40) : ring_scope.
Fact scale0mx A : 0 *m: A = 0.
Proof. by apply/matrixP=> i j; rewrite !mxE mul0r. Qed.
Fact scale1mx A : 1 *m: A = A.
Proof. by apply/matrixP=> i j; rewrite !mxE mul1r. Qed.
Fact scalemxDl A x y : (x + y) *m: A = x *m: A + y *m: A.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrDl. Qed.
Fact scalemxDr x A B : x *m: (A + B) = x *m: A + x *m: B.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrDr. Qed.
Fact scalemxA x y A : x *m: (y *m: A) = (x * y) *m: A.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrA. Qed.
HB.instance Definition _ :=
GRing.Nmodule_isLSemiModule.Build R 'M[R]_(m, n)
scalemxA scale0mx scale1mx scalemxDr scalemxDl.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
delta_mx
| |
scalemx_consta b : a *: const_mx b = const_mx (a * b).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalemx_const
| |
matrix_sum_deltaA : A = \sum_(i < m) \sum_(j < n) A i j *: delta_mx i j.
Proof.
apply/matrixP=> i j.
rewrite summxE (bigD1_ord i) // summxE (bigD1_ord j) //= !mxE !eqxx mulr1.
rewrite !big1 ?addr0 //= => [i' | j'] _.
by rewrite summxE big1// => j' _; rewrite !mxE eq_liftF mulr0.
by rewrite !mxE eqxx eq_liftF mulr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
matrix_sum_delta
| |
trmx_deltam n i j : (delta_mx i j)^T = delta_mx j i :> 'M[R]_(n, m).
Proof. by apply/matrixP=> i' j'; rewrite !mxE andbC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
trmx_delta
| |
delta_mx_lshiftm n1 n2 i j :
delta_mx i (lshift n2 j) = row_mx (delta_mx i j) 0 :> 'M_(m, n1 + n2).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inl _ _)).
by case: split => ?; rewrite mxE ?andbF.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
delta_mx_lshift
| |
delta_mx_rshiftm n1 n2 i j :
delta_mx i (rshift n1 j) = row_mx 0 (delta_mx i j) :> 'M_(m, n1 + n2).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inr _ _)).
by case: split => ?; rewrite mxE ?andbF.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
delta_mx_rshift
| |
delta_mx_ushiftm1 m2 n i j :
delta_mx (lshift m2 i) j = col_mx (delta_mx i j) 0 :> 'M_(m1 + m2, n).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inl _ _)).
by case: split => ?; rewrite mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
delta_mx_ushift
| |
delta_mx_dshiftm1 m2 n i j :
delta_mx (rshift m1 i) j = col_mx 0 (delta_mx i j) :> 'M_(m1 + m2, n).
Proof.
apply/matrixP=> i' j'; rewrite !mxE -(can_eq splitK) (unsplitK (inr _ _)).
by case: split => ?; rewrite mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
delta_mx_dshift
| |
vec_mx_deltam n i j :
vec_mx (delta_mx 0 (mxvec_index i j)) = delta_mx i j :> 'M_(m, n).
Proof.
by apply/matrixP=> i' j'; rewrite !mxE /= [_ == _](inj_eq enum_rank_inj).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
vec_mx_delta
| |
mxvec_deltam n i j :
mxvec (delta_mx i j) = delta_mx 0 (mxvec_index i j) :> 'rV_(m * n).
Proof. by rewrite -vec_mx_delta vec_mxK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxvec_delta
| |
split_mxE:= apply/matrixP=> i j; do ![rewrite mxE | case: split => ?].
|
Ltac
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
split_mxE
| |
trmx1n : (1%:M)^T = 1%:M :> 'M[R]_n. Proof. exact: tr_scalar_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
trmx1
| |
row1n i : row i (1%:M : 'M_n) = delta_mx 0 i.
Proof. by apply/rowP=> j; rewrite !mxE eq_sym. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
row1
| |
col1n i : col i (1%:M : 'M_n) = delta_mx i 0.
Proof. by apply/colP => j; rewrite !mxE eqxx andbT. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
col1
| |
mulmx{m n p} (A : 'M_(m, n)) (B : 'M_(n, p)) : 'M[R]_(m, p) :=
\matrix[mulmx_key]_(i, k) \sum_j (A i j * B j k).
Local Notation "A *m B" := (mulmx A B) : ring_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx
| |
mulmxAm n p q (A : 'M_(m, n)) (B : 'M_(n, p)) (C : 'M_(p, q)) :
A *m (B *m C) = A *m B *m C.
Proof.
apply/matrixP=> i l /[!mxE]; under eq_bigr do rewrite mxE big_distrr/=.
rewrite exchange_big; apply: eq_bigr => j _; rewrite mxE big_distrl /=.
by under eq_bigr do rewrite mulrA.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxA
| |
mul0mxm n p (A : 'M_(n, p)) : 0 *m A = 0 :> 'M_(m, p).
Proof.
by apply/matrixP=> i k; rewrite !mxE big1 //= => j _; rewrite mxE mul0r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul0mx
| |
mulmx0m n p (A : 'M_(m, n)) : A *m 0 = 0 :> 'M_(m, p).
Proof.
by apply/matrixP=> i k; rewrite !mxE big1 // => j _; rewrite mxE mulr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx0
| |
mulmxDlm n p (A1 A2 : 'M_(m, n)) (B : 'M_(n, p)) :
(A1 + A2) *m B = A1 *m B + A2 *m B.
Proof.
apply/matrixP=> i k; rewrite !mxE -big_split /=.
by apply: eq_bigr => j _; rewrite !mxE -mulrDl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxDl
| |
mulmxDrm n p (A : 'M_(m, n)) (B1 B2 : 'M_(n, p)) :
A *m (B1 + B2) = A *m B1 + A *m B2.
Proof.
apply/matrixP=> i k; rewrite !mxE -big_split /=.
by apply: eq_bigr => j _; rewrite mxE mulrDr.
Qed.
HB.instance Definition _ m n p A :=
GRing.isNmodMorphism.Build 'M_(n, p) 'M_(m, p) (mulmx A)
(mulmx0 _ A, mulmxDr A).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxDr
| |
scalemxAlm n p a (A : 'M_(m, n)) (B : 'M_(n, p)) :
a *: (A *m B) = (a *: A) *m B.
Proof.
apply/matrixP=> i k; rewrite !mxE big_distrr /=.
by apply: eq_bigr => j _; rewrite mulrA mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalemxAl
| |
mulmx_sumlm n p (A : 'M_(n, p)) I r P (B_ : I -> 'M_(m, n)) :
(\sum_(i <- r | P i) B_ i) *m A = \sum_(i <- r | P i) B_ i *m A.
Proof.
by apply: (big_morph (mulmx^~ A)) => [B C|]; rewrite ?mul0mx ?mulmxDl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_suml
| |
mulmx_sumrm n p (A : 'M_(m, n)) I r P (B_ : I -> 'M_(n, p)) :
A *m (\sum_(i <- r | P i) B_ i) = \sum_(i <- r | P i) A *m B_ i.
Proof. exact: raddf_sum. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_sumr
| |
rowEm n i (A : 'M_(m, n)) : row i A = delta_mx 0 i *m A.
Proof.
apply/rowP=> j; rewrite !mxE (bigD1_ord i) //= mxE !eqxx mul1r.
by rewrite big1 ?addr0 // => i'; rewrite mxE /= lift_eqF mul0r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
rowE
| |
colEm n i (A : 'M_(m, n)) : col i A = A *m delta_mx i 0.
Proof.
apply/colP=> j; rewrite !mxE (bigD1_ord i) //= mxE !eqxx mulr1.
by rewrite big1 ?addr0 // => i'; rewrite mxE /= lift_eqF mulr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
colE
| |
mul_rVPm n A B : ((@mulmx 1 m n)^~ A =1 mulmx^~ B) <-> (A = B).
Proof. by split=> [eqAB|->//]; apply/row_matrixP => i; rewrite !rowE eqAB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_rVP
| |
row_mulm n p (i : 'I_m) A (B : 'M_(n, p)) :
row i (A *m B) = row i A *m B.
Proof. by rewrite !rowE mulmxA. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
row_mul
| |
mxsub_mulm n m' n' p f g (A : 'M_(m, p)) (B : 'M_(p, n)) :
mxsub f g (A *m B) = rowsub f A *m colsub g B :> 'M_(m', n').
Proof. by split_mxE; under [RHS]eq_bigr do rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxsub_mul
| |
mul_rowsub_mxm n m' p f (A : 'M_(m, p)) (B : 'M_(p, n)) :
rowsub f A *m B = rowsub f (A *m B) :> 'M_(m', n).
Proof. by rewrite mxsub_mul mxsub_id. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_rowsub_mx
| |
mulmx_colsubm n n' p g (A : 'M_(m, p)) (B : 'M_(p, n)) :
A *m colsub g B = colsub g (A *m B) :> 'M_(m, n').
Proof. by rewrite mxsub_mul mxsub_id. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_colsub
| |
mul_delta_mx_condm n p (j1 j2 : 'I_n) (i1 : 'I_m) (k2 : 'I_p) :
delta_mx i1 j1 *m delta_mx j2 k2 = delta_mx i1 k2 *+ (j1 == j2).
Proof.
apply/matrixP => i k; rewrite !mxE (bigD1_ord j1) //=.
rewrite mulmxnE !mxE !eqxx andbT -natrM -mulrnA !mulnb !andbA andbAC.
by rewrite big1 ?addr0 // => j; rewrite !mxE andbC -natrM lift_eqF.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_delta_mx_cond
| |
mul_delta_mxm n p (j : 'I_n) (i : 'I_m) (k : 'I_p) :
delta_mx i j *m delta_mx j k = delta_mx i k.
Proof. by rewrite mul_delta_mx_cond eqxx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_delta_mx
| |
mul_delta_mx_0m n p (j1 j2 : 'I_n) (i1 : 'I_m) (k2 : 'I_p) :
j1 != j2 -> delta_mx i1 j1 *m delta_mx j2 k2 = 0.
Proof. by rewrite mul_delta_mx_cond => /negPf->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_delta_mx_0
| |
mul_diag_mxm n d (A : 'M_(m, n)) :
diag_mx d *m A = \matrix_(i, j) (d 0 i * A i j).
Proof.
apply/matrixP=> i j; rewrite !mxE (bigD1 i) //= mxE eqxx big1 ?addr0 // => i'.
by rewrite mxE eq_sym mulrnAl => /negPf->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_diag_mx
| |
mul_mx_diagm n (A : 'M_(m, n)) d :
A *m diag_mx d = \matrix_(i, j) (A i j * d 0 j).
Proof.
apply/matrixP=> i j; rewrite !mxE (bigD1 j) //= mxE eqxx big1 ?addr0 // => i'.
by rewrite mxE eq_sym mulrnAr; move/negPf->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mx_diag
| |
mulmx_diagn (d e : 'rV_n) :
diag_mx d *m diag_mx e = diag_mx (\row_j (d 0 j * e 0 j)).
Proof. by apply/matrixP=> i j; rewrite mul_diag_mx !mxE mulrnAr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_diag
| |
scalar_mxMn a b : (a * b)%:M = a%:M *m b%:M :> 'M_n.
Proof.
rewrite -[in RHS]diag_const_mx mul_diag_mx.
by apply/matrixP => i j; rewrite !mxE mulrnAr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalar_mxM
| |
mul1mxm n (A : 'M_(m, n)) : 1%:M *m A = A.
Proof.
by rewrite -diag_const_mx mul_diag_mx; apply/matrixP => i j; rewrite !mxE mul1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul1mx
| |
mulmx1m n (A : 'M_(m, n)) : A *m 1%:M = A.
Proof.
by rewrite -diag_const_mx mul_mx_diag; apply/matrixP=> i j; rewrite !mxE mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx1
| |
rowsubEm m' n f (A : 'M_(m, n)) :
rowsub f A = rowsub f 1%:M *m A :> 'M_(m', n).
Proof. by rewrite mul_rowsub_mx mul1mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
rowsubE
| |
mul_col_permm n p s (A : 'M_(m, n)) (B : 'M_(n, p)) :
col_perm s A *m B = A *m row_perm s^-1 B.
Proof.
apply/matrixP=> i k; rewrite !mxE (reindex_perm s^-1).
by apply: eq_bigr => j _ /=; rewrite !mxE permKV.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_col_perm
| |
mul_row_permm n p s (A : 'M_(m, n)) (B : 'M_(n, p)) :
A *m row_perm s B = col_perm s^-1 A *m B.
Proof. by rewrite mul_col_perm invgK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_row_perm
| |
mul_xcolm n p j1 j2 (A : 'M_(m, n)) (B : 'M_(n, p)) :
xcol j1 j2 A *m B = A *m xrow j1 j2 B.
Proof. by rewrite mul_col_perm tpermV. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_xcol
| |
perm_mxn s : 'M_n := row_perm s (1%:M : 'M[R]_n).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
perm_mx
| |
tperm_mxn i1 i2 : 'M_n := perm_mx (tperm i1 i2).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
tperm_mx
| |
col_permEm n s (A : 'M_(m, n)) : col_perm s A = A *m perm_mx s^-1.
Proof. by rewrite mul_row_perm mulmx1 invgK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
col_permE
| |
row_permEm n s (A : 'M_(m, n)) : row_perm s A = perm_mx s *m A.
Proof.
by rewrite -[perm_mx _]mul1mx mul_row_perm mulmx1 -mul_row_perm mul1mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
row_permE
| |
xcolEm n j1 j2 (A : 'M_(m, n)) : xcol j1 j2 A = A *m tperm_mx j1 j2.
Proof. by rewrite /xcol col_permE tpermV. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
xcolE
| |
xrowEm n i1 i2 (A : 'M_(m, n)) : xrow i1 i2 A = tperm_mx i1 i2 *m A.
Proof. exact: row_permE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
xrowE
| |
perm_mxEsubn s : @perm_mx n s = rowsub s 1%:M.
Proof. by rewrite /perm_mx row_permEsub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
perm_mxEsub
| |
tperm_mxEsubn i1 i2 : @tperm_mx n i1 i2 = rowsub (tperm i1 i2) 1%:M.
Proof. by rewrite /tperm_mx perm_mxEsub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
tperm_mxEsub
| |
tr_perm_mxn (s : 'S_n) : (perm_mx s)^T = perm_mx s^-1.
Proof. by rewrite -[_^T]mulmx1 tr_row_perm mul_col_perm trmx1 mul1mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
tr_perm_mx
| |
tr_tperm_mxn i1 i2 : (tperm_mx i1 i2)^T = tperm_mx i1 i2 :> 'M_n.
Proof. by rewrite tr_perm_mx tpermV. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
tr_tperm_mx
| |
perm_mx1n : perm_mx 1 = 1%:M :> 'M_n.
Proof. exact: row_perm1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
perm_mx1
| |
perm_mxMn (s t : 'S_n) : perm_mx (s * t) = perm_mx s *m perm_mx t.
Proof. by rewrite -row_permE -row_permM. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
perm_mxM
| |
is_perm_mxn (A : 'M_n) := [exists s, A == perm_mx s].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_perm_mx
| |
is_perm_mxPn (A : 'M_n) :
reflect (exists s, A = perm_mx s) (is_perm_mx A).
Proof. by apply: (iffP existsP) => [] [s /eqP]; exists s. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_perm_mxP
| |
perm_mx_is_permn (s : 'S_n) : is_perm_mx (perm_mx s).
Proof. by apply/is_perm_mxP; exists s. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
perm_mx_is_perm
| |
is_perm_mx1n : is_perm_mx (1%:M : 'M_n).
Proof. by rewrite -perm_mx1 perm_mx_is_perm. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_perm_mx1
| |
is_perm_mxMln (A B : 'M_n) :
is_perm_mx A -> is_perm_mx (A *m B) = is_perm_mx B.
Proof.
case/is_perm_mxP=> s ->.
apply/is_perm_mxP/is_perm_mxP=> [[t def_t] | [t ->]]; last first.
by exists (s * t)%g; rewrite perm_mxM.
exists (s^-1 * t)%g.
by rewrite perm_mxM -def_t -!row_permE -row_permM mulVg row_perm1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_perm_mxMl
| |
is_perm_mx_trn (A : 'M_n) : is_perm_mx A^T = is_perm_mx A.
Proof.
apply/is_perm_mxP/is_perm_mxP=> [[t def_t] | [t ->]]; exists t^-1%g.
by rewrite -tr_perm_mx -def_t trmxK.
by rewrite tr_perm_mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_perm_mx_tr
| |
is_perm_mxMrn (A B : 'M_n) :
is_perm_mx B -> is_perm_mx (A *m B) = is_perm_mx A.
Proof.
case/is_perm_mxP=> s ->.
rewrite -[s]invgK -col_permE -is_perm_mx_tr tr_col_perm row_permE.
by rewrite is_perm_mxMl (perm_mx_is_perm, is_perm_mx_tr).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_perm_mxMr
| |
pid_mx{m n} r : 'M[R]_(m, n) :=
\matrix[pid_mx_key]_(i, j) ((i == j :> nat) && (i < r))%:R.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx
| |
pid_mx_0m n : pid_mx 0 = 0 :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE andbF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_0
| |
pid_mx_1r : pid_mx r = 1%:M :> 'M_r.
Proof. by apply/matrixP=> i j; rewrite !mxE ltn_ord andbT. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_1
| |
pid_mx_rown r : pid_mx r = row_mx 1%:M 0 :> 'M_(r, r + n).
Proof.
apply/matrixP=> i j; rewrite !mxE ltn_ord andbT.
by case: split_ordP => j' ->; rewrite !mxE// (val_eqE (lshift n i)) eq_shift.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_row
| |
pid_mx_colm r : pid_mx r = col_mx 1%:M 0 :> 'M_(r + m, r).
Proof.
apply/matrixP=> i j; rewrite !mxE andbC.
by case: split_ordP => ? ->; rewrite !mxE//.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_col
| |
pid_mx_blockm n r : pid_mx r = block_mx 1%:M 0 0 0 :> 'M_(r + m, r + n).
Proof.
apply/matrixP=> i j; rewrite !mxE row_mx0 andbC.
do ![case: split_ordP => ? -> /[!mxE]//].
by rewrite (val_eqE (lshift n _)) eq_shift.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_block
| |
tr_pid_mxm n r : (pid_mx r)^T = pid_mx r :> 'M_(n, m).
Proof. by apply/matrixP=> i j /[!mxE]; case: eqVneq => // ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
tr_pid_mx
| |
pid_mx_minvm n r : pid_mx (minn m r) = pid_mx r :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE leq_min ltn_ord. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_minv
| |
pid_mx_minhm n r : pid_mx (minn n r) = pid_mx r :> 'M_(m, n).
Proof. by apply: trmx_inj; rewrite !tr_pid_mx pid_mx_minv. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_minh
| |
mul_pid_mxm n p q r :
(pid_mx q : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx (minn n (minn q r)).
Proof.
apply/matrixP=> i k; rewrite !mxE !leq_min.
have [le_n_i | lt_i_n] := leqP n i.
rewrite andbF big1 // => j _.
by rewrite -pid_mx_minh !mxE leq_min ltnNge le_n_i andbF mul0r.
rewrite (bigD1 (Ordinal lt_i_n)) //= big1 ?addr0 => [|j].
by rewrite !mxE eqxx /= -natrM mulnb andbCA.
by rewrite -val_eqE /= !mxE eq_sym -natrM => /negPf->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_pid_mx
| |
pid_mx_idm n p r :
r <= n -> (pid_mx r : 'M_(m, n)) *m (pid_mx r : 'M_(n, p)) = pid_mx r.
Proof. by move=> le_r_n; rewrite mul_pid_mx minnn (minn_idPr _). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mx_id
| |
pid_mxErowm n (le_mn : m <= n) :
pid_mx m = rowsub (widen_ord le_mn) 1%:M.
Proof. by apply/matrixP=> i j; rewrite !mxE -!val_eqE/= ltn_ord andbT. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mxErow
| |
pid_mxEcolm n (le_mn : m <= n) :
pid_mx n = colsub (widen_ord le_mn) 1%:M.
Proof. by apply/matrixP=> i j; rewrite !mxE -!val_eqE/= ltn_ord andbT. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
pid_mxEcol
| |
mul_mx_rowm n p1 p2 (A : 'M_(m, n)) (Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) :
A *m row_mx Bl Br = row_mx (A *m Bl) (A *m Br).
Proof.
apply/matrixP=> i k; rewrite !mxE.
by case defk: (split k) => /[!mxE]; under eq_bigr do rewrite mxE defk.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mx_row
| |
mul_col_mxm1 m2 n p (Au : 'M_(m1, n)) (Ad : 'M_(m2, n)) (B : 'M_(n, p)) :
col_mx Au Ad *m B = col_mx (Au *m B) (Ad *m B).
Proof.
apply/matrixP=> i k; rewrite !mxE.
by case defi: (split i) => /[!mxE]; under eq_bigr do rewrite mxE defi.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_col_mx
| |
mul_row_colm n1 n2 p (Al : 'M_(m, n1)) (Ar : 'M_(m, n2))
(Bu : 'M_(n1, p)) (Bd : 'M_(n2, p)) :
row_mx Al Ar *m col_mx Bu Bd = Al *m Bu + Ar *m Bd.
Proof.
apply/matrixP=> i k; rewrite !mxE big_split_ord /=.
congr (_ + _); apply: eq_bigr => j _; first by rewrite row_mxEl col_mxEu.
by rewrite row_mxEr col_mxEd.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_row_col
| |
mul_col_rowm1 m2 n p1 p2 (Au : 'M_(m1, n)) (Ad : 'M_(m2, n))
(Bl : 'M_(n, p1)) (Br : 'M_(n, p2)) :
col_mx Au Ad *m row_mx Bl Br
= block_mx (Au *m Bl) (Au *m Br) (Ad *m Bl) (Ad *m Br).
Proof. by rewrite mul_col_mx !mul_mx_row. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_col_row
| |
mul_row_blockm n1 n2 p1 p2 (Al : 'M_(m, n1)) (Ar : 'M_(m, n2))
(Bul : 'M_(n1, p1)) (Bur : 'M_(n1, p2))
(Bdl : 'M_(n2, p1)) (Bdr : 'M_(n2, p2)) :
row_mx Al Ar *m block_mx Bul Bur Bdl Bdr
= row_mx (Al *m Bul + Ar *m Bdl) (Al *m Bur + Ar *m Bdr).
Proof. by rewrite block_mxEh mul_mx_row !mul_row_col. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_row_block
| |
mul_block_colm1 m2 n1 n2 p (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2))
(Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2))
(Bu : 'M_(n1, p)) (Bd : 'M_(n2, p)) :
block_mx Aul Aur Adl Adr *m col_mx Bu Bd
= col_mx (Aul *m Bu + Aur *m Bd) (Adl *m Bu + Adr *m Bd).
Proof. by rewrite mul_col_mx !mul_row_col. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_block_col
| |
mulmx_blockm1 m2 n1 n2 p1 p2 (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2))
(Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2))
(Bul : 'M_(n1, p1)) (Bur : 'M_(n1, p2))
(Bdl : 'M_(n2, p1)) (Bdr : 'M_(n2, p2)) :
block_mx Aul Aur Adl Adr *m block_mx Bul Bur Bdl Bdr
= block_mx (Aul *m Bul + Aur *m Bdl) (Aul *m Bur + Aur *m Bdr)
(Adl *m Bul + Adr *m Bdl) (Adl *m Bur + Adr *m Bdr).
Proof. by rewrite mul_col_mx !mul_row_block. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_block
| |
mulmx_lsubm n p k (A : 'M_(m, n)) (B : 'M_(n, p + k)) :
A *m lsubmx B = lsubmx (A *m B).
Proof. by rewrite !lsubmxEsub mulmx_colsub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_lsub
| |
mulmx_rsubm n p k (A : 'M_(m, n)) (B : 'M_(n, p + k)) :
A *m rsubmx B = rsubmx (A *m B).
Proof. by rewrite !rsubmxEsub mulmx_colsub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_rsub
| |
mul_usub_mxm k n p (A : 'M_(m + k, n)) (B : 'M_(n, p)) :
usubmx A *m B = usubmx (A *m B).
Proof. by rewrite !usubmxEsub mul_rowsub_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_usub_mx
| |
mul_dsub_mxm k n p (A : 'M_(m + k, n)) (B : 'M_(n, p)) :
dsubmx A *m B = dsubmx (A *m B).
Proof. by rewrite !dsubmxEsub mul_rowsub_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_dsub_mx
| |
mxtrace1: \tr (1%:M : 'M[R]_n) = n%:R. Proof. exact: mxtrace_scalar. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxtrace1
| |
mxtraceZa (A : 'M_n) : \tr (a *: A) = a * \tr A.
Proof. by rewrite mulr_sumr; apply: eq_bigr=> i _; rewrite mxE. Qed.
HB.instance Definition _ :=
GRing.isScalable.Build R 'M_n R _ (@mxtrace _ n) mxtraceZ.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxtraceZ
| |
Definition_ m n p q f g k :=
GRing.isScalable.Build R 'M[R]_(m, n) 'M[R]_(p, q) *:%R (swizzle_mx f g k)
(swizzle_mx_is_scalable f g k).
Local Notation SwizzleLin op := (GRing.Linear.copy op (swizzle_mx _ _ _)).
HB.instance Definition _ m n := SwizzleLin (@trmx R m n).
HB.instance Definition _ m n i := SwizzleLin (@row R m n i).
HB.instance Definition _ m n j := SwizzleLin (@col R m n j).
HB.instance Definition _ m n i := SwizzleLin (@row' R m n i).
HB.instance Definition _ m n j := SwizzleLin (@col' R m n j).
HB.instance Definition _ m n m' n' f g := SwizzleLin (@mxsub R m n m' n' f g).
HB.instance Definition _ m n s := SwizzleLin (@row_perm R m n s).
HB.instance Definition _ m n s := SwizzleLin (@col_perm R m n s).
HB.instance Definition _ m n i1 i2 := SwizzleLin (@xrow R m n i1 i2).
HB.instance Definition _ m n j1 j2 := SwizzleLin (@xcol R m n j1 j2).
HB.instance Definition _ m n1 n2 := SwizzleLin (@lsubmx R m n1 n2).
HB.instance Definition _ m n1 n2 := SwizzleLin (@rsubmx R m n1 n2).
HB.instance Definition _ m1 m2 n := SwizzleLin (@usubmx R m1 m2 n).
HB.instance Definition _ m1 m2 n := SwizzleLin (@dsubmx R m1 m2 n).
HB.instance Definition _ m n := SwizzleLin (@vec_mx R m n).
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
Definition
| |
mxvec_is_scalablem n := can2_scalable (@vec_mxK R m n) mxvecK.
HB.instance Definition _ m n :=
GRing.isScalable.Build R 'M_(m, n) 'rV_(m * n) *:%R mxvec
(@mxvec_is_scalable m n).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxvec_is_scalable
| |
row_sum_deltan (u : 'rV_n) : u = \sum_(j < n) u 0 j *: delta_mx 0 j.
Proof. by rewrite [u in LHS]matrix_sum_delta big_ord1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
row_sum_delta
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.