fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
determinant_multilinearn (A B C : 'M[R]_n) i0 b c : row i0 A = b *: row i0 B + c *: row i0 C -> row' i0 B = row' i0 A -> row' i0 C = row' i0 A -> \det A = b * \det B + c * \det C. Proof. rewrite -[_ + _](row_id 0); move/row_eq=> ABC. move/row'_eq=> BA; move/row'_eq=> CA. rewrite !big_distrr -big_split; apply: eq_bigr => s _ /=. rewrite -!(mulrCA (_ ^+s)) -mulrDr; congr (_ * _). rewrite !(bigD1 i0 (_ : predT i0)) //= {}ABC !mxE mulrDl !mulrA. by congr (_ * _ + _ * _); apply: eq_bigr => i i0i; rewrite ?BA ?CA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
determinant_multilinear
determinant_alternaten (A : 'M[R]_n) i1 i2 : i1 != i2 -> A i1 =1 A i2 -> \det A = 0. Proof. move=> neq_i12 eqA12; pose t := tperm i1 i2. have oddMt s: (t * s)%g = ~~ s :> bool by rewrite odd_permM odd_tperm neq_i12. rewrite [\det A](bigID (@odd_perm _)) /=. apply: canLR (subrK _) _; rewrite add0r -sumrN. rewrite (reindex_inj (mulgI t)); apply: eq_big => //= s. rewrite oddMt => /negPf->; rewrite mulN1r mul1r; congr (- _). rewrite (reindex_perm t); apply: eq_bigr => /= i _. by rewrite permM tpermK /t; case: tpermP => // ->; rewrite eqA12. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
determinant_alternate
det_trn (A : 'M[R]_n) : \det A^T = \det A. Proof. rewrite [\det A^T](reindex_inj invg_inj) /=. apply: eq_bigr => s _ /=; rewrite !odd_permV (reindex_perm s) /=. by congr (_ * _); apply: eq_bigr => i _; rewrite mxE permK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_tr
det_permn (s : 'S_n) : \det (perm_mx s) = (-1) ^+ s :> R. Proof. rewrite [\det _](bigD1 s) //= big1 => [|i _]; last by rewrite /= !mxE eqxx. rewrite mulr1 big1 ?addr0 => //= t Dst. case: (pickP (fun i => s i != t i)) => [i ist | Est]. by rewrite (bigD1 i) // mulrCA /= !mxE (negPf ist) mul0r. by case/eqP: Dst; apply/permP => i; move/eqP: (Est i). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_perm
det1n : \det (1%:M : 'M[R]_n) = 1. Proof. by rewrite -perm_mx1 det_perm odd_perm1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det1
det_mx00(A : 'M[R]_0) : \det A = 1. Proof. by rewrite flatmx0 -(flatmx0 1%:M) det1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_mx00
detZn a (A : 'M[R]_n) : \det (a *: A) = a ^+ n * \det A. Proof. rewrite big_distrr /=; apply: eq_bigr => s _; rewrite mulrCA; congr (_ * _). rewrite -[n in a ^+ n]card_ord -prodr_const -big_split /=. by apply: eq_bigr=> i _; rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
detZ
det0n' : \det (0 : 'M[R]_n'.+1) = 0. Proof. by rewrite -(scale0r 0) detZ exprS !mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det0
det_scalarn a : \det (a%:M : 'M[R]_n) = a ^+ n. Proof. by rewrite -{1}(mulr1 a) -scale_scalar_mx detZ det1 mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_scalar
det_scalar1a : \det (a%:M : 'M[R]_1) = a. Proof. exact: det_scalar. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_scalar1
det_mx11(M : 'M[R]_1) : \det M = M 0 0. Proof. by rewrite {1}[M]mx11_scalar det_scalar. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_mx11
det_mulmxn (A B : 'M[R]_n) : \det (A *m B) = \det A * \det B. Proof. rewrite big_distrl /=. pose F := ('I_n ^ n)%type; pose AB s i j := A i j * B j (s i). transitivity (\sum_(f : F) \sum_(s : 'S_n) (-1) ^+ s * \prod_i AB s i (f i)). rewrite exchange_big; apply: eq_bigr => /= s _; rewrite -big_distrr /=. congr (_ * _); rewrite -(bigA_distr_bigA (AB s)) /=. by apply: eq_bigr => x _; rewrite mxE. rewrite (bigID (fun f : F => injectiveb f)) /= addrC big1 ?add0r => [|f Uf]. rewrite (reindex (@pval _)) /=; last first. pose in_Sn := insubd (1%g : 'S_n). by exists in_Sn => /= f Uf; first apply: val_inj; apply: insubdK. apply: eq_big => /= [s | s _]; rewrite ?(valP s) // big_distrr /=. rewrite (reindex_inj (mulgI s)); apply: eq_bigr => t _ /=. rewrite big_split /= [in LHS]mulrA mulrCA mulrA mulrCA mulrA. rewrite -signr_addb odd_permM !pvalE; congr (_ * _); symmetry. by rewrite (reindex_perm s); apply: eq_bigr => i; rewrite permM. transitivity (\det (\matrix_(i, j) B (f i) j) * \prod_i A i (f i)). rewrite mulrC big_distrr /=; apply: eq_bigr => s _. rewrite mulrCA big_split //=; congr (_ * (_ * _)). by apply: eq_bigr => x _; rewrite mxE. case/injectivePn: Uf => i1 [i2 Di12 Ef12]. by rewrite (determinant_alternate Di12) ?simp //= => j; rewrite !mxE Ef12. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_mulmx
detMn' (A B : 'M[R]_n'.+1) : \det (A * B) = \det A * \det B. Proof. exact: det_mulmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
detM
expand_cofactorn (A : 'M[R]_n) i j : cofactor A i j = \sum_(s : 'S_n | s i == j) (-1) ^+ s * \prod_(k | i != k) A k (s k). Proof. case: n A i j => [|n] A i0 j0; first by case: i0. rewrite (reindex (lift_perm i0 j0)); last first. pose ulsf i (s : 'S_n.+1) k := odflt k (unlift (s i) (s (lift i k))). have ulsfK i (s : 'S_n.+1) k: lift (s i) (ulsf i s k) = s (lift i k). rewrite /ulsf; have:= neq_lift i k. by rewrite -(can_eq (permK s)) => /unlift_some[] ? ? ->. have inj_ulsf: injective (ulsf i0 _). move=> s; apply: can_inj (ulsf (s i0) s^-1%g) _ => k'. by rewrite {1}/ulsf ulsfK !permK liftK. exists (fun s => perm (inj_ulsf s)) => [s _ | s]. by apply/permP=> k'; rewrite permE /ulsf lift_perm_lift lift_perm_id liftK. move/(s _ =P _) => si0; apply/permP=> k. case: (unliftP i0 k) => [k'|] ->; rewrite ?lift_perm_id //. by rewrite lift_perm_lift -si0 permE ulsfK. rewrite /cofactor big_distrr /=. apply: eq_big => [s | s _]; first by rewrite lift_perm_id eqxx. rewrite -signr_odd mulrA -signr_addb oddD -odd_lift_perm; congr (_ * _). case: (pickP 'I_n) => [k0 _ | n0]; last first. by rewrite !big1 // => [j /unlift_some[i] | i _]; have:= n0 i. rewrite (reindex (lift i0)). by apply: eq_big => [k | k _] /=; rewrite ?neq_lift // !mxE lift_perm_lift. exists (fun k => odflt k0 (unlift i0 k)) => k; first by rewrite liftK. by case/unlift_some=> k' -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
expand_cofactor
expand_det_rown (A : 'M[R]_n) i0 : \det A = \sum_j A i0 j * cofactor A i0 j. Proof. rewrite /(\det A) (partition_big (fun s : 'S_n => s i0) predT) //=. apply: eq_bigr => j0 _; rewrite expand_cofactor big_distrr /=. apply: eq_bigr => s /eqP Dsi0. rewrite mulrCA (bigID (pred1 i0)) /= big_pred1_eq Dsi0; congr (_ * (_ * _)). by apply: eq_bigl => i; rewrite eq_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
expand_det_row
cofactor_trn (A : 'M[R]_n) i j : cofactor A^T i j = cofactor A j i. Proof. rewrite /cofactor addnC; congr (_ * _). rewrite -tr_row' -tr_col' det_tr; congr (\det _). by apply/matrixP=> ? ?; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cofactor_tr
cofactorZn a (A : 'M[R]_n) i j : cofactor (a *: A) i j = a ^+ n.-1 * cofactor A i j. Proof. by rewrite {1}/cofactor !linearZ detZ mulrCA mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cofactorZ
expand_det_coln (A : 'M[R]_n) j0 : \det A = \sum_i (A i j0 * cofactor A i j0). Proof. rewrite -det_tr (expand_det_row _ j0). by under eq_bigr do rewrite cofactor_tr mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
expand_det_col
trmx_adjn (A : 'M[R]_n) : (\adj A)^T = \adj A^T. Proof. by apply/matrixP=> i j; rewrite !mxE cofactor_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_adj
adjZn a (A : 'M[R]_n) : \adj (a *: A) = a^+n.-1 *: \adj A. Proof. by apply/matrixP=> i j; rewrite !mxE cofactorZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
adjZ
mul_mx_adjn (A : 'M[R]_n) : A *m \adj A = (\det A)%:M. Proof. apply/matrixP=> i1 i2 /[!mxE]; have [->|Di] := eqVneq. rewrite (expand_det_row _ i2) //=. by apply: eq_bigr => j _; congr (_ * _); rewrite mxE. pose B := \matrix_(i, j) (if i == i2 then A i1 j else A i j). have EBi12: B i1 =1 B i2 by move=> j; rewrite /= !mxE eqxx (negPf Di). rewrite -[_ *+ _](determinant_alternate Di EBi12) (expand_det_row _ i2). apply: eq_bigr => j _; rewrite !mxE eqxx; congr (_ * (_ * _)). apply: eq_bigr => s _; congr (_ * _); apply: eq_bigr => i _. by rewrite !mxE eq_sym -if_neg neq_lift. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_mx_adj
mul_adj_mxn (A : 'M[R]_n) : \adj A *m A = (\det A)%:M. Proof. by apply: trmx_inj; rewrite trmx_mul trmx_adj mul_mx_adj det_tr tr_scalar_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_adj_mx
adj1n : \adj (1%:M) = 1%:M :> 'M[R]_n. Proof. by rewrite -{2}(det1 n) -mul_adj_mx mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
adj1
mulmx1Cn (A B : 'M[R]_n) : A *m B = 1%:M -> B *m A = 1%:M. Proof. move=> AB1; pose A' := \det B *: \adj A. suffices kA: A' *m A = 1%:M by rewrite -[B]mul1mx -kA -(mulmxA A') AB1 mulmx1. by rewrite -scalemxAl mul_adj_mx scale_scalar_mx mulrC -det_mulmx AB1 det1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx1C
det_ublockn1 n2 Aul (Aur : 'M[R]_(n1, n2)) Adr : \det (block_mx Aul Aur 0 Adr) = \det Aul * \det Adr. Proof. elim: n1 => [|n1 IHn1] in Aul Aur *. have ->: Aul = 1%:M by apply/matrixP=> i []. rewrite det1 mul1r; congr (\det _); apply/matrixP=> i j. by do 2![rewrite !mxE; case: splitP => [[]|k] //=; move/val_inj=> <- {k}]. rewrite (expand_det_col _ (lshift n2 0)) big_split_ord /=. rewrite addrC big1 1?simp => [|i _]; last by rewrite block_mxEdl mxE simp. rewrite (expand_det_col _ 0) big_distrl /=; apply: eq_bigr=> i _. rewrite block_mxEul -!mulrA; do 2!congr (_ * _). by rewrite col'_col_mx !col'Kl raddf0 row'Ku row'_row_mx IHn1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_ublock
det_lblockn1 n2 Aul (Adl : 'M[R]_(n2, n1)) Adr : \det (block_mx Aul 0 Adl Adr) = \det Aul * \det Adr. Proof. by rewrite -det_tr tr_block_mx trmx0 det_ublock !det_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_lblock
det_trign (A : 'M[R]_n) : is_trig_mx A -> \det A = \prod_(i < n) A i i. Proof. elim/trigsqmx_ind => [|k x c B Bt IHB]; first by rewrite ?big_ord0 ?det_mx00. rewrite det_lblock big_ord_recl det_mx11 IHB//; congr (_ * _). by rewrite -[ord0](lshift0 _ 0) block_mxEul. by apply: eq_bigr => i; rewrite -!rshift1 block_mxEdr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_trig
det_diagn (d : 'rV[R]_n) : \det (diag_mx d) = \prod_i d 0 i. Proof. by rewrite det_trig//; apply: eq_bigr => i; rewrite !mxE eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_diag
Definition_ (R : comNzSemiRingType) n := GRing.LSemiAlgebra_isSemiAlgebra.Build R 'M[R]_n.+1 (fun k => scalemxAr k). HB.instance Definition _ (R : comNzRingType) (n' : nat) := GRing.LSemiAlgebra.on 'M[R]_n'.+1. HB.instance Definition _ (R : finComNzRingType) (n' : nat) := [Finite of 'M[R]_n'.+1 by <:].
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
mulmx1_min(R : comNzRingType) m n (A : 'M[R]_(m, n)) B : A *m B = 1%:M -> m <= n. Proof. move=> AB1; rewrite leqNgt; apply/negP=> /subnKC; rewrite addSnnS. move: (_ - _)%N => m' def_m; move: AB1; rewrite -{m}def_m in A B *. rewrite -(vsubmxK A) -(hsubmxK B) mul_col_row scalar_mx_block. case/eq_block_mx=> /mulmx1C BlAu1 AuBr0 _ => /eqP/idPn[]. by rewrite -[_ B]mul1mx -BlAu1 -mulmxA AuBr0 !mulmx0 eq_sym oner_neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx1_min
unitmx: pred 'M[R]_n := fun A => \det A \is a GRing.unit.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmx
invmxA := if A \in unitmx then (\det A)^-1 *: \adj A else A.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmx
unitmxEA : (A \in unitmx) = (\det A \is a GRing.unit). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmxE
unitmx1: 1%:M \in unitmx. Proof. by rewrite unitmxE det1 unitr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmx1
unitmx_perms : perm_mx s \in unitmx. Proof. by rewrite unitmxE det_perm unitrX ?unitrN ?unitr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmx_perm
unitmx_trA : (A^T \in unitmx) = (A \in unitmx). Proof. by rewrite unitmxE det_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmx_tr
unitmxZa A : a \is a GRing.unit -> (a *: A \in unitmx) = (A \in unitmx). Proof. by move=> Ua; rewrite !unitmxE detZ unitrM unitrX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmxZ
invmx1: invmx 1%:M = 1%:M. Proof. by rewrite /invmx det1 invr1 scale1r adj1 if_same. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmx1
invmxZa A : a *: A \in unitmx -> invmx (a *: A) = a^-1 *: invmx A. Proof. rewrite /invmx !unitmxE detZ unitrM => /andP[Ua U_A]. rewrite Ua U_A adjZ !scalerA invrM {U_A}//=. case: (posnP n) A => [-> | n_gt0] A; first by rewrite flatmx0 [_ *: _]flatmx0. rewrite unitrX_pos // in Ua; rewrite -[_ * _](mulrK Ua) mulrC -!mulrA. by rewrite -exprSr prednK // !mulrA divrK ?unitrX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmxZ
invmx_scalara : invmx a%:M = a^-1%:M. Proof. case Ua: (a%:M \in unitmx). by rewrite -scalemx1 in Ua *; rewrite invmxZ // invmx1 scalemx1. rewrite /invmx Ua; have [->|n_gt0] := posnP n; first by rewrite ![_%:M]flatmx0. by rewrite unitmxE det_scalar unitrX_pos // in Ua; rewrite invr_out ?Ua. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmx_scalar
mulVmx: {in unitmx, left_inverse 1%:M invmx mulmx}. Proof. by move=> A nsA; rewrite /invmx nsA -scalemxAl mul_adj_mx scale_scalar_mx mulVr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulVmx
mulmxV: {in unitmx, right_inverse 1%:M invmx mulmx}. Proof. by move=> A nsA; rewrite /invmx nsA -scalemxAr mul_mx_adj scale_scalar_mx mulVr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxV
mulKmxm : {in unitmx, @left_loop _ 'M_(n, m) invmx mulmx}. Proof. by move=> A uA /= B; rewrite mulmxA mulVmx ?mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulKmx
mulKVmxm : {in unitmx, @rev_left_loop _ 'M_(n, m) invmx mulmx}. Proof. by move=> A uA /= B; rewrite mulmxA mulmxV ?mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulKVmx
mulmxKm : {in unitmx, @right_loop 'M_(m, n) _ invmx mulmx}. Proof. by move=> A uA /= B; rewrite -mulmxA mulmxV ?mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxK
mulmxKVm : {in unitmx, @rev_right_loop 'M_(m, n) _ invmx mulmx}. Proof. by move=> A uA /= B; rewrite -mulmxA mulVmx ?mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxKV
det_invA : \det (invmx A) = (\det A)^-1. Proof. case uA: (A \in unitmx); last by rewrite /invmx uA invr_out ?negbT. by apply: (mulrI uA); rewrite -det_mulmx mulmxV ?divrr ?det1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_inv
unitmx_invA : (invmx A \in unitmx) = (A \in unitmx). Proof. by rewrite !unitmxE det_inv unitrV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmx_inv
unitmx_mulA B : (A *m B \in unitmx) = (A \in unitmx) && (B \in unitmx). Proof. by rewrite -unitrM -det_mulmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitmx_mul
trmx_inv(A : 'M_n) : (invmx A)^T = invmx (A^T). Proof. by rewrite (fun_if trmx) linearZ /= trmx_adj -unitmx_tr -det_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_inv
invmxK: involutive invmx. Proof. move=> A; case uA : (A \in unitmx); last by rewrite /invmx !uA. by apply: (can_inj (mulKVmx uA)); rewrite mulVmx // mulmxV ?unitmx_inv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmxK
mulmx1_unitA B : A *m B = 1%:M -> A \in unitmx /\ B \in unitmx. Proof. by move=> AB1; apply/andP; rewrite -unitmx_mul AB1 unitmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx1_unit
intro_unitmxA B : B *m A = 1%:M /\ A *m B = 1%:M -> unitmx A. Proof. by case=> _ /mulmx1_unit[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
intro_unitmx
invmx_out: {in [predC unitmx], invmx =1 id}. Proof. by move=> A; rewrite inE /= /invmx -if_neg => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmx_out
Definition_ := GRing.NzRing_hasMulInverse.Build 'M[R]_n (@mulVmx n) (@mulmxV n) (@intro_unitmx n) (@invmx_out n).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
detV(A : 'M_n) : \det A^-1 = (\det A)^-1. Proof. exact: det_inv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
detV
unitr_trmx(A : 'M_n) : (A^T \is a GRing.unit) = (A \is a GRing.unit). Proof. exact: unitmx_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
unitr_trmx
trmxV(A : 'M_n) : A^-1^T = (A^T)^-1. Proof. exact: trmx_inv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmxV
perm_mxV(s : 'S_n) : perm_mx s^-1 = (perm_mx s)^-1. Proof. rewrite -[_^-1]mul1r; apply: (canRL (mulmxK (unitmx_perm s))). by rewrite -perm_mxM mulVg perm_mx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
perm_mxV
is_perm_mxV(A : 'M_n) : is_perm_mx A^-1 = is_perm_mx A. Proof. apply/is_perm_mxP/is_perm_mxP=> [] [s defA]; exists s^-1%g. by rewrite -(invrK A) defA perm_mxV. by rewrite defA perm_mxV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
is_perm_mxV
block_diag_mx_unit(R : comUnitRingType) n1 n2 (Aul : 'M[R]_n1) (Adr : 'M[R]_n2) : (block_mx Aul 0 0 Adr \in unitmx) = (Aul \in unitmx) && (Adr \in unitmx). Proof. by rewrite !unitmxE det_ublock unitrM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_diag_mx_unit
invmx_block_diag(R : comUnitRingType) n1 n2 (Aul : 'M[R]_n1) (Adr : 'M[R]_n2) : block_mx Aul 0 0 Adr \in unitmx -> invmx (block_mx Aul 0 0 Adr) = block_mx (invmx Aul) 0 0 (invmx Adr). Proof. move=> /[dup] Aunit; rewrite block_diag_mx_unit => /andP[Aul_unit Adr_unit]. rewrite -[LHS]mul1mx; apply: (canLR (mulmxK _)) => //. rewrite [RHS](mulmx_block (invmx Aul)) !(mulmx0, mul0mx, add0r, addr0). by rewrite !mulVmx// -?scalar_mx_block. Qed. HB.instance Definition _ (R : countComUnitRingType) (n' : nat) := [Countable of 'M[R]_n'.+1 by <:]. HB.instance Definition _ (n : nat) (R : finComUnitRingType) := [Finite of 'M[R]_n.+1 by <:].
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
invmx_block_diag
GLtype(R : finComUnitRingType) := {unit 'M[R]_n.-1.+1}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GLtype
GLvalR (u : GLtype R) : 'M[R]_n.-1.+1 := let: FinRing.Unit A _ := u in A.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GLval
Definition_ (n : nat) (R : finComUnitRingType) := [isSub of {'GL_n[R]} for GLval].
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
Definition_ := [Finite of {'GL_n[R]} by <:]. HB.instance Definition _ := FinGroup.on {'GL_n[R]}.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
GLgroup:= [set: {'GL_n[R]}].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GLgroup
GLgroup_group:= Eval hnf in [group of GLgroup]. Implicit Types u v : {'GL_n[R]}.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GLgroup_group
GL_1E: GLval 1 = 1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_1E
GL_VEu : GLval u^-1 = (GLval u)^-1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_VE
GL_VxEu : GLval u^-1 = invmx u. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_VxE
GL_MEu v : GLval (u * v) = GLval u * GLval v. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_ME
GL_MxEu v : GLval (u * v) = u *m v. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_MxE
GL_unitu : GLval u \is a GRing.unit. Proof. exact: valP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_unit
GL_unitmxu : val u \in unitmx. Proof. exact: GL_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_unitmx
GL_detu : \det u != 0. Proof. by apply: contraL (GL_unitmx u); rewrite unitmxE => /eqP->; rewrite unitr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
GL_det
scalemx_eq0m n a (A : 'M[R]_(m, n)) : (a *: A == 0) = (a == 0) || (A == 0). Proof. case nz_a: (a == 0) / eqP => [-> | _]; first by rewrite scale0r eqxx. apply/eqP/eqP=> [aA0 | ->]; last exact: scaler0. apply/matrixP=> i j; apply/eqP; move/matrixP/(_ i j)/eqP: aA0. by rewrite !mxE mulf_eq0 nz_a. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemx_eq0
scalemx_injm n a : a != 0 -> injective ( *:%R a : 'M[R]_(m, n) -> 'M[R]_(m, n)). Proof. move=> nz_a A B eq_aAB; apply: contraNeq nz_a. rewrite -[A == B]subr_eq0 -[a == 0]orbF => /negPf<-. by rewrite -scalemx_eq0 linearB subr_eq0 /= eq_aAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemx_inj
det0Pn (A : 'M[R]_n) : reflect (exists2 v : 'rV[R]_n, v != 0 & v *m A = 0) (\det A == 0). Proof. apply: (iffP eqP) => [detA0 | [v n0v vA0]]; last first. apply: contraNeq n0v => nz_detA; rewrite -(inj_eq (scalemx_inj nz_detA)). by rewrite scaler0 -mul_mx_scalar -mul_mx_adj mulmxA vA0 mul0mx. elim: n => [|n IHn] in A detA0 *. by case/idP: (oner_eq0 R); rewrite -detA0 [A]thinmx0 -(thinmx0 1%:M) det1. have [{detA0}A'0 | nzA'] := eqVneq (row 0 (\adj A)) 0; last first. exists (row 0 (\adj A)) => //; rewrite rowE -mulmxA mul_adj_mx detA0. by rewrite mul_mx_scalar scale0r. pose A' := col' 0 A; pose vA := col 0 A. have defA: A = row_mx vA A'. apply/matrixP=> i j /[!mxE]. by case: split_ordP => j' -> /[!(mxE, ord1)]; congr (A i _); apply: val_inj. have{IHn} w_ j : exists w : 'rV_n.+1, [/\ w != 0, w 0 j = 0 & w *m A' = 0]. have [|wj nzwj wjA'0] := IHn (row' j A'). by apply/eqP; move/rowP/(_ j)/eqP: A'0; rewrite !mxE mulf_eq0 signr_eq0. exists (\row_k oapp (wj 0) 0 (unlift j k)). rewrite !mxE unlift_none -wjA'0; split=> //. apply: contraNneq nzwj => w0; apply/eqP/rowP=> k'. by move/rowP/(_ (lift j k')): w0; rewrite !mxE liftK. apply/rowP=> k; rewrite !mxE (bigD1_ord j) //= mxE unlift_none mul0r add0r. by apply: eq_big => //= k'; rewrite !mxE/= liftK. have [w0 [/rV0Pn[j nz_w0j] w00_0 w0A']] := w_ 0; pose a0 := (w0 *m vA) 0 0. have{w_} [wj [nz_wj wj0_0 wjA']] := w_ j; pose aj := (wj *m vA) 0 0. have [aj0 | nz_aj] := eqVneq aj 0. exists wj => //; rewrite d ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det0P
map_mx_inj{m n} : injective (map_mx f : 'M_(m, n) -> 'M_(m, n)). Proof. move=> A B eq_AB; apply/matrixP=> i j. by move/matrixP/(_ i j): eq_AB => /[!mxE]; apply: fmorph_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_inj
map_mx_is_scalarn (A : 'M_n) : is_scalar_mx A^f = is_scalar_mx A. Proof. rewrite /is_scalar_mx; case: (insub _) => // i. by rewrite mxE -map_scalar_mx inj_eq //; apply: map_mx_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_is_scalar
map_unitmxn (A : 'M_n) : (A^f \in unitmx) = (A \in unitmx). Proof. by rewrite unitmxE det_map_mx // fmorph_unit // -unitfE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_unitmx
map_mx_unitn' (A : 'M_n'.+1) : (A^f \is a GRing.unit) = (A \is a GRing.unit). Proof. exact: map_unitmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_unit
map_invmxn (A : 'M_n) : (invmx A)^f = invmx A^f. Proof. rewrite /invmx map_unitmx (fun_if (map_mx f)). by rewrite map_mxZ map_mx_adj det_map_mx fmorphV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_invmx
map_mx_invn' (A : 'M_n'.+1) : A^-1^f = A^f^-1. Proof. exact: map_invmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_inv
map_mx_eq0m n (A : 'M_(m, n)) : (A^f == 0) = (A == 0). Proof. by rewrite -(inj_eq map_mx_inj) raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_eq0
cormen_lup{n} := match n return let M := 'M[F]_n.+1 in M -> M * M * M with | 0 => fun A => (1, 1, A) | _.+1 => fun A => let k := odflt 0 [pick k | A k 0 != 0] in let A1 : 'M_(1 + _) := xrow 0 k A in let P1 : 'M_(1 + _) := tperm_mx 0 k in let Schur := ((A k 0)^-1 *: dlsubmx A1) *m ursubmx A1 in let: (P2, L2, U2) := cormen_lup (drsubmx A1 - Schur) in let P := block_mx 1 0 0 P2 *m P1 in let L := block_mx 1 0 ((A k 0)^-1 *: (P2 *m dlsubmx A1)) L2 in let U := block_mx (ulsubmx A1) (ursubmx A1) 0 U2 in (P, L, U) end.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cormen_lup
cormen_lup_permn (A : 'M_n.+1) : is_perm_mx (cormen_lup A).1.1. Proof. elim: n => [|n IHn] /= in A *; first exact: is_perm_mx1. set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/=. rewrite (is_perm_mxMr _ (perm_mx_is_perm _ _)). by case/is_perm_mxP => s ->; apply: lift0_mx_is_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cormen_lup_perm
cormen_lup_correctn (A : 'M_n.+1) : let: (P, L, U) := cormen_lup A in P * A = L * U. Proof. elim: n => [|n IHn] /= in A *; first by rewrite !mul1r. set k := odflt _ _; set A1 : 'M_(1 + _) := xrow _ _ _. set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P' L' U']] /= IHn. rewrite -mulrA -!mulmxE -xrowE -/A1 /= -[n.+2]/(1 + n.+1)%N -{1}(submxK A1). rewrite !mulmx_block !mul0mx !mulmx0 !add0r !addr0 !mul1mx -{L' U'}[L' *m _]IHn. rewrite -scalemxAl !scalemxAr -!mulmxA addrC -mulrDr {A'}subrK. congr (block_mx _ _ (_ *m _) _). rewrite [_ *: _]mx11_scalar !mxE lshift0 tpermL {}/A1 {}/k. case: pickP => /= [k nzAk0 | no_k]; first by rewrite mulVf ?mulmx1. rewrite (_ : dlsubmx _ = 0) ?mul0mx //; apply/colP=> i. by rewrite !mxE lshift0 (elimNf eqP (no_k _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cormen_lup_correct
cormen_lup_detLn (A : 'M_n.+1) : \det (cormen_lup A).1.2 = 1. Proof. elim: n => [|n IHn] /= in A *; first by rewrite det1. set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/= detL. by rewrite (@det_lblock _ 1) det1 mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cormen_lup_detL
cormen_lup_lowern A (i j : 'I_n.+1) : i <= j -> (cormen_lup A).1.2 i j = (i == j)%:R. Proof. elim: n => [|n IHn] /= in A i j *; first by rewrite [i]ord1 [j]ord1 mxE. set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/= Ll. rewrite !mxE split1; case: unliftP => [i'|] -> /=; rewrite !mxE split1. by case: unliftP => [j'|] -> //; apply: Ll. by case: unliftP => [j'|] ->; rewrite /= mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cormen_lup_lower
cormen_lup_uppern A (i j : 'I_n.+1) : j < i -> (cormen_lup A).2 i j = 0 :> F. Proof. elim: n => [|n IHn] /= in A i j *; first by rewrite [i]ord1. set A' := _ - _; move/(_ A'): IHn; case: cormen_lup => [[P L U]] {A'}/= Uu. rewrite !mxE split1; case: unliftP => [i'|] -> //=; rewrite !mxE split1. by case: unliftP => [j'|] ->; [apply: Uu | rewrite /= mxE]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cormen_lup_upper
mxOver_pred(S : {pred T}) := fun M : 'M[T]_(m, n) => [forall i, [forall j, M i j \in S]]. Arguments mxOver_pred _ _ /.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxOver_pred
mxOver(S : {pred T}) := [qualify a M | mxOver_pred S M].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxOver
mxOverP{S : {pred T}} {M : 'M[T]__} : reflect (forall i j, M i j \in S) (M \is a mxOver S). Proof. exact/'forall_forallP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxOverP
mxOverS(S1 S2 : {pred T}) : {subset S1 <= S2} -> {subset mxOver S1 <= mxOver S2}. Proof. by move=> sS12 M /mxOverP S1M; apply/mxOverP=> i j; apply/sS12/S1M. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxOverS
mxOver_constc S : c \in S -> const_mx c \is a mxOver S. Proof. by move=> cS; apply/mxOverP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxOver_const
mxOver_constEc S : (m > 0)%N -> (n > 0)%N -> (const_mx c \is a mxOver S) = (c \in S). Proof. move=> m_gt0 n_gt0; apply/idP/idP; last exact: mxOver_const. by move=> /mxOverP /(_ (Ordinal m_gt0) (Ordinal n_gt0)); rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxOver_constE
thinmxOver{n : nat} {T : Type} (M : 'M[T]_(n, 0)) S : M \is a mxOver S. Proof. by apply/mxOverP => ? []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
thinmxOver
flatmxOver{n : nat} {T : Type} (M : 'M[T]_(0, n)) S : M \is a mxOver S. Proof. by apply/mxOverP => - []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
flatmxOver