fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
mxblockD(B_ B'_ : forall i j, 'M[V]_(p_ i, q_ j)) :
\mxblock_(i, j) (B_ i j + B'_ i j) =
\mxblock_(i, j) (B_ i j) + \mxblock_(i, j) (B'_ i j).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxblockD
| |
mxblock0: \mxblock_(i, j) (0 : 'M[V]_(p_ i, q_ j)) = 0.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxblock0
| |
mxblock_consta :
\mxblock_(i, j) (const_mx a : 'M[V]_(p_ i, q_ j)) = const_mx a.
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxblock_const
| |
mxblock_sum(I : finType)
(B_ : forall k i j, 'M[V]_(p_ i, q_ j)) (P : {pred I}):
\mxblock_(i, j) (\sum_(k | P k) B_ k i j) =
\sum_(k | P k) \mxblock_(i, j) (B_ k i j).
Proof.
apply/matrixP => i j; rewrite !(mxE, summxE).
by apply: eq_bigr => l; rewrite !mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxblock_sum
| |
submxblockD(B B' : 'M[V]_(sp, sq)) i j :
submxblock (B + B') i j = submxblock B i j + submxblock B' i j.
Proof. by apply/matrixP => k l; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
submxblockD
| |
submxblock0i j : submxblock (0 : 'M[V]_(sp, sq)) i j = 0.
Proof. by apply/matrixP=> k l; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
submxblock0
| |
submxblock_sum(I : finType)
(B_ : forall k, 'M[V]_(sp, sq)) (P : {pred I}) i j :
submxblock (\sum_(k | P k) B_ k) i j = \sum_(k | P k) submxblock (B_ k) i j.
Proof.
apply/matrixP => k l; rewrite !(mxE, summxE).
by apply: eq_bigr => p; rewrite !mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
submxblock_sum
| |
sp:= (\sum_i p_ i)%N.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sp
| |
sq:= (\sum_i q_ i)%N.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sq
| |
mxblockN(B_ : forall i j, 'M[V]_(p_ i, q_ j)) :
\mxblock_(i, j) (- B_ i j) = - \mxblock_(i, j) (B_ i j).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxblockN
| |
mxblockB(B_ B'_ : forall i j, 'M[V]_(p_ i, q_ j)) :
\mxblock_(i, j) (B_ i j - B'_ i j) =
\mxblock_(i, j) (B_ i j) - \mxblock_(i, j) (B'_ i j).
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxblockB
| |
submxblockN(B : 'M[V]_(sp, sq)) i j :
submxblock (- B) i j = - submxblock B i j.
Proof. by apply/matrixP => k l; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
submxblockN
| |
submxblockB(B B' : 'M[V]_(sp, sq)) i j :
submxblock (B - B') i j = submxblock B i j - submxblock B' i j.
Proof. by apply/matrixP => k l; rewrite !mxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
submxblockB
| |
sp:= (\sum_i p_ i)%N.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sp
| |
sq:= (\sum_i q_ i)%N.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sq
| |
mul_mxrow_mxcolm n
(R_ : forall j, 'M[R]_(m, p_ j)) (C_ : forall i, 'M[R]_(p_ i, n)) :
\mxrow_j R_ j *m \mxcol_i C_ i = \sum_i (R_ i *m C_ i).
Proof.
apply/matrixP => i j; rewrite !mxE summxE; under [RHS]eq_bigr do rewrite !mxE.
rewrite sig_big_dep/= (reindex _ tagnat.sig_bij_on)/=.
by apply: eq_bigr=> l _; rewrite !mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxrow_mxcol
| |
mul_mxcol_mxrowm
(C_ : forall i, 'M[R]_(p_ i, m)) (R_ : forall j, 'M[R]_(m, q_ j)) :
\mxcol_i C_ i*m \mxrow_j R_ j = \mxblock_(i, j) (C_ i *m R_ j).
Proof.
apply/mxblockP => i j; rewrite mxblockK.
by rewrite submxblockEh -mul_submxrow -submxcol_mul mxcolK mxrowK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxcol_mxrow
| |
mul_mxrow_mxblockm
(R_ : forall i, 'M[R]_(m, p_ i)) (B_ : forall i j, 'M[R]_(p_ i, q_ j)) :
\mxrow_i R_ i *m \mxblock_(i, j) B_ i j = \mxrow_j (\sum_i (R_ i *m B_ i j)).
Proof.
rewrite mxblockEv mul_mxrow_mxcol mxrow_sum.
by apply: eq_bigr => i _; rewrite mul_mxrow.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxrow_mxblock
| |
mul_mxblock_mxrowm
(B_ : forall i j, 'M[R]_(q_ i, p_ j)) (C_ : forall i, 'M[R]_(p_ i, m)) :
\mxblock_(i, j) B_ i j *m \mxcol_j C_ j = \mxcol_i (\sum_j (B_ i j *m C_ j)).
Proof.
rewrite mxblockEh mul_mxrow_mxcol mxcol_sum.
by apply: eq_bigr => i _; rewrite mxcol_mul.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxblock_mxrow
| |
mul_mxblock{R : pzSemiRingType} {p q r : nat}
{p_ : 'I_p -> nat} {q_ : 'I_q -> nat} {r_ : 'I_r -> nat}
(A_ : forall i j, 'M[R]_(p_ i, q_ j)) (B_ : forall j k, 'M_(q_ j, r_ k)) :
\mxblock_(i, j) A_ i j *m \mxblock_(j, k) B_ j k =
\mxblock_(i, k) \sum_j (A_ i j *m B_ j k).
Proof.
rewrite mxblockEh mul_mxrow_mxblock mxblockEh; apply: eq_mxrow => i.
by under [LHS]eq_bigr do rewrite mxcol_mul; rewrite -mxcol_sum.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxblock
| |
sp:= (\sum_i p_ i)%N.
Implicit Type (s : 'I_sp).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sp
| |
is_trig_mxblockP(B_ : forall i j, 'M[V]_(p_ i, p_ j)) :
reflect [/\ forall (i j : 'I_p), (i < j)%N -> B_ i j = 0 &
forall i, is_trig_mx (B_ i i)]
(is_trig_mx (\mxblock_(i, j) B_ i j)).
Proof.
apply: (iffP is_trig_mxP); last first.
move=> [Blt1 /(_ _)/is_trig_mxP Blt2]/= s s'; rewrite !mxE.
rewrite -[_ < _]lt_sig ltEsig/= /sig1 /sig2 leEord.
case: ltngtP => //= ii'; first by rewrite (Blt1 _ _ ii') mxE.
move: (sig s) (sig s') ii' => -[/= i j] [/= i' +] /val_inj ii'.
by case: _ / ii' => j'; rewrite tagged_asE => /Blt2->.
move=> Btrig; split=> [i i' lti|i].
apply/matrixP => j j'; have := Btrig (Rank _ j) (Rank _ j').
rewrite !mxE !Rank2K; do !case: _ / esym; rewrite !cast_ord_id.
rewrite /Rank [_ <= _]lt_rank.
by rewrite ltEsig/= leEord ltnW//= (ltn_geF lti)//= => /(_ isT).
apply/is_trig_mxP => j j' ltj; have := Btrig (Rank _ j) (Rank _ j').
rewrite !mxE !Rank2K; do! case: _ / esym; rewrite !cast_ord_id.
by rewrite [_ <= _]lt_rank ltEsig/= !leEord leqnn/= tagged_asE; apply.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_trig_mxblockP
| |
is_trig_mxblock(B_ : forall i j, 'M[V]_(p_ i, p_ j)) :
is_trig_mx (\mxblock_(i, j) B_ i j) =
([forall i : 'I_p, forall j : 'I_p, (i < j)%N ==> (B_ i j == 0)] &&
[forall i, is_trig_mx (B_ i i)]).
Proof.
by apply/is_trig_mxblockP/andP => -[] => [/(_ _ _ _)/eqP|]
=> /'forall_'forall_implyP => [|/(_ _ _ _)/eqP] Blt /forallP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_trig_mxblock
| |
is_diag_mxblockP(B_ : forall i j, 'M[V]_(p_ i, p_ j)) :
reflect [/\ forall (i j : 'I_p), i != j -> B_ i j = 0 &
forall i, is_diag_mx (B_ i i)]
(is_diag_mx (\mxblock_(i, j) B_ i j)).
Proof.
apply: (iffP is_diag_mxP); last first.
move=> [Bneq1 /(_ _)/is_diag_mxP Bneq2]/= s s'; rewrite !mxE.
rewrite val_eqE -(can_eq sigK) /sig1 /sig2.
move: (sig s) (sig s') => -[/= i j] [/= i' j'].
rewrite -tag_eqE/= /tag_eq/= negb_and.
case: eqVneq => /= [ii'|/Bneq1->]; last by rewrite !mxE.
by rewrite -ii' in j' *; rewrite tagged_asE => /Bneq2.
move=> Bdiag; split=> [i i' Ni|i].
apply/matrixP => j j'; have := Bdiag (Rank _ j) (Rank _ j').
rewrite !mxE !Rank2K; do !case: _ / esym; rewrite !cast_ord_id.
by rewrite eq_Rank negb_and Ni; apply.
apply/is_diag_mxP => j j' Nj; have := Bdiag (Rank _ j) (Rank _ j').
rewrite !mxE !Rank2K; do! case: _ / esym; rewrite !cast_ord_id.
by rewrite eq_Rank negb_and val_eqE Nj orbT; apply.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_diag_mxblockP
| |
is_diag_mxblock(B_ : forall i j, 'M[V]_(p_ i, p_ j)) :
is_diag_mx (\mxblock_(i, j) B_ i j) =
([forall i : 'I_p, forall j : 'I_p, (i != j) ==> (B_ i j == 0)] &&
[forall i, is_diag_mx (B_ i i)]).
Proof.
by apply/is_diag_mxblockP/andP => -[] => [/(_ _ _ _)/eqP|]
=> /'forall_'forall_implyP => [|/(_ _ _ _)/eqP] Blt /forallP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
is_diag_mxblock
| |
mxdiag(B_ : forall i, 'M[V]_(p_ i)) : 'M[V]_(\sum_i p_ i) :=
\mxblock_(j, k) if j == k then conform_mx 0 (B_ j) else 0.
Local Notation "\mxdiag_ i E" := (mxdiag (fun i => E)) : ring_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiag
| |
submxblock_diag(B_ : forall i, 'M[V]_(p_ i)) i :
submxblock (\mxdiag_i B_ i) i i = B_ i.
Proof. by rewrite mxblockK conform_mx_id eqxx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
submxblock_diag
| |
eq_mxdiagP(B_ B'_ : forall i, 'M[V]_(p_ i)) :
(forall i, B_ i = B'_ i) <-> (\mxdiag_i B_ i = \mxdiag_i B'_ i).
Proof.
rewrite /mxdiag; split; first by move=> e; apply/eq_mxblockP => i j; rewrite e.
by move=> + i => /eq_mxblockP/(_ i i); rewrite eqxx !conform_mx_id.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
eq_mxdiagP
| |
eq_mxdiag(B_ B'_ : forall i, 'M[V]_(p_ i)) :
(forall i, B_ i = B'_ i) -> (\mxdiag_i B_ i = \mxdiag_i B'_ i).
Proof. by move=> /eq_mxdiagP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
eq_mxdiag
| |
mxdiagD(B_ B'_ : forall i, 'M[V]_(p_ i)) :
\mxdiag_i (B_ i + B'_ i) = \mxdiag_i (B_ i) + \mxdiag_i (B'_ i).
Proof.
rewrite /mxdiag -mxblockD; apply/eq_mxblock => i j.
by case: eqVneq => [->|]; rewrite ?conform_mx_id ?addr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiagD
| |
mxdiag_sum(I : finType) (B_ : forall k i, 'M[V]_(p_ i)) (P : {pred I}) :
\mxdiag_i (\sum_(k | P k) B_ k i) = \sum_(k | P k) \mxdiag_i (B_ k i).
Proof.
rewrite /mxdiag -mxblock_sum; apply/eq_mxblock => i j.
case: eqVneq => [->|]; rewrite ?conform_mx_id//; last by rewrite big1.
by apply: eq_bigr => k; rewrite conform_mx_id.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiag_sum
| |
tr_mxdiag(B_ : forall i, 'M[V]_(p_ i)) :
(\mxdiag_i B_ i)^T = \mxdiag_i (B_ i)^T.
Proof.
rewrite tr_mxblock; apply/eq_mxblock => i j.
by case: eqVneq => [->|]; rewrite ?trmx_conform ?trmx0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
tr_mxdiag
| |
row_mxdiag(B_ : forall i, 'M[V]_(p_ i)) k :
let B'_ i := if sig1 k == i then conform_mx 0 (B_ i) else 0 in
row k (\mxdiag_ i B_ i) = row (sig2 k) (\mxrow_i B'_ i).
Proof.
rewrite /= row_mxblock row_mxrow; apply/eq_mxrow => i.
by case: eqVneq => // e; congr row; rewrite e.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
row_mxdiag
| |
col_mxdiag(B_ : forall i, 'M[V]_(p_ i)) k :
let B'_ i := if sig1 k == i then conform_mx 0 (B_ i) else 0 in
col k (\mxdiag_ i B_ i) = col (sig2 k) (\mxcol_i B'_ i).
Proof.
by rewrite /= col_mxblock col_mxcol; apply/eq_mxcol => i; rewrite eq_sym.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
col_mxdiag
| |
sp:= (\sum_i p_ i)%N.
Implicit Type (s : 'I_sp).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sp
| |
mxdiagN(B_ : forall i, 'M[V]_(p_ i)) :
\mxdiag_i (- B_ i) = - \mxdiag_i (B_ i).
Proof.
rewrite /mxdiag -mxblockN; apply/eq_mxblock => i j.
by case: eqVneq => [->|]; rewrite ?conform_mx_id ?oppr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiagN
| |
mxdiagB(B_ B'_ : forall i, 'M[V]_(p_ i)) :
\mxdiag_i (B_ i - B'_ i) = \mxdiag_i (B_ i) - \mxdiag_i (B'_ i).
Proof. by rewrite mxdiagD mxdiagN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiagB
| |
mxdiag0: \mxdiag_i (0 : 'M[V]_(p_ i)) = 0.
Proof. by under [LHS]eq_mxdiag do rewrite -[0]subr0; rewrite mxdiagB subrr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiag0
| |
mxdiag_recl{V : nmodType} {m : nat} {p_ : 'I_m.+1 -> nat}
(B_ : forall i, 'M[V]_(p_ i)) :
\mxdiag_i B_ i = castmx (mxsize_recl, mxsize_recl)
(block_mx (B_ 0) 0 0 (\mxdiag_i B_ (lift ord0 i))).
Proof.
rewrite /mxdiag mxblock_recul/= !conform_mx_id.
by congr (castmx _ (block_mx _ _ _ _)); rewrite ?mxrow0 ?mxcol0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiag_recl
| |
sp:= (\sum_i p_ i)%N.
Implicit Type (s : 'I_sp).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
sp
| |
mxtrace_mxblock(B_ : forall i j, 'M[R]_(p_ i, p_ j)) :
\tr (\mxblock_(i, j) B_ i j) = \sum_i \tr (B_ i i).
Proof.
rewrite /mxtrace sig_big_dep (reindex _ sig_bij_on)/=.
by apply: eq_bigr => i _; rewrite !mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxtrace_mxblock
| |
mxdiagZa : \mxdiag_i (a%:M : 'M[R]_(p_ i)) = a%:M.
Proof.
apply/matrixP => s t; rewrite !mxE -(can_eq sigK) /sig1 /sig2.
case: (sig s) (sig t) => [/= i j] [/= i' j'].
case: eqP => [<-|ni] in j' *; last by rewrite !mxE; case: eqVneq => // -[].
by rewrite conform_mx_id eq_Tagged/= mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxdiagZ
| |
diag_mxrow(B_ : forall j, 'rV[R]_(p_ j)) :
diag_mx (\mxrow_j B_ j) = \mxdiag_j (diag_mx (B_ j)).
Proof.
apply/matrixP => s s'; rewrite !mxE/= -(can_eq sigK) /sig1 /sig2.
case: (sig s) (sig s') => [/= i j] [/= i' j'].
rewrite -tag_eqE /tag_eq/=; case: (eqVneq i i') => ii'; rewrite ?mxE//=.
by case: _ / ii' in j' *; rewrite tagged_asE/= conform_mx_id mxE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
diag_mxrow
| |
mxtrace_mxdiag(B_ : forall i, 'M[R]_(p_ i)) :
\tr (\mxdiag_i B_ i) = \sum_i \tr (B_ i).
Proof.
by rewrite mxtrace_mxblock; apply: eq_bigr => i _; rewrite eqxx/= conform_mx_id.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mxtrace_mxdiag
| |
mul_mxdiag_mxcolm
(D_ : forall i, 'M[R]_(p_ i)) (C_ : forall i, 'M[R]_(p_ i, m)):
\mxdiag_i D_ i *m \mxcol_i C_ i = \mxcol_i (D_ i *m C_ i).
Proof.
rewrite /mxdiag mxblockEh mul_mxrow_mxcol.
under [LHS]eq_bigr do rewrite mxcol_mul; rewrite -mxcol_sum.
apply/eq_mxcol => i; rewrite (bigD1 i)//= eqxx conform_mx_id big1 ?addr0//.
by move=> j; case: eqVneq => //=; rewrite mul0mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxdiag_mxcol
| |
mul_mxrow_mxdiag{R : pzSemiRingType} {p : nat} {p_ : 'I_p -> nat} m
(R_ : forall i, 'M[R]_(m, p_ i)) (D_ : forall i, 'M[R]_(p_ i)) :
\mxrow_i R_ i *m \mxdiag_i D_ i = \mxrow_i (R_ i *m D_ i).
Proof.
apply: trmx_inj; rewrite trmx_mul_rev !tr_mxrow tr_mxdiag mul_mxdiag_mxcol.
by apply/ eq_mxcol => i; rewrite trmx_mul_rev.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxrow_mxdiag
| |
mul_mxblock_mxdiag{R : pzSemiRingType} {p q : nat}
{p_ : 'I_p -> nat} {q_ : 'I_q -> nat}
(B_ : forall i j, 'M[R]_(p_ i, q_ j)) (D_ : forall j, 'M[R]_(q_ j)) :
\mxblock_(i, j) B_ i j *m \mxdiag_j D_ j = \mxblock_(i, j) (B_ i j *m D_ j).
Proof.
by rewrite !mxblockEh mul_mxrow_mxdiag; under eq_mxrow do rewrite mxcol_mul.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxblock_mxdiag
| |
mul_mxdiag_mxblock{R : pzSemiRingType} {p q : nat}
{p_ : 'I_p -> nat} {q_ : 'I_q -> nat}
(D_ : forall j, 'M[R]_(p_ j)) (B_ : forall i j, 'M[R]_(p_ i, q_ j)):
\mxdiag_j D_ j *m \mxblock_(i, j) B_ i j = \mxblock_(i, j) (D_ i *m B_ i j).
Proof.
by rewrite !mxblockEv mul_mxdiag_mxcol; under eq_mxcol do rewrite mul_mxrow.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
mul_mxdiag_mxblock
| |
Vandermonde(R : pzRingType) (m n : nat) (a : 'rV[R]_n) :=
\matrix_(i < m, j < n) a 0 j ^+ i.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
Vandermonde
| |
det_Vandermonde(R : comPzRingType) (n : nat) (a : 'rV[R]_n) :
\det (Vandermonde n a) = \prod_(i < n) \prod_(j < n | i < j) (a 0 j - a 0 i).
Proof.
set V := @Vandermonde R.
elim: n => [|n IHn] in a *; first by rewrite det_mx00 big1// => -[] [].
pose b : 'rV_n := \row_i a 0 (lift 0 i).
pose C : 'M_n := diag_mx (\row_(i < n) (b 0 i - a 0 0)).
pose D : 'M_n.+1 := 1 - a 0 0 *: \matrix_(i, j) (i == j.+1 :> nat)%:R.
have detD : \det D = 1.
rewrite det_trig ?big_ord_recl ?mxE ?mulr0 ?subr0 ?eqxx.
by rewrite ?big1 ?mulr1// => i; rewrite !mxE eqxx ltn_eqF// mulr0 subr0.
by apply/is_trig_mxP => *; rewrite !mxE ![_ == _]ltn_eqF ?mulr0 ?subr0 ?leqW.
suff: D * V _ _ a = block_mx 1 (const_mx 1) 0 (V _ _ b *m C) :> 'M_(1 + n).
move=> /(congr1 determinant); rewrite detM detD mul1r => ->.
rewrite det_ublock det1 mul1r det_mulmx IHn big_ord_recl mulrC; congr (_ * _).
rewrite big_mkcond big_ord_recl/= mul1r det_diag.
by under eq_bigr do rewrite !mxE.
apply: eq_bigr => i _; under eq_bigr do rewrite !mxE.
by rewrite big_mkcond [RHS]big_mkcond big_ord_recl/= mul1r.
rewrite mulrBl mul1r -[_ * _]scalemxAl; apply/matrixP => i j; rewrite !mxE.
under eq_bigr do rewrite !mxE; case: splitP => [{i}_ -> /[!ord1]|{}i ->].
rewrite !expr0 big1; last by move=> ?; rewrite mul0r.
by rewrite ?mulr0 ?subr0 ?mxE; case: splitP => k; rewrite ?ord1 mxE//.
under eq_bigr do rewrite eqSS mulr_natl mulrb eq_sym.
rewrite -big_mkcond/= big_ord1_eq exprS ifT// ?leqW// -mulrBl !mxE/=.
case: split_ordP => [{j}_ -
...
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun finset fingroup perm order div",
"From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop"
] |
algebra/matrix.v
|
det_Vandermonde
| |
Gaussian_elimination_{F : fieldType} {m n} : 'M[F]_(m, n) -> 'M_m * 'M_n * nat :=
match m, n with
| _.+1, _.+1 => fun A : 'M_(1 + _, 1 + _) =>
if [pick ij | A ij.1 ij.2 != 0] is Some (i, j) then
let a := A i j in let A1 := xrow i 0 (xcol j 0 A) in
let u := ursubmx A1 in let v := a^-1 *: dlsubmx A1 in
let: (L, U, r) := Gaussian_elimination_ (drsubmx A1 - v *m u) in
(xrow i 0 (block_mx 1 0 v L), xcol j 0 (block_mx a%:M u 0 U), r.+1)
else (1%:M, 1%:M, 0)
| _, _ => fun _ => (1%:M, 1%:M, 0)
end.
HB.lock Definition Gaussian_elimination := @Gaussian_elimination_.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
Gaussian_elimination_
| |
Gaussian_elimination_unlockable:= Unlockable Gaussian_elimination.unlock.
HB.lock Definition mxrank (F : fieldType) m n (A : 'M_(m, n)) :=
if [|| m == 0 | n == 0]%N then 0 else (@Gaussian_elimination F m n A).2.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
Gaussian_elimination_unlockable
| |
mxrank_unlockable:= Unlockable mxrank.unlock.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_unlockable
| |
col_ebase:= LUr.1.1.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
col_ebase
| |
row_ebase:= LUr.1.2.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_ebase
| |
row_free:= mxrank == m.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_free
| |
row_full:= mxrank == n.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_full
| |
row_base: 'M_(mxrank, n) := pid_mx mxrank *m row_ebase.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_base
| |
col_base: 'M_(m, mxrank) := col_ebase *m pid_mx mxrank.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
col_base
| |
complmx: 'M_n := copid_mx mxrank *m row_ebase.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
complmx
| |
kermx: 'M_m := copid_mx mxrank *m invmx col_ebase.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
kermx
| |
cokermx: 'M_n := invmx row_ebase *m copid_mx mxrank.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
cokermx
| |
pinvmx: 'M_(n, m) :=
invmx row_ebase *m pid_mx mxrank *m invmx col_ebase.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
pinvmx
| |
submxF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) :=
A *m cokermx B == 0.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx
| |
submx_unlockable:= Unlockable submx.unlock.
Arguments mxrank {F} {m%_N n%_N} A%_MS.
Arguments complmx {F} {m%_N n%_N} A%_MS.
Arguments submx {F} {m1%_N m2%_N n%_N} A%_MS B%_MS : rename.
Local Notation "\rank A" := (mxrank A) : nat_scope.
Local Notation "A ^C" := (complmx A) : matrix_set_scope.
Local Notation "A <= B" := (submx A B) : matrix_set_scope.
Local Notation "A <= B <= C" := ((A <= B) && (B <= C))%MS : matrix_set_scope.
Local Notation "A == B" := (A <= B <= A)%MS : matrix_set_scope.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx_unlockable
| |
ltmxF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) :=
(A <= B)%MS && ~~ (B <= A)%MS.
Arguments ltmx {F} {m1%_N m2%_N n%_N} A%_MS B%_MS.
Local Notation "A < B" := (ltmx A B) : matrix_set_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmx
| |
eqmxF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) :=
prod (\rank A = \rank B)
(forall m3 (C : 'M_(m3, n)),
((A <= C) = (B <= C)) * ((C <= A) = (C <= B)))%MS.
Arguments eqmx {F} {m1%_N m2%_N n%_N} A%_MS B%_MS.
Local Notation "A :=: B" := (eqmx A%MS B%MS) : matrix_set_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx
| |
stablemxV f := (V%MS *m f%R <= V%MS)%MS.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
stablemx
| |
ltmxE: (A < B)%MS = ((A <= B)%MS && ~~ (B <= A)%MS). Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmxE
| |
ltmxW: (A < B)%MS -> (A <= B)%MS. Proof. by case/andP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmxW
| |
ltmxEneq: (A < B)%MS = (A <= B)%MS && ~~ (A == B)%MS.
Proof. by apply: andb_id2l => ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmxEneq
| |
submxElt: (A <= B)%MS = (A == B)%MS || (A < B)%MS.
Proof. by rewrite -andb_orr orbN andbT. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submxElt
| |
genmxF m n (A : 'M[F]_(m, n)) : 'M_n :=
choose (equivmx A (row_full A)) (genmx_witness A).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmx
| |
genmx_unlockable:= Unlockable genmx.unlock.
Arguments genmx {F} {n m}%_N A%_MS : rename.
Local Notation "<< A >>" := (genmx A%MS) : matrix_set_scope.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmx_unlockable
| |
addsmxF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) : 'M_n :=
if A == 0 then addsmx_nop B else if B == 0 then addsmx_nop A else
<<col_mx A B>>%MS.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
addsmx
| |
addsmx_unlockable:= Unlockable addsmx.unlock.
Arguments addsmx {F} {m1%_N m2%_N n%_N} A%_MS B%_MS : rename.
Local Notation "A + B" := (addsmx A B) : matrix_set_scope.
Local Notation "\sum_ ( i | P ) B" := (\big[addsmx/0]_(i | P) B%MS)
: matrix_set_scope.
Local Notation "\sum_ ( i <- r | P ) B" := (\big[addsmx/0]_(i <- r | P) B%MS)
: matrix_set_scope.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
addsmx_unlockable
| |
capmx_genF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) :=
lsubmx (kermx (col_mx A B)) *m A.
HB.lock
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
capmx_gen
| |
capmxF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) : 'M_n :=
if qidmx A then capmx_nop B else
if qidmx B then capmx_nop A else
if row_full B then capmx_norm A else capmx_norm (capmx_gen A B).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
capmx
| |
capmx_unlockable:= Unlockable capmx.unlock.
Arguments capmx {F} {m1%_N m2%_N n%_N} A%_MS B%_MS : rename.
Local Notation "A :&: B" := (capmx A B) : matrix_set_scope.
Local Notation "\bigcap_ ( i | P ) B" := (\big[capmx/1%:M]_(i | P) B)
: matrix_set_scope.
HB.lock
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
capmx_unlockable
| |
diffmxF m1 m2 n (A : 'M[F]_(m1, n)) (B : 'M_(m2, n)) : 'M_n :=
<<capmx_gen A (capmx_gen A B)^C>>%MS.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
diffmx
| |
diffmx_unlockable:= Unlockable diffmx.unlock.
Arguments diffmx {F} {m1%_N m2%_N n%_N} A%_MS B%_MS : rename.
Local Notation "A :\: B" := (diffmx A B) : matrix_set_scope.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
diffmx_unlockable
| |
proj_mxn (U V : 'M_n) : 'M_n := pinvmx (col_mx U V) *m col_mx U 0.
Local Notation GaussE := Gaussian_elimination_.
Fact mxrankE m n (A : 'M_(m, n)) : \rank A = (GaussE A).2.
Proof. by rewrite mxrank.unlock unlock /=; case: m n A => [|m] [|n]. Qed.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
proj_mx
| |
rank_leq_rowm n (A : 'M_(m, n)) : \rank A <= m.
Proof.
rewrite mxrankE.
elim: m n A => [|m IHm] [|n] //= A; case: pickP => [[i j] _|] //=.
by move: (_ - _) => B; case: GaussE (IHm _ B) => [[L U] r] /=.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rank_leq_row
| |
row_leq_rankm n (A : 'M_(m, n)) : (m <= \rank A) = row_free A.
Proof. by rewrite /row_free eqn_leq rank_leq_row. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_leq_rank
| |
rank_leq_colm n (A : 'M_(m, n)) : \rank A <= n.
Proof.
rewrite mxrankE.
elim: m n A => [|m IHm] [|n] //= A; case: pickP => [[i j] _|] //=.
by move: (_ - _) => B; case: GaussE (IHm _ B) => [[L U] r] /=.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rank_leq_col
| |
col_leq_rankm n (A : 'M_(m, n)) : (n <= \rank A) = row_full A.
Proof. by rewrite /row_full eqn_leq rank_leq_col. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
col_leq_rank
| |
eq_row_fullm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A :=: B)%MS -> row_full A = row_full B.
Proof. by rewrite /row_full => ->. Qed.
Let unitmx1F := @unitmx1 F.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eq_row_full
| |
row_ebase_unitm n (A : 'M_(m, n)) : row_ebase A \in unitmx.
Proof.
rewrite /row_ebase unlock; elim: m n A => [|m IHm] [|n] //= A.
case: pickP => [[i j] /= nzAij | //=]; move: (_ - _) => B.
case: GaussE (IHm _ B) => [[L U] r] /= uU.
rewrite unitmxE xcolE det_mulmx (@det_ublock _ 1) det_scalar1 !unitrM.
by rewrite unitfE nzAij -!unitmxE uU unitmx_perm.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_ebase_unit
| |
col_ebase_unitm n (A : 'M_(m, n)) : col_ebase A \in unitmx.
Proof.
rewrite /col_ebase unlock; elim: m n A => [|m IHm] [|n] //= A.
case: pickP => [[i j] _|] //=; move: (_ - _) => B.
case: GaussE (IHm _ B) => [[L U] r] /= uL.
rewrite unitmxE xrowE det_mulmx (@det_lblock _ 1) det1 mul1r unitrM.
by rewrite -unitmxE unitmx_perm.
Qed.
Hint Resolve rank_leq_row rank_leq_col row_ebase_unit col_ebase_unit : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
col_ebase_unit
| |
mulmx_ebasem n (A : 'M_(m, n)) :
col_ebase A *m pid_mx (\rank A) *m row_ebase A = A.
Proof.
rewrite mxrankE /col_ebase /row_ebase unlock.
elim: m n A => [n A | m IHm]; first by rewrite [A]flatmx0 [_ *m _]flatmx0.
case=> [A | n]; first by rewrite [_ *m _]thinmx0 [A]thinmx0.
rewrite -(add1n m) -?(add1n n) => A /=.
case: pickP => [[i0 j0] | A0] /=; last first.
apply/matrixP=> i j; rewrite pid_mx_0 mulmx0 mul0mx mxE.
by move/eqP: (A0 (i, j)).
set a := A i0 j0 => nz_a; set A1 := xrow _ _ _.
set u := ursubmx _; set v := _ *: _; set B : 'M_(m, n) := _ - _.
move: (rank_leq_col B) (rank_leq_row B) {IHm}(IHm n B); rewrite mxrankE.
case: (GaussE B) => [[L U] r] /= r_m r_n defB.
have ->: pid_mx (1 + r) = block_mx 1 0 0 (pid_mx r) :> 'M[F]_(1 + m, 1 + n).
rewrite -(subnKC r_m) -(subnKC r_n) pid_mx_block -col_mx0 -row_mx0.
by rewrite block_mxA castmx_id col_mx0 row_mx0 -scalar_mx_block -pid_mx_block.
rewrite xcolE xrowE mulmxA -xcolE -!mulmxA.
rewrite !(addr0, add0r, mulmx0, mul0mx, mulmx_block, mul1mx) mulmxA defB.
rewrite addrC subrK mul_mx_scalar scalerA divff // scale1r.
have ->: a%:M = ulsubmx A1 by rewrite [_ A1]mx11_scalar !mxE !lshift0 !tpermR.
rewrite submxK /A1 xrowE !xcolE -!mulmxA mulmxA -!perm_mxM !tperm2 !perm_mx1.
by rewrite mulmx1 mul1mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmx_ebase
| |
mulmx_basem n (A : 'M_(m, n)) : col_base A *m row_base A = A.
Proof. by rewrite mulmxA -[col_base A *m _]mulmxA pid_mx_id ?mulmx_ebase. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmx_base
| |
mulmx1_min_rankr m n (A : 'M_(m, n)) M N :
M *m A *m N = 1%:M :> 'M_r -> r <= \rank A.
Proof. by rewrite -{1}(mulmx_base A) mulmxA -mulmxA; move/mulmx1_min. Qed.
Arguments mulmx1_min_rank [r m n A].
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmx1_min_rank
| |
mulmx_max_rankr m n (M : 'M_(m, r)) (N : 'M_(r, n)) :
\rank (M *m N) <= r.
Proof.
set MN := M *m N; set rMN := \rank _.
pose L : 'M_(rMN, m) := pid_mx rMN *m invmx (col_ebase MN).
pose U : 'M_(n, rMN) := invmx (row_ebase MN) *m pid_mx rMN.
suffices: L *m M *m (N *m U) = 1%:M by apply: mulmx1_min.
rewrite mulmxA -(mulmxA L) -[M *m N]mulmx_ebase -/MN.
by rewrite !mulmxA mulmxKV // mulmxK // !pid_mx_id /rMN ?pid_mx_1.
Qed.
Arguments mulmx_max_rank [r m n].
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmx_max_rank
| |
mxrank_trm n (A : 'M_(m, n)) : \rank A^T = \rank A.
Proof.
apply/eqP; rewrite eqn_leq -{3}[A]trmxK -{1}(mulmx_base A) -{1}(mulmx_base A^T).
by rewrite !trmx_mul !mulmx_max_rank.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_tr
| |
mxrank_addm n (A B : 'M_(m, n)) : \rank (A + B)%R <= \rank A + \rank B.
Proof.
by rewrite -{1}(mulmx_base A) -{1}(mulmx_base B) -mul_row_col mulmx_max_rank.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_add
| |
mxrankM_maxlm n p (A : 'M_(m, n)) (B : 'M_(n, p)) :
\rank (A *m B) <= \rank A.
Proof. by rewrite -{1}(mulmx_base A) -mulmxA mulmx_max_rank. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrankM_maxl
| |
mxrankM_maxrm n p (A : 'M_(m, n)) (B : 'M_(n, p)) :
\rank (A *m B) <= \rank B.
Proof. by rewrite -mxrank_tr -(mxrank_tr B) trmx_mul mxrankM_maxl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrankM_maxr
| |
mxrank_scalem n a (A : 'M_(m, n)) : \rank (a *: A) <= \rank A.
Proof. by rewrite -mul_scalar_mx mxrankM_maxr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_scale
| |
mxrank_scale_nzm n a (A : 'M_(m, n)) :
a != 0 -> \rank (a *: A) = \rank A.
Proof.
move=> nza; apply/eqP; rewrite eqn_leq -{3}[A]scale1r -(mulVf nza).
by rewrite -scalerA !mxrank_scale.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_scale_nz
| |
mxrank_oppm n (A : 'M_(m, n)) : \rank (- A) = \rank A.
Proof. by rewrite -scaleN1r mxrank_scale_nz // oppr_eq0 oner_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_opp
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.