fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
scale_row_mxm n1 n2 a (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :
a *: row_mx A1 A2 = row_mx (a *: A1) (a *: A2).
Proof. by split_mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scale_row_mx
| |
scale_col_mxm1 m2 n a (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) :
a *: col_mx A1 A2 = col_mx (a *: A1) (a *: A2).
Proof. by split_mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scale_col_mx
| |
scale_block_mxm1 m2 n1 n2 a (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2))
(Adl : 'M_(m2, n1)) (Adr : 'M_(m2, n2)) :
a *: block_mx Aul Aur Adl Adr
= block_mx (a *: Aul) (a *: Aur) (a *: Adl) (a *: Adr).
Proof. by rewrite scale_col_mx !scale_row_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scale_block_mx
| |
Definition_ n :=
GRing.isScalable.Build R 'rV_n 'M_n _ (@diag_mx _ n) (@diag_mx_is_scalable n).
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
Definition
| |
diag_mx_sum_deltan (d : 'rV_n) :
diag_mx d = \sum_i d 0 i *: delta_mx i i.
Proof.
apply/matrixP=> i j; rewrite summxE (bigD1_ord i) //= !mxE eqxx /=.
by rewrite eq_sym mulr_natr big1 ?addr0 // => i'; rewrite !mxE eq_liftF mulr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
diag_mx_sum_delta
| |
row_diag_mxn (d : 'rV_n) i : row i (diag_mx d) = d 0 i *: delta_mx 0 i.
Proof. by apply/rowP => j; rewrite !mxE eqxx eq_sym mulr_natr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
row_diag_mx
| |
scale_scalar_mxn a1 a2 : a1 *: a2%:M = (a1 * a2)%:M :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE mulrnAr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scale_scalar_mx
| |
scalemx1n a : a *: 1%:M = a%:M :> 'M_n.
Proof. by rewrite scale_scalar_mx mulr1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalemx1
| |
scalar_mx_sum_deltan a : a%:M = \sum_i a *: delta_mx i i :> 'M_n.
Proof.
by rewrite -diag_const_mx diag_mx_sum_delta; under eq_bigr do rewrite mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalar_mx_sum_delta
| |
mx1_sum_deltan : 1%:M = \sum_i delta_mx i i :> 'M[R]_n.
Proof. by rewrite [1%:M]scalar_mx_sum_delta -scaler_sumr scale1r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mx1_sum_delta
| |
mulmx_sum_rowm n (u : 'rV_m) (A : 'M_(m, n)) :
u *m A = \sum_i u 0 i *: row i A.
Proof. by apply/rowP => j /[!(mxE, summxE)]; apply: eq_bigr => i _ /[!mxE]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmx_sum_row
| |
mul_scalar_mxm n a (A : 'M_(m, n)) : a%:M *m A = a *: A.
Proof.
by rewrite -diag_const_mx mul_diag_mx; apply/matrixP=> i j; rewrite !mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_scalar_mx
| |
Definition_ := GRing.Nmodule_isPzSemiRing.Build 'M[R]_n
(@mulmxA n n n n) (@mul1mx n n) (@mulmx1 n n)
(@mulmxDl n n n) (@mulmxDr n n n) (@mul0mx n n n) (@mulmx0 n n n).
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
Definition
| |
mulmxE: mulmx = *%R. Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxE
| |
idmxE: 1%:M = 1 :> 'M_n. Proof. by []. Qed.
Fact scalar_mx_is_monoid_morphism : monoid_morphism (@scalar_mx R n).
Proof. by split=> //; apply: scalar_mxM. Qed.
#[deprecated(since="mathcomp 2.5.0",
note="use `scalar_mx_is_monoid_morphism` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
idmxE
| |
scalar_mx_is_multiplicative:= scalar_mx_is_monoid_morphism.
HB.instance Definition _ := GRing.isMonoidMorphism.Build R 'M_n (@scalar_mx _ n)
scalar_mx_is_monoid_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalar_mx_is_multiplicative
| |
lin1_mx(f : 'rV[R]_m -> 'rV[R]_n) :=
\matrix[lin1_mx_key]_(i, j) f (delta_mx 0 i) 0 j.
Variable f : {linear 'rV[R]_m -> 'rV[R]_n}.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lin1_mx
| |
mul_rV_lin1u : u *m lin1_mx f = f u.
Proof.
rewrite [u in RHS]matrix_sum_delta big_ord1 linear_sum; apply/rowP=> i.
by rewrite mxE summxE; apply: eq_bigr => j _; rewrite linearZ !mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_rV_lin1
| |
lin_mx(f : 'M[R]_(m1, n1) -> 'M[R]_(m2, n2)) :=
lin1_mx (mxvec \o f \o vec_mx).
Variable f : {linear 'M[R]_(m1, n1) -> 'M[R]_(m2, n2)}.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lin_mx
| |
mul_rV_linu : u *m lin_mx f = mxvec (f (vec_mx u)).
Proof. exact: mul_rV_lin1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_rV_lin
| |
mul_vec_linA : mxvec A *m lin_mx f = mxvec (f A).
Proof. by rewrite mul_rV_lin mxvecK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_vec_lin
| |
mx_rV_linu : vec_mx (u *m lin_mx f) = f (vec_mx u).
Proof. by rewrite mul_rV_lin mxvecK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mx_rV_lin
| |
mx_vec_linA : vec_mx (mxvec A *m lin_mx f) = f A.
Proof. by rewrite mul_rV_lin !mxvecK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mx_vec_lin
| |
mulmxrB A := mulmx A B.
Arguments mulmxr B A /.
Fact mulmxr_is_semilinear B : semilinear (mulmxr B).
Proof. by split=> [a A|A1 A2]; rewrite /= (mulmxDl, scalemxAl). Qed.
HB.instance Definition _ (B : 'M_(n, p)) :=
GRing.isSemilinear.Build R 'M_(m, n) 'M_(m, p) _ (mulmxr B)
(mulmxr_is_semilinear B).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxr
| |
lin_mulmxrB := lin_mx (mulmxr B).
Fact lin_mulmxr_is_semilinear : semilinear lin_mulmxr.
Proof.
split=> [a A|A B]; apply/row_matrixP; case/mxvec_indexP=> i j;
rewrite (linearZ, linearD) /= !rowE !mul_rV_lin /= vec_mx_delta;
rewrite -(linearZ, linearD) 1?mulmxDr //=.
congr mxvec; apply/row_matrixP=> k.
rewrite linearZ /= !row_mul rowE mul_delta_mx_cond.
by case: (k == i); [rewrite -!rowE linearZ | rewrite !mul0mx raddf0].
Qed.
HB.instance Definition _ :=
GRing.isSemilinear.Build R 'M_(n, p) 'M_(m * n, m * p) _ lin_mulmxr
lin_mulmxr_is_semilinear.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lin_mulmxr
| |
lift0_perms : 'S_n.+1 := lift_perm 0 0 s.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_perm
| |
lift0_perm0s : lift0_perm s 0 = 0.
Proof. exact: lift_perm_id. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_perm0
| |
lift0_perm_lifts k' :
lift0_perm s (lift 0 k') = lift (0 : 'I_n.+1) (s k').
Proof. exact: lift_perm_lift. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_perm_lift
| |
lift0_permKs : cancel (lift0_perm s) (lift0_perm s^-1).
Proof. by move=> i; rewrite /lift0_perm -lift_permV permK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_permK
| |
lift0_perm_eq0s i : (lift0_perm s i == 0) = (i == 0).
Proof. by rewrite (canF_eq (lift0_permK s)) lift0_perm0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_perm_eq0
| |
lift0_mxA : 'M_(1 + n) := block_mx 1 0 0 A.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_mx
| |
lift0_mx_perms : lift0_mx (perm_mx s) = perm_mx (lift0_perm s).
Proof.
apply/matrixP=> /= i j; rewrite !mxE split1 /=; case: unliftP => [i'|] -> /=.
rewrite lift0_perm_lift !mxE split1 /=.
by case: unliftP => [j'|] ->; rewrite ?(inj_eq (lift_inj _)) /= !mxE.
rewrite lift0_perm0 !mxE split1 /=.
by case: unliftP => [j'|] ->; rewrite /= mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_mx_perm
| |
lift0_mx_is_perms : is_perm_mx (lift0_mx (perm_mx s)).
Proof. by rewrite lift0_mx_perm perm_mx_is_perm. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lift0_mx_is_perm
| |
exp_block_diag_mxm n (A: 'M_m.+1) (B : 'M_n.+1) k :
(block_mx A 0 0 B) ^+ k = block_mx (A ^+ k) 0 0 (B ^+ k).
Proof.
elim: k=> [|k IHk]; first by rewrite !expr0 -scalar_mx_block.
rewrite !exprS IHk [LHS](mulmx_block A _ _ _ (A ^+ k)).
by rewrite !mulmx0 !mul0mx !add0r !addr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
exp_block_diag_mx
| |
trmx_mul_rev(R : pzSemiRingType) m n p
(A : 'M[R]_(m, n)) (B : 'M[R]_(n, p)) :
(A *m B)^T = (B : 'M[R^c]_(n, p))^T *m (A : 'M[R^c]_(m, n))^T.
Proof. by apply/matrixP=> k i /[!mxE]; apply: eq_bigr => j _ /[!mxE]. Qed.
HB.instance Definition _ (R : pzRingType) m n :=
GRing.LSemiModule.on 'M[R]_(m, n).
HB.instance Definition _ (R : pzRingType) n := GRing.PzSemiRing.on 'M[R]_n.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
trmx_mul_rev
| |
matrix_nonzero1: 1%:M != 0 :> 'M[R]_n.
Proof. by apply/eqP=> /matrixP/(_ 0 0)/eqP; rewrite !mxE oner_eq0. Qed.
HB.instance Definition _ :=
GRing.PzSemiRing_isNonZero.Build 'M[R]_n matrix_nonzero1.
HB.instance Definition _ :=
GRing.LSemiModule_isLSemiAlgebra.Build R 'M[R]_n (@scalemxAl R n n n).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
matrix_nonzero1
| |
Definition_ (R : nzRingType) n := GRing.NzSemiRing.on 'M[R]_n.+1.
HB.instance Definition _ (M : countNmodType) m n :=
[Countable of 'M[M]_(m, n) by <:].
HB.instance Definition _ (M : countZmodType) m n :=
[Countable of 'M[M]_(m, n) by <:].
HB.instance Definition _ (R : countNzSemiRingType) n :=
[Countable of 'M[R]_n.+1 by <:].
HB.instance Definition _ (R : countNzRingType) n :=
[Countable of 'M[R]_n.+1 by <:].
HB.instance Definition _ (V : finNmodType) (m n : nat) :=
[Finite of 'M[V]_(m, n) by <:].
HB.instance Definition _ (V : finZmodType) (m n : nat) :=
[Finite of 'M[V]_(m, n) by <:].
#[compress_coercions]
HB.instance Definition _ (V : finZmodType) (m n : nat) :=
[finGroupMixin of 'M[V]_(m, n) for +%R].
#[compress_coercions]
HB.instance Definition _ (R : finNzSemiRingType) n :=
[Finite of 'M[R]_n.+1 by <:].
#[compress_coercions]
HB.instance Definition _ (R : finNzRingType) (m n : nat) :=
FinRing.Zmodule.on 'M[R]_(m, n).
#[compress_coercions]
HB.instance Definition _ (R : finNzRingType) n := [Finite of 'M[R]_n.+1 by <:].
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
Definition
| |
map_mxZa A : (a *: A)^f = f a *: A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorphM. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mxZ
| |
map_mxMA B : (A *m B)^f = A^f *m B^f :> 'M_(m, p).
Proof.
apply/matrixP=> i k; rewrite !mxE rmorph_sum //.
by apply: eq_bigr => j; rewrite !mxE rmorphM.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mxM
| |
map_delta_mxi j : (delta_mx i j)^f = delta_mx i j :> 'M_(m, n).
Proof. by apply/matrixP=> i' j'; rewrite !mxE rmorph_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_delta_mx
| |
map_diag_mxd : (diag_mx d)^f = diag_mx d^f :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorphMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_diag_mx
| |
map_scalar_mxa : a%:M^f = (f a)%:M :> 'M_n.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorphMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_scalar_mx
| |
map_mx1: 1%:M^f = 1%:M :> 'M_n.
Proof. by rewrite map_scalar_mx rmorph1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mx1
| |
map_perm_mx(s : 'S_n) : (perm_mx s)^f = perm_mx s.
Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_perm_mx
| |
map_tperm_mx(i1 i2 : 'I_n) : (tperm_mx i1 i2)^f = tperm_mx i1 i2.
Proof. exact: map_perm_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_tperm_mx
| |
map_pid_mxr : (pid_mx r)^f = pid_mx r :> 'M_(m, n).
Proof. by apply/matrixP=> i j; rewrite !mxE rmorph_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_pid_mx
| |
trace_map_mx(A : 'M_n) : \tr A^f = f (\tr A).
Proof. by rewrite rmorph_sum; apply: eq_bigr => i _; rewrite mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
trace_map_mx
| |
map_lin1_mxm n (g : 'rV_m -> 'rV_n) gf :
(forall v, (g v)^f = gf v^f) -> (lin1_mx g)^f = lin1_mx gf.
Proof.
by move=> def_gf; apply/matrixP => i j; rewrite !mxE -map_delta_mx -def_gf mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_lin1_mx
| |
map_lin_mxm1 n1 m2 n2 (g : 'M_(m1, n1) -> 'M_(m2, n2)) gf :
(forall A, (g A)^f = gf A^f) -> (lin_mx g)^f = lin_mx gf.
Proof.
move=> def_gf; apply: map_lin1_mx => A /=.
by rewrite map_mxvec def_gf map_vec_mx.
Qed.
Fact map_mx_is_monoid_morphism n : monoid_morphism (map_mx f : 'M_n -> 'M_n).
Proof. by split; [apply: map_mx1 | apply: map_mxM]. Qed.
#[deprecated(since="mathcomp 2.5.0",
note="use `map_mx_is_monoid_morphism` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_lin_mx
| |
map_mx_is_multiplicative:= map_mx_is_monoid_morphism.
HB.instance Definition _ n :=
GRing.isMonoidMorphism.Build 'M[aR]_n 'M[rR]_n (map_mx f)
(map_mx_is_monoid_morphism n).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mx_is_multiplicative
| |
comm_mxf g : Prop := f *m g = g *m f.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx
| |
comm_mxbf g : bool := f *m g == g *m f.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxb
| |
comm_mx_symf g : comm_mx f g -> comm_mx g f.
Proof. by rewrite /comm_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx_sym
| |
comm_mx_reflf : comm_mx f f. Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx_refl
| |
comm_mx0f : comm_mx f 0. Proof. by rewrite /comm_mx mulmx0 mul0mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx0
| |
comm0mxf : comm_mx 0 f. Proof. by rewrite /comm_mx mulmx0 mul0mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm0mx
| |
comm_mx1f : comm_mx f 1%:M.
Proof. by rewrite /comm_mx mulmx1 mul1mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx1
| |
comm1mxf : comm_mx 1%:M f.
Proof. by rewrite /comm_mx mulmx1 mul1mx. Qed.
Hint Resolve comm_mx0 comm0mx comm_mx1 comm1mx : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm1mx
| |
comm_mxDf g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g + g').
Proof. by rewrite /comm_mx mulmxDl mulmxDr => -> ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxD
| |
comm_mxMf g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g *m g').
Proof. by rewrite /comm_mx mulmxA => ->; rewrite -!mulmxA => ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxM
| |
comm_mx_sumI (s : seq I) (P : pred I) (F : I -> 'M[R]_n) (f : 'M[R]_n) :
(forall i : I, P i -> comm_mx f (F i)) -> comm_mx f (\sum_(i <- s | P i) F i).
Proof. by move=> comm_mxfF; elim/big_ind: _ => // g h; apply: comm_mxD. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx_sum
| |
comm_mxPf g : reflect (comm_mx f g) (comm_mxb f g).
Proof. exact: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxP
| |
all_comm_mxfs := (all2rel comm_mxb fs).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
all_comm_mx
| |
all_comm_mxPfs :
reflect {in fs &, forall f g, f *m g = g *m f} (all_comm_mx fs).
Proof. by apply: (iffP allrelP) => fsP ? ? ? ?; apply/eqP/fsP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
all_comm_mxP
| |
all_comm_mx1f : all_comm_mx [:: f].
Proof. by rewrite /comm_mxb all2rel1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
all_comm_mx1
| |
all_comm_mx2Pf g : reflect (f *m g = g *m f) (all_comm_mx [:: f; g]).
Proof. by rewrite /comm_mxb /= all2rel2 ?eqxx //; exact: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
all_comm_mx2P
| |
all_comm_mx_consf fs :
all_comm_mx (f :: fs) = all (comm_mxb f) fs && all_comm_mx fs.
Proof. by rewrite /comm_mxb /= all2rel_cons //= eqxx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
all_comm_mx_cons
| |
comm_mxE: comm_mx = @GRing.comm _. Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxE
| |
all_comm_mx:= (allrel comm_mxb).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
all_comm_mx
| |
trmx_mulA B : (A *m B)^T = B^T *m A^T.
Proof.
rewrite trmx_mul_rev; apply/matrixP=> k i; rewrite !mxE.
by apply: eq_bigr => j _; rewrite mulrC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
trmx_mul
| |
scalemxAra A B : a *: (A *m B) = A *m (a *: B).
Proof. by apply: trmx_inj; rewrite trmx_mul !linearZ /= trmx_mul scalemxAl. Qed.
Fact mulmx_is_scalable A : scalable (@mulmx _ m n p A).
Proof. by move=> a B; rewrite scalemxAr. Qed.
HB.instance Definition _ A :=
GRing.isScalable.Build R 'M[R]_(n, p) 'M[R]_(m, p) *:%R (mulmx A)
(mulmx_is_scalable A).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalemxAr
| |
lin_mulmxA : 'M[R]_(n * p, m * p) := lin_mx (mulmx A).
Fact lin_mulmx_is_semilinear : semilinear lin_mulmx.
Proof.
by split=> [a A|A B]; apply/row_matrixP=> i; rewrite (linearZ, linearD) /=;
rewrite !rowE !mul_rV_lin /= -(linearZ, linearD) /= (scalemxAl, mulmxDl).
Qed.
HB.instance Definition _ :=
GRing.isSemilinear.Build R 'M[R]_(m, n) 'M[R]_(n * p, m * p) _ lin_mulmx
lin_mulmx_is_semilinear.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lin_mulmx
| |
lin_mul_rowu : 'M[R]_(m * n, n) := lin1_mx (mulmx u \o vec_mx).
Fact lin_mul_row_is_semilinear : semilinear lin_mul_row.
Proof.
by split=> [a u|u v]; apply/row_matrixP=> i; rewrite (linearZ, linearD) /=;
rewrite !rowE !mul_rV_lin1 /= (mulmxDl, scalemxAl).
Qed.
HB.instance Definition _ := GRing.isSemilinear.Build R _ _ _ lin_mul_row
lin_mul_row_is_semilinear.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
lin_mul_row
| |
mul_vec_lin_rowA u : mxvec A *m lin_mul_row u = u *m A.
Proof. by rewrite mul_rV_lin1 /= mxvecK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_vec_lin_row
| |
diag_mxCn (d e : 'rV[R]_n) :
diag_mx d *m diag_mx e = diag_mx e *m diag_mx d.
Proof.
by rewrite !mulmx_diag; congr (diag_mx _); apply/rowP=> i; rewrite !mxE mulrC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
diag_mxC
| |
diag_mx_commn (d e : 'rV[R]_n) : comm_mx (diag_mx d) (diag_mx e).
Proof. exact: diag_mxC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
diag_mx_comm
| |
scalar_mxCm n a (A : 'M[R]_(m, n)) : A *m a%:M = a%:M *m A.
Proof.
rewrite -!diag_const_mx mul_mx_diag mul_diag_mx.
by apply/matrixP => i j; rewrite !mxE mulrC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
scalar_mxC
| |
comm_mx_scalarn a (A : 'M[R]_n) : comm_mx A a%:M.
Proof. exact: scalar_mxC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mx_scalar
| |
comm_scalar_mxn a (A : 'M[R]_n) : comm_mx a%:M A.
Proof. exact/comm_mx_sym/comm_mx_scalar. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_scalar_mx
| |
mxtrace_mulCm n (A : 'M[R]_(m, n)) B : \tr (A *m B) = \tr (B *m A).
Proof.
have expand_trM C D: \tr (C *m D) = \sum_i \sum_j C i j * D j i.
by apply: eq_bigr => i _; rewrite mxE.
rewrite !{}expand_trM exchange_big /=.
by do 2!apply: eq_bigr => ? _; apply: mulrC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxtrace_mulC
| |
mxvec_dotmulm n (A : 'M[R]_(m, n)) u v :
mxvec (u^T *m v) *m (mxvec A)^T = u *m A *m v^T.
Proof.
transitivity (\sum_i \sum_j (u 0 i * A i j *: row j v^T)).
apply/rowP=> i; rewrite {i}ord1 mxE (reindex _ (curry_mxvec_bij _ _)) /=.
rewrite pair_bigA summxE; apply: eq_bigr => [[i j]] /= _.
by rewrite !mxE !mxvecE mxE big_ord1 mxE mulrAC.
rewrite mulmx_sum_row exchange_big; apply: eq_bigr => j _ /=.
by rewrite mxE -scaler_suml.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxvec_dotmul
| |
mul_mx_scalarm n a (A : 'M[R]_(m, n)) : A *m a%:M = a *: A.
Proof. by rewrite scalar_mxC mul_scalar_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mx_scalar
| |
mulmxNm n p (A : 'M[R]_(m, n)) (B : 'M_(n, p)) : A *m (- B) = - (A *m B).
Proof. exact: raddfN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxN
| |
mulNmxm n p (A : 'M[R]_(m, n)) (B : 'M_(n, p)) : - A *m B = - (A *m B).
Proof. exact: (raddfN (mulmxr _)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulNmx
| |
mulmxBlm n p (A1 A2 : 'M[R]_(m, n)) (B : 'M_(n, p)) :
(A1 - A2) *m B = A1 *m B - A2 *m B.
Proof. exact: (raddfB (mulmxr _)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxBl
| |
mulmxBrm n p (A : 'M[R]_(m, n)) (B1 B2 : 'M_(n, p)) :
A *m (B1 - B2) = A *m B1 - A *m B2.
Proof. exact: raddfB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mulmxBr
| |
copid_mx{n} r : 'M[R]_n := 1%:M - pid_mx r.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
copid_mx
| |
mul_copid_mx_pidm n r :
r <= m -> copid_mx r *m pid_mx r = 0 :> 'M_(m, n).
Proof. by move=> le_r_m; rewrite mulmxBl mul1mx pid_mx_id ?subrr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_copid_mx_pid
| |
mul_pid_mx_copidm n r :
r <= n -> pid_mx r *m copid_mx r = 0 :> 'M_(m, n).
Proof. by move=> le_r_n; rewrite mulmxBr mulmx1 pid_mx_id ?subrr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_pid_mx_copid
| |
copid_mx_idn r : r <= n -> copid_mx r *m copid_mx r = copid_mx r :> 'M_n.
Proof.
by move=> le_r_n; rewrite mulmxBl mul1mx mul_pid_mx_copid // oppr0 addr0.
Qed.
#[deprecated(since="mathcomp 2.5.0", note="use `linearP` instead")]
Fact mulmxr_is_linear m n p B : linear (@mulmxr R m n p B).
Proof. exact: linearP. Qed.
#[deprecated(since="mathcomp 2.5.0", note="use `linearP` instead")]
Fact lin_mulmxr_is_linear m n p : linear (@lin_mulmxr R m n p).
Proof. exact: linearP. Qed.
#[deprecated(since="mathcomp 2.5.0", note="use `scalarP` instead")]
Fact mxtrace_is_scalar n : scalar (@mxtrace R n).
Proof. exact: scalarP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
copid_mx_id
| |
determinantn (A : 'M_n) : R :=
\sum_(s : 'S_n) (-1) ^+ s * \prod_i A i (s i).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
determinant
| |
cofactorn A (i j : 'I_n) : R :=
(-1) ^+ (i + j) * determinant (row' i (col' j A)).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
cofactor
| |
adjugaten (A : 'M_n) := \matrix[adjugate_key]_(i, j) cofactor A j i.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
adjugate
| |
det_map_mxn' (A : 'M_n') : \det A^f = f (\det A).
Proof.
rewrite rmorph_sum //; apply: eq_bigr => s _.
rewrite rmorphM /= rmorph_sign rmorph_prod; congr (_ * _).
by apply: eq_bigr => i _; rewrite mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
det_map_mx
| |
cofactor_map_mx(A : 'M_n) i j : cofactor A^f i j = f (cofactor A i j).
Proof. by rewrite rmorphM /= rmorph_sign -det_map_mx map_row' map_col'. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
cofactor_map_mx
| |
map_mx_adj(A : 'M_n) : (\adj A)^f = \adj A^f.
Proof. by apply/matrixP=> i j; rewrite !mxE cofactor_map_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_mx_adj
| |
map_copid_mxn r : (copid_mx r)^f = copid_mx r :> 'M_n.
Proof. by rewrite map_mxB map_mx1 map_pid_mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
map_copid_mx
| |
comm_mxNf g : comm_mx f g -> comm_mx f (- g).
Proof. by rewrite /comm_mx mulmxN mulNmx => ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxN
| |
comm_mxN1f : comm_mx f (- 1%:M). Proof. exact/comm_mxN/comm_mx1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxN1
| |
comm_mxBf g g' : comm_mx f g -> comm_mx f g' -> comm_mx f (g - g').
Proof. by move=> fg fg'; apply/comm_mxD => //; apply/comm_mxN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
comm_mxB
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.