fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
mxrank0m n : \rank (0 : 'M_(m, n)) = 0%N.
Proof. by apply/eqP; rewrite -leqn0 -(@mulmx0 _ m 0 n 0) mulmx_max_rank. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank0
| |
mxrank_eq0m n (A : 'M_(m, n)) : (\rank A == 0) = (A == 0).
Proof.
apply/eqP/eqP=> [rA0 | ->{A}]; last exact: mxrank0.
move: (col_base A) (row_base A) (mulmx_base A); rewrite rA0 => Ac Ar <-.
by rewrite [Ac]thinmx0 mul0mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_eq0
| |
mulmx_cokerm n (A : 'M_(m, n)) : A *m cokermx A = 0.
Proof.
by rewrite -{1}[A]mulmx_ebase -!mulmxA mulKVmx // mul_pid_mx_copid ?mulmx0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmx_coker
| |
submxEm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS = (A *m cokermx B == 0).
Proof. by rewrite unlock. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submxE
| |
mulmxKpVm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS -> A *m pinvmx B *m B = A.
Proof.
rewrite submxE !mulmxA mulmxBr mulmx1 subr_eq0 => /eqP defA.
rewrite -{4}[B]mulmx_ebase -!mulmxA mulKmx //.
by rewrite (mulmxA (pid_mx _)) pid_mx_id // !mulmxA -{}defA mulmxKV.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmxKpV
| |
mulmxVpm n (A : 'M[F]_(m, n)) : row_free A -> A *m pinvmx A = 1%:M.
Proof.
move=> fA; rewrite -[X in X *m _]mulmx_ebase !mulmxA mulmxK ?row_ebase_unit//.
rewrite -[X in X *m _]mulmxA mul_pid_mx !minnn (minn_idPr _) ?rank_leq_col//.
by rewrite (eqP fA) pid_mx_1 mulmx1 mulmxV ?col_ebase_unit.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmxVp
| |
mulmxKpp m n (B : 'M[F]_(m, n)) : row_free B ->
cancel ((@mulmx _ p _ _)^~ B) (mulmx^~ (pinvmx B)).
Proof. by move=> ? A; rewrite -mulmxA mulmxVp ?mulmx1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmxKp
| |
submxPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (exists D, A = D *m B) (A <= B)%MS.
Proof.
apply: (iffP idP) => [/mulmxKpV | [D ->]]; first by exists (A *m pinvmx B).
by rewrite submxE -mulmxA mulmx_coker mulmx0.
Qed.
Arguments submxP {m1 m2 n A B}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submxP
| |
submx_reflm n (A : 'M_(m, n)) : (A <= A)%MS.
Proof. by rewrite submxE mulmx_coker. Qed.
Hint Resolve submx_refl : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx_refl
| |
submxMlm n p (D : 'M_(m, n)) (A : 'M_(n, p)) : (D *m A <= A)%MS.
Proof. by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submxMl
| |
submxMrm1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) :
(A <= B)%MS -> (A *m C <= B *m C)%MS.
Proof. by case/submxP=> D ->; rewrite -mulmxA submxMl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submxMr
| |
mulmx_subm n1 n2 p (C : 'M_(m, n1)) A (B : 'M_(n2, p)) :
(A <= B -> C *m A <= B)%MS.
Proof. by case/submxP=> D ->; rewrite mulmxA submxMl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmx_sub
| |
submx_transm1 m2 m3 n
(A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) :
(A <= B -> B <= C -> A <= C)%MS.
Proof. by case/submxP=> D ->{A}; apply: mulmx_sub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx_trans
| |
ltmx_sub_transm1 m2 m3 n
(A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) :
(A < B)%MS -> (B <= C)%MS -> (A < C)%MS.
Proof.
case/andP=> sAB ltAB sBC; rewrite ltmxE (submx_trans sAB) //.
by apply: contra ltAB; apply: submx_trans.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmx_sub_trans
| |
sub_ltmx_transm1 m2 m3 n
(A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) :
(A <= B)%MS -> (B < C)%MS -> (A < C)%MS.
Proof.
move=> sAB /andP[sBC ltBC]; rewrite ltmxE (submx_trans sAB) //.
by apply: contra ltBC => sCA; apply: submx_trans sAB.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
sub_ltmx_trans
| |
ltmx_transm n : transitive (@ltmx F m m n).
Proof. by move=> A B C; move/ltmxW; apply: sub_ltmx_trans. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmx_trans
| |
ltmx_irreflm n : irreflexive (@ltmx F m m n).
Proof. by move=> A; rewrite /ltmx submx_refl andbF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmx_irrefl
| |
sub0mxm1 m2 n (A : 'M_(m2, n)) : ((0 : 'M_(m1, n)) <= A)%MS.
Proof. by rewrite submxE mul0mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
sub0mx
| |
submx0nullm1 m2 n (A : 'M[F]_(m1, n)) :
(A <= (0 : 'M_(m2, n)))%MS -> A = 0.
Proof. by case/submxP=> D; rewrite mulmx0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx0null
| |
submx0m n (A : 'M_(m, n)) : (A <= (0 : 'M_n))%MS = (A == 0).
Proof. by apply/idP/eqP=> [|->]; [apply: submx0null | apply: sub0mx]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx0
| |
lt0mxm n (A : 'M_(m, n)) : ((0 : 'M_n) < A)%MS = (A != 0).
Proof. by rewrite /ltmx sub0mx submx0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
lt0mx
| |
ltmx0m n (A : 'M[F]_(m, n)) : (A < (0 : 'M_n))%MS = false.
Proof. by rewrite /ltmx sub0mx andbF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmx0
| |
eqmx0Pm n (A : 'M_(m, n)) : reflect (A = 0) (A == (0 : 'M_n))%MS.
Proof. by rewrite submx0 sub0mx andbT; apply: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx0P
| |
eqmx_eq0m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A :=: B)%MS -> (A == 0) = (B == 0).
Proof. by move=> eqAB; rewrite -!submx0 eqAB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_eq0
| |
addmx_subm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m1, n)) (C : 'M_(m2, n)) :
(A <= C)%MS -> (B <= C)%MS -> ((A + B)%R <= C)%MS.
Proof.
by case/submxP=> A' ->; case/submxP=> B' ->; rewrite -mulmxDl submxMl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
addmx_sub
| |
rowsub_subm1 m2 n (f : 'I_m2 -> 'I_m1) (A : 'M_(m1, n)) :
(rowsub f A <= A)%MS.
Proof. by rewrite rowsubE mulmx_sub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rowsub_sub
| |
summx_subm1 m2 n (B : 'M_(m2, n))
I (r : seq I) (P : pred I) (A_ : I -> 'M_(m1, n)) :
(forall i, P i -> A_ i <= B)%MS -> ((\sum_(i <- r | P i) A_ i)%R <= B)%MS.
Proof.
by move=> leAB; elim/big_ind: _ => // [|C D]; [apply/sub0mx | apply/addmx_sub].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
summx_sub
| |
scalemx_subm1 m2 n a (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS -> (a *: A <= B)%MS.
Proof. by case/submxP=> A' ->; rewrite scalemxAl submxMl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
scalemx_sub
| |
row_subm n i (A : 'M_(m, n)) : (row i A <= A)%MS.
Proof. exact: rowsub_sub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_sub
| |
eq_row_subm n v (A : 'M_(m, n)) i : row i A = v -> (v <= A)%MS.
Proof. by move <-; rewrite row_sub. Qed.
Arguments eq_row_sub [m n v A].
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eq_row_sub
| |
nz_row_subm n (A : 'M_(m, n)) : (nz_row A <= A)%MS.
Proof. by rewrite /nz_row; case: pickP => [i|] _; rewrite ?row_sub ?sub0mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
nz_row_sub
| |
row_subPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (forall i, row i A <= B)%MS (A <= B)%MS.
Proof.
apply: (iffP idP) => [sAB i|sAB].
by apply: submx_trans sAB; apply: row_sub.
rewrite submxE; apply/eqP/row_matrixP=> i; apply/eqP.
by rewrite row_mul row0 -submxE.
Qed.
Arguments row_subP {m1 m2 n A B}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_subP
| |
rV_subPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (forall v : 'rV_n, v <= A -> v <= B)%MS (A <= B)%MS.
Proof.
apply: (iffP idP) => [sAB v Av | sAB]; first exact: submx_trans sAB.
by apply/row_subP=> i; rewrite sAB ?row_sub.
Qed.
Arguments rV_subP {m1 m2 n A B}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rV_subP
| |
row_subPnm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (exists i, ~~ (row i A <= B)%MS) (~~ (A <= B)%MS).
Proof. by rewrite (sameP row_subP forallP); apply: forallPn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_subPn
| |
sub_rVPn (u v : 'rV[F]_n) : reflect (exists a, u = a *: v) (u <= v)%MS.
Proof.
apply: (iffP submxP) => [[w ->] | [a ->]].
by exists (w 0 0); rewrite -mul_scalar_mx -mx11_scalar.
by exists a%:M; rewrite mul_scalar_mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
sub_rVP
| |
rank_rVn (v : 'rV[F]_n) : \rank v = (v != 0).
Proof.
case: eqP => [-> | nz_v]; first by rewrite mxrank0.
by apply/eqP; rewrite eqn_leq rank_leq_row lt0n mxrank_eq0; apply/eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rank_rV
| |
rowV0Pnm n (A : 'M_(m, n)) :
reflect (exists2 v : 'rV_n, v <= A & v != 0)%MS (A != 0).
Proof.
rewrite -submx0; apply: (iffP idP) => [| [v svA]]; last first.
by rewrite -submx0; apply: contra (submx_trans _).
by case/row_subPn=> i; rewrite submx0; exists (row i A); rewrite ?row_sub.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rowV0Pn
| |
rowV0Pm n (A : 'M_(m, n)) :
reflect (forall v : 'rV_n, v <= A -> v = 0)%MS (A == 0).
Proof.
rewrite -[A == 0]negbK; case: rowV0Pn => IH.
by right; case: IH => v svA nzv IH; case/eqP: nzv; apply: IH.
by left=> v svA; apply/eqP/idPn=> nzv; case: IH; exists v.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rowV0P
| |
submx_fullm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
row_full B -> (A <= B)%MS.
Proof.
by rewrite submxE /cokermx => /eqnP->; rewrite /copid_mx pid_mx_1 subrr !mulmx0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx_full
| |
row_fullPm n (A : 'M_(m, n)) :
reflect (exists B, B *m A = 1%:M) (row_full A).
Proof.
apply: (iffP idP) => [Afull | [B kA]].
by exists (1%:M *m pinvmx A); apply: mulmxKpV (submx_full _ Afull).
by rewrite [_ A]eqn_leq rank_leq_col (mulmx1_min_rank B 1%:M) ?mulmx1.
Qed.
Arguments row_fullP {m n A}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_fullP
| |
row_full_injm n p A : row_full A -> injective (@mulmx F m n p A).
Proof.
case/row_fullP=> A' A'K; apply: can_inj (mulmx A') _ => B.
by rewrite mulmxA A'K mul1mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_full_inj
| |
row_freePm n (A : 'M_(m, n)) :
reflect (exists B, A *m B = 1%:M) (row_free A).
Proof.
rewrite /row_free -mxrank_tr.
apply: (iffP row_fullP) => [] [B kA];
by exists B^T; rewrite -trmx1 -kA trmx_mul ?trmxK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_freeP
| |
row_free_injm n p A : row_free A -> injective ((@mulmx F m n p)^~ A).
Proof.
case/row_freeP=> A' AK; apply: can_inj (mulmx^~ A') _ => B.
by rewrite -mulmxA AK mulmx1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_free_inj
| |
row_free_injrm n p A : row_free A -> injective (mulmxr A) :=
@row_free_inj m n p A.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_free_injr
| |
row_free_unitn (A : 'M_n) : row_free A = (A \in unitmx).
Proof.
apply/row_fullP/idP=> [[A'] | uA]; first by case/mulmx1_unit.
by exists (invmx A); rewrite mulVmx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_free_unit
| |
row_full_unitn (A : 'M_n) : row_full A = (A \in unitmx).
Proof. exact: row_free_unit. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_full_unit
| |
mxrank_unitn (A : 'M_n) : A \in unitmx -> \rank A = n.
Proof. by rewrite -row_full_unit => /eqnP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_unit
| |
mxrank1n : \rank (1%:M : 'M_n) = n. Proof. exact: mxrank_unit. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank1
| |
mxrank_deltam n i j : \rank (delta_mx i j : 'M_(m, n)) = 1.
Proof.
apply/eqP; rewrite eqn_leq lt0n mxrank_eq0.
rewrite -{1}(mul_delta_mx (0 : 'I_1)) mulmx_max_rank.
by apply/eqP; move/matrixP; move/(_ i j); move/eqP; rewrite !mxE !eqxx oner_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_delta
| |
mxrankSm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS -> \rank A <= \rank B.
Proof. by case/submxP=> D ->; rewrite mxrankM_maxr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrankS
| |
submx1m n (A : 'M_(m, n)) : (A <= 1%:M)%MS.
Proof. by rewrite submx_full // row_full_unit unitmx1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx1
| |
sub1mxm n (A : 'M_(m, n)) : (1%:M <= A)%MS = row_full A.
Proof.
apply/idP/idP; last exact: submx_full.
by move/mxrankS; rewrite mxrank1 col_leq_rank.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
sub1mx
| |
ltmx1m n (A : 'M_(m, n)) : (A < 1%:M)%MS = ~~ row_full A.
Proof. by rewrite /ltmx sub1mx submx1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmx1
| |
lt1mxm n (A : 'M_(m, n)) : (1%:M < A)%MS = false.
Proof. by rewrite /ltmx submx1 andbF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
lt1mx
| |
pinvmxEn (A : 'M[F]_n) : A \in unitmx -> pinvmx A = invmx A.
Proof.
move=> A_unit; apply: (@row_free_inj _ _ _ A); rewrite ?row_free_unit//.
by rewrite -[pinvmx _]mul1mx mulmxKpV ?sub1mx ?row_full_unit// mulVmx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
pinvmxE
| |
mulVpmxm n (A : 'M[F]_(m, n)) : row_full A -> pinvmx A *m A = 1%:M.
Proof. by move=> fA; rewrite -[pinvmx _]mul1mx mulmxKpV// sub1mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulVpmx
| |
pinvmx_freem n (A : 'M[F]_(m, n)) : row_full A -> row_free (pinvmx A).
Proof. by move=> /mulVpmx pAA1; apply/row_freeP; exists A. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
pinvmx_free
| |
pinvmx_fullm n (A : 'M[F]_(m, n)) : row_free A -> row_full (pinvmx A).
Proof. by move=> /mulmxVp ApA1; apply/row_fullP; exists A. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
pinvmx_full
| |
eqmxPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (A :=: B)%MS (A == B)%MS.
Proof.
apply: (iffP andP) => [[sAB sBA] | eqAB]; last by rewrite !eqAB.
split=> [|m3 C]; first by apply/eqP; rewrite eqn_leq !mxrankS.
split; first by apply/idP/idP; apply: submx_trans.
by apply/idP/idP=> sC; apply: submx_trans sC _.
Qed.
Arguments eqmxP {m1 m2 n A B}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmxP
| |
rV_eqPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (forall u : 'rV_n, (u <= A) = (u <= B))%MS (A == B)%MS.
Proof.
apply: (iffP idP) => [eqAB u | eqAB]; first by rewrite (eqmxP eqAB).
by apply/andP; split; apply/rV_subP=> u; rewrite eqAB.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rV_eqP
| |
mulmxP(m n : nat) (A B : 'M[F]_(m, n)) :
reflect (forall u : 'rV_m, u *m A = u *m B) (A == B).
Proof.
apply: (iffP eqP) => [-> //|eqAB].
apply: (@row_full_inj _ _ _ 1%:M); first by rewrite row_full_unit unitmx1.
by apply/row_matrixP => i; rewrite !row_mul eqAB.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mulmxP
| |
eqmx_reflm1 n (A : 'M_(m1, n)) : (A :=: A)%MS.
Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_refl
| |
eqmx_symm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A :=: B)%MS -> (B :=: A)%MS.
Proof. by move=> eqAB; split=> [|m3 C]; rewrite !eqAB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_sym
| |
eqmx_transm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) :
(A :=: B)%MS -> (B :=: C)%MS -> (A :=: C)%MS.
Proof. by move=> eqAB eqBC; split=> [|m4 D]; rewrite !eqAB !eqBC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_trans
| |
eqmx_rankm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A == B)%MS -> \rank A = \rank B.
Proof. by move/eqmxP->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_rank
| |
lt_eqmxm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A :=: B)%MS ->
forall C : 'M_(m3, n), (((A < C) = (B < C))%MS * ((C < A) = (C < B))%MS)%type.
Proof. by move=> eqAB C; rewrite /ltmx !eqAB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
lt_eqmx
| |
eqmxMrm1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) :
(A :=: B)%MS -> (A *m C :=: B *m C)%MS.
Proof. by move=> eqAB; apply/eqmxP; rewrite !submxMr ?eqAB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmxMr
| |
eqmxMfullm n p (A : 'M_(m, n)) (B : 'M_(n, p)) :
row_full A -> (A *m B :=: B)%MS.
Proof.
case/row_fullP=> A' A'A; apply/eqmxP; rewrite submxMl /=.
by apply/submxP; exists A'; rewrite mulmxA A'A mul1mx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmxMfull
| |
eqmx0m n : ((0 : 'M[F]_(m, n)) :=: (0 : 'M_n))%MS.
Proof. by apply/eqmxP; rewrite !sub0mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx0
| |
eqmx_scalem n a (A : 'M_(m, n)) : a != 0 -> (a *: A :=: A)%MS.
Proof.
move=> nz_a; apply/eqmxP; rewrite scalemx_sub //.
by rewrite -{1}[A]scale1r -(mulVf nz_a) -scalerA scalemx_sub.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_scale
| |
eqmx_oppm n (A : 'M_(m, n)) : (- A :=: A)%MS.
Proof.
by rewrite -scaleN1r; apply: eqmx_scale => //; rewrite oppr_eq0 oner_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_opp
| |
submxMfreem1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) :
row_free C -> (A *m C <= B *m C)%MS = (A <= B)%MS.
Proof.
case/row_freeP=> C' C_C'_1; apply/idP/idP=> sAB; last exact: submxMr.
by rewrite -[A]mulmx1 -[B]mulmx1 -C_C'_1 !mulmxA submxMr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submxMfree
| |
eqmxMfreem1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) :
row_free C -> (A *m C :=: B *m C)%MS -> (A :=: B)%MS.
Proof.
by move=> Cfree eqAB; apply/eqmxP; move/eqmxP: eqAB; rewrite !submxMfree.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmxMfree
| |
mxrankMfreem n p (A : 'M_(m, n)) (B : 'M_(n, p)) :
row_free B -> \rank (A *m B) = \rank A.
Proof.
by move=> Bfree; rewrite -mxrank_tr trmx_mul eqmxMfull /row_full mxrank_tr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrankMfree
| |
eq_row_basem n (A : 'M_(m, n)) : (row_base A :=: A)%MS.
Proof.
apply/eqmxP/andP; split; apply/submxP.
exists (pid_mx (\rank A) *m invmx (col_ebase A)).
by rewrite -{8}[A]mulmx_ebase !mulmxA mulmxKV // pid_mx_id.
exists (col_ebase A *m pid_mx (\rank A)).
by rewrite mulmxA -(mulmxA _ _ (pid_mx _)) pid_mx_id // mulmx_ebase.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eq_row_base
| |
row_base0(m n : nat) : row_base (0 : 'M[F]_(m, n)) = 0.
Proof. by apply/eqmx0P; rewrite !eq_row_base !sub0mx. Qed.
Let qidmx_eq1 n (A : 'M_n) : qidmx A = (A == 1%:M).
Proof. by rewrite /qidmx eqxx pid_mx_1. Qed.
Let genmx_witnessP m n (A : 'M_(m, n)) :
equivmx A (row_full A) (genmx_witness A).
Proof.
rewrite /equivmx qidmx_eq1 /genmx_witness.
case fullA: (row_full A); first by rewrite eqxx sub1mx submx1 fullA.
set B := _ *m _; have defB : (B == A)%MS.
apply/andP; split; apply/submxP.
exists (pid_mx (\rank A) *m invmx (col_ebase A)).
by rewrite -{3}[A]mulmx_ebase !mulmxA mulmxKV // pid_mx_id.
exists (col_ebase A *m pid_mx (\rank A)).
by rewrite mulmxA -(mulmxA _ _ (pid_mx _)) pid_mx_id // mulmx_ebase.
rewrite defB -negb_add addbF; case: eqP defB => // ->.
by rewrite sub1mx fullA.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_base0
| |
genmxEm n (A : 'M_(m, n)) : (<<A>> :=: A)%MS.
Proof.
by rewrite unlock; apply/eqmxP; case/andP: (chooseP (genmx_witnessP A)).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmxE
| |
eq_genmxm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A :=: B -> <<A>> = <<B>>)%MS.
Proof.
move=> eqAB; rewrite unlock.
have{} eqAB: equivmx A (row_full A) =1 equivmx B (row_full B).
by move=> C; rewrite /row_full /equivmx !eqAB.
rewrite (eq_choose eqAB) (choose_id _ (genmx_witnessP B)) //.
by rewrite -eqAB genmx_witnessP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eq_genmx
| |
genmxPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
reflect (<<A>> = <<B>>)%MS (A == B)%MS.
Proof.
apply: (iffP idP) => eqAB; first exact: eq_genmx (eqmxP _).
by rewrite -!(genmxE A) eqAB !genmxE andbb.
Qed.
Arguments genmxP {m1 m2 n A B}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmxP
| |
genmx0m n : <<0 : 'M_(m, n)>>%MS = 0.
Proof. by apply/eqP; rewrite -submx0 genmxE sub0mx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmx0
| |
genmx1n : <<1%:M : 'M_n>>%MS = 1%:M.
Proof.
rewrite unlock; case/andP: (chooseP (@genmx_witnessP n n 1%:M)) => _ /eqP.
by rewrite qidmx_eq1 row_full_unit unitmx1 => /eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmx1
| |
genmx_idm n (A : 'M_(m, n)) : (<<<<A>>>> = <<A>>)%MS.
Proof. exact/eq_genmx/genmxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
genmx_id
| |
row_base_freem n (A : 'M_(m, n)) : row_free (row_base A).
Proof. by apply/eqnP; rewrite eq_row_base. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_base_free
| |
mxrank_genm n (A : 'M_(m, n)) : \rank <<A>>%MS = \rank A.
Proof. by rewrite genmxE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_gen
| |
col_base_fullm n (A : 'M_(m, n)) : row_full (col_base A).
Proof.
apply/row_fullP; exists (pid_mx (\rank A) *m invmx (col_ebase A)).
by rewrite !mulmxA mulmxKV // pid_mx_id // pid_mx_1.
Qed.
Hint Resolve row_base_free col_base_full : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
col_base_full
| |
mxrank_leqif_supm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS -> \rank A <= \rank B ?= iff (B <= A)%MS.
Proof.
move=> sAB; split; first by rewrite mxrankS.
apply/idP/idP=> [| sBA]; last by rewrite eqn_leq !mxrankS.
case/submxP: sAB => D ->; set r := \rank B; rewrite -(mulmx_base B) mulmxA.
rewrite mxrankMfree // => /row_fullP[E kE].
by rewrite -[rB in _ *m rB]mul1mx -kE -(mulmxA E) (mulmxA _ E) submxMl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_leqif_sup
| |
mxrank_leqif_eqm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A <= B)%MS -> \rank A <= \rank B ?= iff (A == B)%MS.
Proof. by move=> sAB; rewrite sAB; apply: mxrank_leqif_sup. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
mxrank_leqif_eq
| |
ltmxErankm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A < B)%MS = (A <= B)%MS && (\rank A < \rank B).
Proof.
by apply: andb_id2l => sAB; rewrite (ltn_leqif (mxrank_leqif_sup sAB)).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
ltmxErank
| |
rank_ltmxm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(A < B)%MS -> \rank A < \rank B.
Proof. by rewrite ltmxErank => /andP[]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rank_ltmx
| |
eqmx_castm1 m2 n (A : 'M_(m1, n)) e :
((castmx e A : 'M_(m2, n)) :=: A)%MS.
Proof. by case: e A; case: m2 / => A e; rewrite castmx_id. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_cast
| |
row_full_castmxm1 m2 n (A : 'M_(m1, n)) e :
row_full (castmx e A : 'M_(m2, n)) = row_full A.
Proof. exact/eq_row_full/eqmx_cast. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_full_castmx
| |
row_free_castmxm1 m2 n (A : 'M_(m1, n)) e :
row_free (castmx e A : 'M_(m2, n)) = row_free A.
Proof. by rewrite /row_free eqmx_cast; congr (_ == _); rewrite e.1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
row_free_castmx
| |
eqmx_conformm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
(conform_mx A B :=: A \/ conform_mx A B :=: B)%MS.
Proof.
case: (eqVneq m2 m1) => [-> | neqm12] in B *.
by right; rewrite conform_mx_id.
by left; rewrite nonconform_mx ?neqm12.
Qed.
Let eqmx_sum_nop m n (A : 'M_(m, n)) : (addsmx_nop A :=: A)%MS.
Proof.
case: (eqmx_conform <<A>>%MS A) => // eq_id_gen.
exact: eqmx_trans (genmxE A).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_conform
| |
rowsub_comp_sub(m n p q : nat) f (g : 'I_n -> 'I_p) (A : 'M_(m, q)) :
(rowsub (f \o g) A <= rowsub f A)%MS.
Proof. by rewrite rowsub_comp rowsubE mulmx_sub. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
rowsub_comp_sub
| |
submx_rowsub(m n p q : nat) (h : 'I_n -> 'I_p) f g (A : 'M_(m, q)) :
f =1 g \o h -> (rowsub f A <= rowsub g A)%MS.
Proof. by move=> /eq_rowsub->; rewrite rowsub_comp_sub. Qed.
Arguments submx_rowsub [m1 m2 m3 n] h [f g A] _ : rename.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
submx_rowsub
| |
eqmx_rowsub_comp_perm(m1 m2 n : nat) (s : 'S_m2) f (A : 'M_(m1, n)) :
(rowsub (f \o s) A :=: rowsub f A)%MS.
Proof.
rewrite rowsub_comp rowsubE; apply: eqmxMfull.
by rewrite -perm_mxEsub row_full_unit unitmx_perm.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_rowsub_comp_perm
| |
eqmx_rowsub_comp(m n p q : nat) f (g : 'I_n -> 'I_p) (A : 'M_(m, q)) :
p <= n -> injective g -> (rowsub (f \o g) A :=: rowsub f A)%MS.
Proof.
move=> leq_pn g_inj; have eq_np : n == p by rewrite eqn_leq leq_pn (inj_leq g).
rewrite (eqP eq_np) in g g_inj *.
rewrite (eq_rowsub (f \o (perm g_inj))); last by move=> i; rewrite /= permE.
exact: eqmx_rowsub_comp_perm.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_rowsub_comp
| |
eqmx_rowsub(m n p q : nat) (h : 'I_n -> 'I_p) f g (A : 'M_(m, q)) :
injective h -> p <= n -> f =1 g \o h -> (rowsub f A :=: rowsub g A)%MS.
Proof. by move=> leq_pn h_inj /eq_rowsub->; apply: eqmx_rowsub_comp. Qed.
Arguments eqmx_rowsub [m1 m2 m3 n] h [f g A] _ : rename.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
eqmx_rowsub
| |
col_mx_subm3 (C : 'M_(m3, n)) :
(col_mx A B <= C)%MS = (A <= C)%MS && (B <= C)%MS.
Proof.
rewrite !submxE mul_col_mx -col_mx0.
by apply/eqP/andP; [case/eq_col_mx=> -> -> | case; do 2!move/eqP->].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
col_mx_sub
| |
addsmxE: (A + B :=: col_mx A B)%MS.
Proof.
have:= submx_refl (col_mx A B); rewrite col_mx_sub; case/andP=> sAS sBS.
rewrite unlock; do 2?case: eqP => [AB0 | _]; last exact: genmxE.
by apply/eqmxP; rewrite !eqmx_sum_nop sBS col_mx_sub AB0 sub0mx /=.
by apply/eqmxP; rewrite !eqmx_sum_nop sAS col_mx_sub AB0 sub0mx andbT /=.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype finfun bigop finset fingroup perm order",
"From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix"
] |
algebra/mxalgebra.v
|
addsmxE
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.