fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
scale_row_mxm n1 n2 a (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : a *: row_mx A1 A2 = row_mx (a *: A1) (a *: A2). Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scale_row_mx
scale_col_mxm1 m2 n a (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : a *: col_mx A1 A2 = col_mx (a *: A1) (a *: A2). Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scale_col_mx
scale_block_mxm1 m2 n1 n2 a (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2)) (Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2)) : a *: block_mx Aul Aur Adl Adr = block_mx (a *: Aul) (a *: Aur) (a *: Adl) (a *: Adr). Proof. by rewrite scale_col_mx !scale_row_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scale_block_mx
Definition_ n := GRing.isScalable.Build R 'rV_n 'M_n _ (@diag_mx _ n) (@diag_mx_is_scalable n).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
diag_mx_sum_deltan (d : 'rV_n) : diag_mx d = \sum_i d 0 i *: delta_mx i i. Proof. apply/matrixP=> i j; rewrite summxE (bigD1_ord i) //= !mxE eqxx /=. by rewrite eq_sym mulr_natr big1 ?addr0 // => i'; rewrite !mxE eq_liftF mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
diag_mx_sum_delta
row_diag_mxn (d : 'rV_n) i : row i (diag_mx d) = d 0 i *: delta_mx 0 i. Proof. by apply/rowP => j; rewrite !mxE eqxx eq_sym mulr_natr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_diag_mx
scale_scalar_mxn a1 a2 : a1 *: a2%:M = (a1 * a2)%:M :> 'M_n. Proof. by apply/matrixP=> i j; rewrite !mxE mulrnAr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scale_scalar_mx
scalemx1n a : a *: 1%:M = a%:M :> 'M_n. Proof. by rewrite scale_scalar_mx mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemx1
scalar_mx_sum_deltan a : a%:M = \sum_i a *: delta_mx i i :> 'M_n. Proof. by rewrite -diag_const_mx diag_mx_sum_delta; under eq_bigr do rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalar_mx_sum_delta
mx1_sum_deltan : 1%:M = \sum_i delta_mx i i :> 'M[R]_n. Proof. by rewrite [1%:M]scalar_mx_sum_delta -scaler_sumr scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mx1_sum_delta
mulmx_sum_rowm n (u : 'rV_m) (A : 'M_(m, n)) : u *m A = \sum_i u 0 i *: row i A. Proof. by apply/rowP => j /[!(mxE, summxE)]; apply: eq_bigr => i _ /[!mxE]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmx_sum_row
mul_scalar_mxm n a (A : 'M_(m, n)) : a%:M *m A = a *: A. Proof. by rewrite -diag_const_mx mul_diag_mx; apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_scalar_mx
Definition_ := GRing.Nmodule_isPzSemiRing.Build 'M[R]_n (@mulmxA n n n n) (@mul1mx n n) (@mulmx1 n n) (@mulmxDl n n n) (@mulmxDr n n n) (@mul0mx n n n) (@mulmx0 n n n).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
mulmxE: mulmx = *%R. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxE
idmxE: 1%:M = 1 :> 'M_n. Proof. by []. Qed. Fact scalar_mx_is_monoid_morphism : monoid_morphism (@scalar_mx R n). Proof. by split=> //; apply: scalar_mxM. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `scalar_mx_is_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
idmxE
scalar_mx_is_multiplicative:= scalar_mx_is_monoid_morphism. HB.instance Definition _ := GRing.isMonoidMorphism.Build R 'M_n (@scalar_mx _ n) scalar_mx_is_monoid_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalar_mx_is_multiplicative
lin1_mx(f : 'rV[R]_m -> 'rV[R]_n) := \matrix[lin1_mx_key]_(i, j) f (delta_mx 0 i) 0 j. Variable f : {linear 'rV[R]_m -> 'rV[R]_n}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lin1_mx
mul_rV_lin1u : u *m lin1_mx f = f u. Proof. rewrite [u in RHS]matrix_sum_delta big_ord1 linear_sum; apply/rowP=> i. by rewrite mxE summxE; apply: eq_bigr => j _; rewrite linearZ !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_rV_lin1
lin_mx(f : 'M[R]_(m1, n1) -> 'M[R]_(m2, n2)) := lin1_mx (mxvec \o f \o vec_mx). Variable f : {linear 'M[R]_(m1, n1) -> 'M[R]_(m2, n2)}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lin_mx
mul_rV_linu : u *m lin_mx f = mxvec (f (vec_mx u)). Proof. exact: mul_rV_lin1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_rV_lin
mul_vec_linA : mxvec A *m lin_mx f = mxvec (f A). Proof. by rewrite mul_rV_lin mxvecK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_vec_lin
mx_rV_linu : vec_mx (u *m lin_mx f) = f (vec_mx u). Proof. by rewrite mul_rV_lin mxvecK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mx_rV_lin
mx_vec_linA : vec_mx (mxvec A *m lin_mx f) = f A. Proof. by rewrite mul_rV_lin !mxvecK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mx_vec_lin
mulmxrB A := mulmx A B. Arguments mulmxr B A /. Fact mulmxr_is_semilinear B : semilinear (mulmxr B). Proof. by split=> [a A|A1 A2]; rewrite /= (mulmxDl, scalemxAl). Qed. HB.instance Definition _ (B : 'M_(n, p)) := GRing.isSemilinear.Build R 'M_(m, n) 'M_(m, p) _ (mulmxr B) (mulmxr_is_semilinear B).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxr
lin_mulmxrB := lin_mx (mulmxr B). Fact lin_mulmxr_is_semilinear : semilinear lin_mulmxr. Proof. split=> [a A|A B]; apply/row_matrixP; case/mxvec_indexP=> i j; rewrite (linearZ, linearD) /= !rowE !mul_rV_lin /= vec_mx_delta; rewrite -(linearZ, linearD) 1?mulmxDr //=. congr mxvec; apply/row_matrixP=> k. rewrite linearZ /= !row_mul rowE mul_delta_mx_cond. by case: (k == i); [rewrite -!rowE linearZ | rewrite !mul0mx raddf0]. Qed. HB.instance Definition _ := GRing.isSemilinear.Build R 'M_(n, p) 'M_(m * n, m * p) _ lin_mulmxr lin_mulmxr_is_semilinear.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lin_mulmxr
lift0_perms : 'S_n.+1 := lift_perm 0 0 s.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_perm
lift0_perm0s : lift0_perm s 0 = 0. Proof. exact: lift_perm_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_perm0
lift0_perm_lifts k' : lift0_perm s (lift 0 k') = lift (0 : 'I_n.+1) (s k'). Proof. exact: lift_perm_lift. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_perm_lift
lift0_permKs : cancel (lift0_perm s) (lift0_perm s^-1). Proof. by move=> i; rewrite /lift0_perm -lift_permV permK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_permK
lift0_perm_eq0s i : (lift0_perm s i == 0) = (i == 0). Proof. by rewrite (canF_eq (lift0_permK s)) lift0_perm0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_perm_eq0
lift0_mxA : 'M_(1 + n) := block_mx 1 0 0 A.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_mx
lift0_mx_perms : lift0_mx (perm_mx s) = perm_mx (lift0_perm s). Proof. apply/matrixP=> /= i j; rewrite !mxE split1 /=; case: unliftP => [i'|] -> /=. rewrite lift0_perm_lift !mxE split1 /=. by case: unliftP => [j'|] ->; rewrite ?(inj_eq (lift_inj _)) /= !mxE. rewrite lift0_perm0 !mxE split1 /=. by case: unliftP => [j'|] ->; rewrite /= mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_mx_perm
lift0_mx_is_perms : is_perm_mx (lift0_mx (perm_mx s)). Proof. by rewrite lift0_mx_perm perm_mx_is_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lift0_mx_is_perm
exp_block_diag_mxm n (A: 'M_m.+1) (B : 'M_n.+1) k : (block_mx A 0 0 B) ^+ k = block_mx (A ^+ k) 0 0 (B ^+ k). Proof. elim: k=> [|k IHk]; first by rewrite !expr0 -scalar_mx_block. rewrite !exprS IHk [LHS](mulmx_block A _ _ _ (A ^+ k)). by rewrite !mulmx0 !mul0mx !add0r !addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
exp_block_diag_mx
trmx_mul_rev(R : pzSemiRingType) m n p (A : 'M[R]_(m, n)) (B : 'M[R]_(n, p)) : (A *m B)^T = (B : 'M[R^c]_(n, p))^T *m (A : 'M[R^c]_(m, n))^T. Proof. by apply/matrixP=> k i /[!mxE]; apply: eq_bigr => j _ /[!mxE]. Qed. HB.instance Definition _ (R : pzRingType) m n := GRing.LSemiModule.on 'M[R]_(m, n). HB.instance Definition _ (R : pzRingType) n := GRing.PzSemiRing.on 'M[R]_n.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_mul_rev
matrix_nonzero1: 1%:M != 0 :> 'M[R]_n. Proof. by apply/eqP=> /matrixP/(_ 0 0)/eqP; rewrite !mxE oner_eq0. Qed. HB.instance Definition _ := GRing.PzSemiRing_isNonZero.Build 'M[R]_n matrix_nonzero1. HB.instance Definition _ := GRing.LSemiModule_isLSemiAlgebra.Build R 'M[R]_n (@scalemxAl R n n n).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
matrix_nonzero1
Definition_ (R : nzRingType) n := GRing.NzSemiRing.on 'M[R]_n.+1. HB.instance Definition _ (M : countNmodType) m n := [Countable of 'M[M]_(m, n) by <:]. HB.instance Definition _ (M : countZmodType) m n := [Countable of 'M[M]_(m, n) by <:]. HB.instance Definition _ (R : countNzSemiRingType) n := [Countable of 'M[R]_n.+1 by <:]. HB.instance Definition _ (R : countNzRingType) n := [Countable of 'M[R]_n.+1 by <:]. HB.instance Definition _ (V : finNmodType) (m n : nat) := [Finite of 'M[V]_(m, n) by <:]. HB.instance Definition _ (V : finZmodType) (m n : nat) := [Finite of 'M[V]_(m, n) by <:]. #[compress_coercions] HB.instance Definition _ (V : finZmodType) (m n : nat) := [finGroupMixin of 'M[V]_(m, n) for +%R]. #[compress_coercions] HB.instance Definition _ (R : finNzSemiRingType) n := [Finite of 'M[R]_n.+1 by <:]. #[compress_coercions] HB.instance Definition _ (R : finNzRingType) (m n : nat) := FinRing.Zmodule.on 'M[R]_(m, n). #[compress_coercions] HB.instance Definition _ (R : finNzRingType) n := [Finite of 'M[R]_n.+1 by <:].
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
Definition
map_mxZa A : (a *: A)^f = f a *: A^f. Proof. by apply/matrixP=> i j; rewrite !mxE rmorphM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mxZ
map_mxMA B : (A *m B)^f = A^f *m B^f :> 'M_(m, p). Proof. apply/matrixP=> i k; rewrite !mxE rmorph_sum //. by apply: eq_bigr => j; rewrite !mxE rmorphM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mxM
map_delta_mxi j : (delta_mx i j)^f = delta_mx i j :> 'M_(m, n). Proof. by apply/matrixP=> i' j'; rewrite !mxE rmorph_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_delta_mx
map_diag_mxd : (diag_mx d)^f = diag_mx d^f :> 'M_n. Proof. by apply/matrixP=> i j; rewrite !mxE rmorphMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_diag_mx
map_scalar_mxa : a%:M^f = (f a)%:M :> 'M_n. Proof. by apply/matrixP=> i j; rewrite !mxE rmorphMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_scalar_mx
map_mx1: 1%:M^f = 1%:M :> 'M_n. Proof. by rewrite map_scalar_mx rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx1
map_perm_mx(s : 'S_n) : (perm_mx s)^f = perm_mx s. Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_perm_mx
map_tperm_mx(i1 i2 : 'I_n) : (tperm_mx i1 i2)^f = tperm_mx i1 i2. Proof. exact: map_perm_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_tperm_mx
map_pid_mxr : (pid_mx r)^f = pid_mx r :> 'M_(m, n). Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_pid_mx
trace_map_mx(A : 'M_n) : \tr A^f = f (\tr A). Proof. by rewrite rmorph_sum; apply: eq_bigr => i _; rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trace_map_mx
map_lin1_mxm n (g : 'rV_m -> 'rV_n) gf : (forall v, (g v)^f = gf v^f) -> (lin1_mx g)^f = lin1_mx gf. Proof. by move=> def_gf; apply/matrixP => i j; rewrite !mxE -map_delta_mx -def_gf mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_lin1_mx
map_lin_mxm1 n1 m2 n2 (g : 'M_(m1, n1) -> 'M_(m2, n2)) gf : (forall A, (g A)^f = gf A^f) -> (lin_mx g)^f = lin_mx gf. Proof. move=> def_gf; apply: map_lin1_mx => A /=. by rewrite map_mxvec def_gf map_vec_mx. Qed. Fact map_mx_is_monoid_morphism n : monoid_morphism (map_mx f : 'M_n -> 'M_n). Proof. by split; [apply: map_mx1 | apply: map_mxM]. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `map_mx_is_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_lin_mx
map_mx_is_multiplicative:= map_mx_is_monoid_morphism. HB.instance Definition _ n := GRing.isMonoidMorphism.Build 'M[aR]_n 'M[rR]_n (map_mx f) (map_mx_is_monoid_morphism n).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_is_multiplicative
comm_mxf g : Prop := f *m g = g *m f.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx
comm_mxbf g : bool := f *m g == g *m f.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxb
comm_mx_symf g : comm_mx f g -> comm_mx g f. Proof. by rewrite /comm_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx_sym
comm_mx_reflf : comm_mx f f. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx_refl
comm_mx0f : comm_mx f 0. Proof. by rewrite /comm_mx mulmx0 mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx0
comm0mxf : comm_mx 0 f. Proof. by rewrite /comm_mx mulmx0 mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm0mx
comm_mx1f : comm_mx f 1%:M. Proof. by rewrite /comm_mx mulmx1 mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx1
comm1mxf : comm_mx 1%:M f. Proof. by rewrite /comm_mx mulmx1 mul1mx. Qed. Hint Resolve comm_mx0 comm0mx comm_mx1 comm1mx : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm1mx
comm_mxDf g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g + g'). Proof. by rewrite /comm_mx mulmxDl mulmxDr => -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxD
comm_mxMf g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g *m g'). Proof. by rewrite /comm_mx mulmxA => ->; rewrite -!mulmxA => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxM
comm_mx_sumI (s : seq I) (P : pred I) (F : I -> 'M[R]_n) (f : 'M[R]_n) : (forall i : I, P i -> comm_mx f (F i)) -> comm_mx f (\sum_(i <- s | P i) F i). Proof. by move=> comm_mxfF; elim/big_ind: _ => // g h; apply: comm_mxD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx_sum
comm_mxPf g : reflect (comm_mx f g) (comm_mxb f g). Proof. exact: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxP
all_comm_mxfs := (all2rel comm_mxb fs).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
all_comm_mx
all_comm_mxPfs : reflect {in fs &, forall f g, f *m g = g *m f} (all_comm_mx fs). Proof. by apply: (iffP allrelP) => fsP ? ? ? ?; apply/eqP/fsP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
all_comm_mxP
all_comm_mx1f : all_comm_mx [:: f]. Proof. by rewrite /comm_mxb all2rel1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
all_comm_mx1
all_comm_mx2Pf g : reflect (f *m g = g *m f) (all_comm_mx [:: f; g]). Proof. by rewrite /comm_mxb /= all2rel2 ?eqxx //; exact: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
all_comm_mx2P
all_comm_mx_consf fs : all_comm_mx (f :: fs) = all (comm_mxb f) fs && all_comm_mx fs. Proof. by rewrite /comm_mxb /= all2rel_cons //= eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
all_comm_mx_cons
comm_mxE: comm_mx = @GRing.comm _. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxE
all_comm_mx:= (allrel comm_mxb).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
all_comm_mx
trmx_mulA B : (A *m B)^T = B^T *m A^T. Proof. rewrite trmx_mul_rev; apply/matrixP=> k i; rewrite !mxE. by apply: eq_bigr => j _; rewrite mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_mul
scalemxAra A B : a *: (A *m B) = A *m (a *: B). Proof. by apply: trmx_inj; rewrite trmx_mul !linearZ /= trmx_mul scalemxAl. Qed. Fact mulmx_is_scalable A : scalable (@mulmx _ m n p A). Proof. by move=> a B; rewrite scalemxAr. Qed. HB.instance Definition _ A := GRing.isScalable.Build R 'M[R]_(n, p) 'M[R]_(m, p) *:%R (mulmx A) (mulmx_is_scalable A).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalemxAr
lin_mulmxA : 'M[R]_(n * p, m * p) := lin_mx (mulmx A). Fact lin_mulmx_is_semilinear : semilinear lin_mulmx. Proof. by split=> [a A|A B]; apply/row_matrixP=> i; rewrite (linearZ, linearD) /=; rewrite !rowE !mul_rV_lin /= -(linearZ, linearD) /= (scalemxAl, mulmxDl). Qed. HB.instance Definition _ := GRing.isSemilinear.Build R 'M[R]_(m, n) 'M[R]_(n * p, m * p) _ lin_mulmx lin_mulmx_is_semilinear.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lin_mulmx
lin_mul_rowu : 'M[R]_(m * n, n) := lin1_mx (mulmx u \o vec_mx). Fact lin_mul_row_is_semilinear : semilinear lin_mul_row. Proof. by split=> [a u|u v]; apply/row_matrixP=> i; rewrite (linearZ, linearD) /=; rewrite !rowE !mul_rV_lin1 /= (mulmxDl, scalemxAl). Qed. HB.instance Definition _ := GRing.isSemilinear.Build R _ _ _ lin_mul_row lin_mul_row_is_semilinear.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lin_mul_row
mul_vec_lin_rowA u : mxvec A *m lin_mul_row u = u *m A. Proof. by rewrite mul_rV_lin1 /= mxvecK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_vec_lin_row
diag_mxCn (d e : 'rV[R]_n) : diag_mx d *m diag_mx e = diag_mx e *m diag_mx d. Proof. by rewrite !mulmx_diag; congr (diag_mx _); apply/rowP=> i; rewrite !mxE mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
diag_mxC
diag_mx_commn (d e : 'rV[R]_n) : comm_mx (diag_mx d) (diag_mx e). Proof. exact: diag_mxC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
diag_mx_comm
scalar_mxCm n a (A : 'M[R]_(m, n)) : A *m a%:M = a%:M *m A. Proof. rewrite -!diag_const_mx mul_mx_diag mul_diag_mx. by apply/matrixP => i j; rewrite !mxE mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
scalar_mxC
comm_mx_scalarn a (A : 'M[R]_n) : comm_mx A a%:M. Proof. exact: scalar_mxC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mx_scalar
comm_scalar_mxn a (A : 'M[R]_n) : comm_mx a%:M A. Proof. exact/comm_mx_sym/comm_mx_scalar. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_scalar_mx
mxtrace_mulCm n (A : 'M[R]_(m, n)) B : \tr (A *m B) = \tr (B *m A). Proof. have expand_trM C D: \tr (C *m D) = \sum_i \sum_j C i j * D j i. by apply: eq_bigr => i _; rewrite mxE. rewrite !{}expand_trM exchange_big /=. by do 2!apply: eq_bigr => ? _; apply: mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxtrace_mulC
mxvec_dotmulm n (A : 'M[R]_(m, n)) u v : mxvec (u^T *m v) *m (mxvec A)^T = u *m A *m v^T. Proof. transitivity (\sum_i \sum_j (u 0 i * A i j *: row j v^T)). apply/rowP=> i; rewrite {i}ord1 mxE (reindex _ (curry_mxvec_bij _ _)) /=. rewrite pair_bigA summxE; apply: eq_bigr => [[i j]] /= _. by rewrite !mxE !mxvecE mxE big_ord1 mxE mulrAC. rewrite mulmx_sum_row exchange_big; apply: eq_bigr => j _ /=. by rewrite mxE -scaler_suml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxvec_dotmul
mul_mx_scalarm n a (A : 'M[R]_(m, n)) : A *m a%:M = a *: A. Proof. by rewrite scalar_mxC mul_scalar_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_mx_scalar
mulmxNm n p (A : 'M[R]_(m, n)) (B : 'M_(n, p)) : A *m (- B) = - (A *m B). Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxN
mulNmxm n p (A : 'M[R]_(m, n)) (B : 'M_(n, p)) : - A *m B = - (A *m B). Proof. exact: (raddfN (mulmxr _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulNmx
mulmxBlm n p (A1 A2 : 'M[R]_(m, n)) (B : 'M_(n, p)) : (A1 - A2) *m B = A1 *m B - A2 *m B. Proof. exact: (raddfB (mulmxr _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxBl
mulmxBrm n p (A : 'M[R]_(m, n)) (B1 B2 : 'M_(n, p)) : A *m (B1 - B2) = A *m B1 - A *m B2. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mulmxBr
copid_mx{n} r : 'M[R]_n := 1%:M - pid_mx r.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
copid_mx
mul_copid_mx_pidm n r : r <= m -> copid_mx r *m pid_mx r = 0 :> 'M_(m, n). Proof. by move=> le_r_m; rewrite mulmxBl mul1mx pid_mx_id ?subrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_copid_mx_pid
mul_pid_mx_copidm n r : r <= n -> pid_mx r *m copid_mx r = 0 :> 'M_(m, n). Proof. by move=> le_r_n; rewrite mulmxBr mulmx1 pid_mx_id ?subrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mul_pid_mx_copid
copid_mx_idn r : r <= n -> copid_mx r *m copid_mx r = copid_mx r :> 'M_n. Proof. by move=> le_r_n; rewrite mulmxBl mul1mx mul_pid_mx_copid // oppr0 addr0. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `linearP` instead")] Fact mulmxr_is_linear m n p B : linear (@mulmxr R m n p B). Proof. exact: linearP. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `linearP` instead")] Fact lin_mulmxr_is_linear m n p : linear (@lin_mulmxr R m n p). Proof. exact: linearP. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `scalarP` instead")] Fact mxtrace_is_scalar n : scalar (@mxtrace R n). Proof. exact: scalarP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
copid_mx_id
determinantn (A : 'M_n) : R := \sum_(s : 'S_n) (-1) ^+ s * \prod_i A i (s i).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
determinant
cofactorn A (i j : 'I_n) : R := (-1) ^+ (i + j) * determinant (row' i (col' j A)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cofactor
adjugaten (A : 'M_n) := \matrix[adjugate_key]_(i, j) cofactor A j i.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
adjugate
det_map_mxn' (A : 'M_n') : \det A^f = f (\det A). Proof. rewrite rmorph_sum //; apply: eq_bigr => s _. rewrite rmorphM /= rmorph_sign rmorph_prod; congr (_ * _). by apply: eq_bigr => i _; rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
det_map_mx
cofactor_map_mx(A : 'M_n) i j : cofactor A^f i j = f (cofactor A i j). Proof. by rewrite rmorphM /= rmorph_sign -det_map_mx map_row' map_col'. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cofactor_map_mx
map_mx_adj(A : 'M_n) : (\adj A)^f = \adj A^f. Proof. by apply/matrixP=> i j; rewrite !mxE cofactor_map_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_mx_adj
map_copid_mxn r : (copid_mx r)^f = copid_mx r :> 'M_n. Proof. by rewrite map_mxB map_mx1 map_pid_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
map_copid_mx
comm_mxNf g : comm_mx f g -> comm_mx f (- g). Proof. by rewrite /comm_mx mulmxN mulNmx => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxN
comm_mxN1f : comm_mx f (- 1%:M). Proof. exact/comm_mxN/comm_mx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxN1
comm_mxBf g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g - g'). Proof. by move=> fg fg'; apply/comm_mxD => //; apply/comm_mxN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
comm_mxB