fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mxrank0m n : \rank (0 : 'M_(m, n)) = 0%N. Proof. by apply/eqP; rewrite -leqn0 -(@mulmx0 _ m 0 n 0) mulmx_max_rank. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank0
mxrank_eq0m n (A : 'M_(m, n)) : (\rank A == 0) = (A == 0). Proof. apply/eqP/eqP=> [rA0 | ->{A}]; last exact: mxrank0. move: (col_base A) (row_base A) (mulmx_base A); rewrite rA0 => Ac Ar <-. by rewrite [Ac]thinmx0 mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_eq0
mulmx_cokerm n (A : 'M_(m, n)) : A *m cokermx A = 0. Proof. by rewrite -{1}[A]mulmx_ebase -!mulmxA mulKVmx // mul_pid_mx_copid ?mulmx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulmx_coker
submxEm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS = (A *m cokermx B == 0). Proof. by rewrite unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submxE
mulmxKpVm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS -> A *m pinvmx B *m B = A. Proof. rewrite submxE !mulmxA mulmxBr mulmx1 subr_eq0 => /eqP defA. rewrite -{4}[B]mulmx_ebase -!mulmxA mulKmx //. by rewrite (mulmxA (pid_mx _)) pid_mx_id // !mulmxA -{}defA mulmxKV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulmxKpV
mulmxVpm n (A : 'M[F]_(m, n)) : row_free A -> A *m pinvmx A = 1%:M. Proof. move=> fA; rewrite -[X in X *m _]mulmx_ebase !mulmxA mulmxK ?row_ebase_unit//. rewrite -[X in X *m _]mulmxA mul_pid_mx !minnn (minn_idPr _) ?rank_leq_col//. by rewrite (eqP fA) pid_mx_1 mulmx1 mulmxV ?col_ebase_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulmxVp
mulmxKpp m n (B : 'M[F]_(m, n)) : row_free B -> cancel ((@mulmx _ p _ _)^~ B) (mulmx^~ (pinvmx B)). Proof. by move=> ? A; rewrite -mulmxA mulmxVp ?mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulmxKp
submxPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (exists D, A = D *m B) (A <= B)%MS. Proof. apply: (iffP idP) => [/mulmxKpV | [D ->]]; first by exists (A *m pinvmx B). by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed. Arguments submxP {m1 m2 n A B}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submxP
submx_reflm n (A : 'M_(m, n)) : (A <= A)%MS. Proof. by rewrite submxE mulmx_coker. Qed. Hint Resolve submx_refl : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx_refl
submxMlm n p (D : 'M_(m, n)) (A : 'M_(n, p)) : (D *m A <= A)%MS. Proof. by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submxMl
submxMrm1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) : (A <= B)%MS -> (A *m C <= B *m C)%MS. Proof. by case/submxP=> D ->; rewrite -mulmxA submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submxMr
mulmx_subm n1 n2 p (C : 'M_(m, n1)) A (B : 'M_(n2, p)) : (A <= B -> C *m A <= B)%MS. Proof. by case/submxP=> D ->; rewrite mulmxA submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulmx_sub
submx_transm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) : (A <= B -> B <= C -> A <= C)%MS. Proof. by case/submxP=> D ->{A}; apply: mulmx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx_trans
ltmx_sub_transm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) : (A < B)%MS -> (B <= C)%MS -> (A < C)%MS. Proof. case/andP=> sAB ltAB sBC; rewrite ltmxE (submx_trans sAB) //. by apply: contra ltAB; apply: submx_trans. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
ltmx_sub_trans
sub_ltmx_transm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) : (A <= B)%MS -> (B < C)%MS -> (A < C)%MS. Proof. move=> sAB /andP[sBC ltBC]; rewrite ltmxE (submx_trans sAB) //. by apply: contra ltBC => sCA; apply: submx_trans sAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub_ltmx_trans
ltmx_transm n : transitive (@ltmx F m m n). Proof. by move=> A B C; move/ltmxW; apply: sub_ltmx_trans. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
ltmx_trans
ltmx_irreflm n : irreflexive (@ltmx F m m n). Proof. by move=> A; rewrite /ltmx submx_refl andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
ltmx_irrefl
sub0mxm1 m2 n (A : 'M_(m2, n)) : ((0 : 'M_(m1, n)) <= A)%MS. Proof. by rewrite submxE mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub0mx
submx0nullm1 m2 n (A : 'M[F]_(m1, n)) : (A <= (0 : 'M_(m2, n)))%MS -> A = 0. Proof. by case/submxP=> D; rewrite mulmx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx0null
submx0m n (A : 'M_(m, n)) : (A <= (0 : 'M_n))%MS = (A == 0). Proof. by apply/idP/eqP=> [|->]; [apply: submx0null | apply: sub0mx]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx0
lt0mxm n (A : 'M_(m, n)) : ((0 : 'M_n) < A)%MS = (A != 0). Proof. by rewrite /ltmx sub0mx submx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
lt0mx
ltmx0m n (A : 'M[F]_(m, n)) : (A < (0 : 'M_n))%MS = false. Proof. by rewrite /ltmx sub0mx andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
ltmx0
eqmx0Pm n (A : 'M_(m, n)) : reflect (A = 0) (A == (0 : 'M_n))%MS. Proof. by rewrite submx0 sub0mx andbT; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx0P
eqmx_eq0m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A :=: B)%MS -> (A == 0) = (B == 0). Proof. by move=> eqAB; rewrite -!submx0 eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_eq0
addmx_subm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m1, n)) (C : 'M_(m2, n)) : (A <= C)%MS -> (B <= C)%MS -> ((A + B)%R <= C)%MS. Proof. by case/submxP=> A' ->; case/submxP=> B' ->; rewrite -mulmxDl submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
addmx_sub
rowsub_subm1 m2 n (f : 'I_m2 -> 'I_m1) (A : 'M_(m1, n)) : (rowsub f A <= A)%MS. Proof. by rewrite rowsubE mulmx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rowsub_sub
summx_subm1 m2 n (B : 'M_(m2, n)) I (r : seq I) (P : pred I) (A_ : I -> 'M_(m1, n)) : (forall i, P i -> A_ i <= B)%MS -> ((\sum_(i <- r | P i) A_ i)%R <= B)%MS. Proof. by move=> leAB; elim/big_ind: _ => // [|C D]; [apply/sub0mx | apply/addmx_sub]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
summx_sub
scalemx_subm1 m2 n a (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS -> (a *: A <= B)%MS. Proof. by case/submxP=> A' ->; rewrite scalemxAl submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
scalemx_sub
row_subm n i (A : 'M_(m, n)) : (row i A <= A)%MS. Proof. exact: rowsub_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_sub
eq_row_subm n v (A : 'M_(m, n)) i : row i A = v -> (v <= A)%MS. Proof. by move <-; rewrite row_sub. Qed. Arguments eq_row_sub [m n v A].
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eq_row_sub
nz_row_subm n (A : 'M_(m, n)) : (nz_row A <= A)%MS. Proof. by rewrite /nz_row; case: pickP => [i|] _; rewrite ?row_sub ?sub0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
nz_row_sub
row_subPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall i, row i A <= B)%MS (A <= B)%MS. Proof. apply: (iffP idP) => [sAB i|sAB]. by apply: submx_trans sAB; apply: row_sub. rewrite submxE; apply/eqP/row_matrixP=> i; apply/eqP. by rewrite row_mul row0 -submxE. Qed. Arguments row_subP {m1 m2 n A B}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_subP
rV_subPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall v : 'rV_n, v <= A -> v <= B)%MS (A <= B)%MS. Proof. apply: (iffP idP) => [sAB v Av | sAB]; first exact: submx_trans sAB. by apply/row_subP=> i; rewrite sAB ?row_sub. Qed. Arguments rV_subP {m1 m2 n A B}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rV_subP
row_subPnm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (exists i, ~~ (row i A <= B)%MS) (~~ (A <= B)%MS). Proof. by rewrite (sameP row_subP forallP); apply: forallPn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_subPn
sub_rVPn (u v : 'rV[F]_n) : reflect (exists a, u = a *: v) (u <= v)%MS. Proof. apply: (iffP submxP) => [[w ->] | [a ->]]. by exists (w 0 0); rewrite -mul_scalar_mx -mx11_scalar. by exists a%:M; rewrite mul_scalar_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub_rVP
rank_rVn (v : 'rV[F]_n) : \rank v = (v != 0). Proof. case: eqP => [-> | nz_v]; first by rewrite mxrank0. by apply/eqP; rewrite eqn_leq rank_leq_row lt0n mxrank_eq0; apply/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rank_rV
rowV0Pnm n (A : 'M_(m, n)) : reflect (exists2 v : 'rV_n, v <= A & v != 0)%MS (A != 0). Proof. rewrite -submx0; apply: (iffP idP) => [| [v svA]]; last first. by rewrite -submx0; apply: contra (submx_trans _). by case/row_subPn=> i; rewrite submx0; exists (row i A); rewrite ?row_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rowV0Pn
rowV0Pm n (A : 'M_(m, n)) : reflect (forall v : 'rV_n, v <= A -> v = 0)%MS (A == 0). Proof. rewrite -[A == 0]negbK; case: rowV0Pn => IH. by right; case: IH => v svA nzv IH; case/eqP: nzv; apply: IH. by left=> v svA; apply/eqP/idPn=> nzv; case: IH; exists v. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rowV0P
submx_fullm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : row_full B -> (A <= B)%MS. Proof. by rewrite submxE /cokermx => /eqnP->; rewrite /copid_mx pid_mx_1 subrr !mulmx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx_full
row_fullPm n (A : 'M_(m, n)) : reflect (exists B, B *m A = 1%:M) (row_full A). Proof. apply: (iffP idP) => [Afull | [B kA]]. by exists (1%:M *m pinvmx A); apply: mulmxKpV (submx_full _ Afull). by rewrite [_ A]eqn_leq rank_leq_col (mulmx1_min_rank B 1%:M) ?mulmx1. Qed. Arguments row_fullP {m n A}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_fullP
row_full_injm n p A : row_full A -> injective (@mulmx F m n p A). Proof. case/row_fullP=> A' A'K; apply: can_inj (mulmx A') _ => B. by rewrite mulmxA A'K mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_full_inj
row_freePm n (A : 'M_(m, n)) : reflect (exists B, A *m B = 1%:M) (row_free A). Proof. rewrite /row_free -mxrank_tr. apply: (iffP row_fullP) => [] [B kA]; by exists B^T; rewrite -trmx1 -kA trmx_mul ?trmxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_freeP
row_free_injm n p A : row_free A -> injective ((@mulmx F m n p)^~ A). Proof. case/row_freeP=> A' AK; apply: can_inj (mulmx^~ A') _ => B. by rewrite -mulmxA AK mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_free_inj
row_free_injrm n p A : row_free A -> injective (mulmxr A) := @row_free_inj m n p A.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_free_injr
row_free_unitn (A : 'M_n) : row_free A = (A \in unitmx). Proof. apply/row_fullP/idP=> [[A'] | uA]; first by case/mulmx1_unit. by exists (invmx A); rewrite mulVmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_free_unit
row_full_unitn (A : 'M_n) : row_full A = (A \in unitmx). Proof. exact: row_free_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_full_unit
mxrank_unitn (A : 'M_n) : A \in unitmx -> \rank A = n. Proof. by rewrite -row_full_unit => /eqnP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_unit
mxrank1n : \rank (1%:M : 'M_n) = n. Proof. exact: mxrank_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank1
mxrank_deltam n i j : \rank (delta_mx i j : 'M_(m, n)) = 1. Proof. apply/eqP; rewrite eqn_leq lt0n mxrank_eq0. rewrite -{1}(mul_delta_mx (0 : 'I_1)) mulmx_max_rank. by apply/eqP; move/matrixP; move/(_ i j); move/eqP; rewrite !mxE !eqxx oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_delta
mxrankSm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS -> \rank A <= \rank B. Proof. by case/submxP=> D ->; rewrite mxrankM_maxr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrankS
submx1m n (A : 'M_(m, n)) : (A <= 1%:M)%MS. Proof. by rewrite submx_full // row_full_unit unitmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx1
sub1mxm n (A : 'M_(m, n)) : (1%:M <= A)%MS = row_full A. Proof. apply/idP/idP; last exact: submx_full. by move/mxrankS; rewrite mxrank1 col_leq_rank. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub1mx
ltmx1m n (A : 'M_(m, n)) : (A < 1%:M)%MS = ~~ row_full A. Proof. by rewrite /ltmx sub1mx submx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
ltmx1
lt1mxm n (A : 'M_(m, n)) : (1%:M < A)%MS = false. Proof. by rewrite /ltmx submx1 andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
lt1mx
pinvmxEn (A : 'M[F]_n) : A \in unitmx -> pinvmx A = invmx A. Proof. move=> A_unit; apply: (@row_free_inj _ _ _ A); rewrite ?row_free_unit//. by rewrite -[pinvmx _]mul1mx mulmxKpV ?sub1mx ?row_full_unit// mulVmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
pinvmxE
mulVpmxm n (A : 'M[F]_(m, n)) : row_full A -> pinvmx A *m A = 1%:M. Proof. by move=> fA; rewrite -[pinvmx _]mul1mx mulmxKpV// sub1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulVpmx
pinvmx_freem n (A : 'M[F]_(m, n)) : row_full A -> row_free (pinvmx A). Proof. by move=> /mulVpmx pAA1; apply/row_freeP; exists A. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
pinvmx_free
pinvmx_fullm n (A : 'M[F]_(m, n)) : row_free A -> row_full (pinvmx A). Proof. by move=> /mulmxVp ApA1; apply/row_fullP; exists A. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
pinvmx_full
eqmxPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (A :=: B)%MS (A == B)%MS. Proof. apply: (iffP andP) => [[sAB sBA] | eqAB]; last by rewrite !eqAB. split=> [|m3 C]; first by apply/eqP; rewrite eqn_leq !mxrankS. split; first by apply/idP/idP; apply: submx_trans. by apply/idP/idP=> sC; apply: submx_trans sC _. Qed. Arguments eqmxP {m1 m2 n A B}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmxP
rV_eqPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall u : 'rV_n, (u <= A) = (u <= B))%MS (A == B)%MS. Proof. apply: (iffP idP) => [eqAB u | eqAB]; first by rewrite (eqmxP eqAB). by apply/andP; split; apply/rV_subP=> u; rewrite eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rV_eqP
mulmxP(m n : nat) (A B : 'M[F]_(m, n)) : reflect (forall u : 'rV_m, u *m A = u *m B) (A == B). Proof. apply: (iffP eqP) => [-> //|eqAB]. apply: (@row_full_inj _ _ _ 1%:M); first by rewrite row_full_unit unitmx1. by apply/row_matrixP => i; rewrite !row_mul eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulmxP
eqmx_reflm1 n (A : 'M_(m1, n)) : (A :=: A)%MS. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_refl
eqmx_symm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A :=: B)%MS -> (B :=: A)%MS. Proof. by move=> eqAB; split=> [|m3 C]; rewrite !eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_sym
eqmx_transm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(m3, n)) : (A :=: B)%MS -> (B :=: C)%MS -> (A :=: C)%MS. Proof. by move=> eqAB eqBC; split=> [|m4 D]; rewrite !eqAB !eqBC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_trans
eqmx_rankm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A == B)%MS -> \rank A = \rank B. Proof. by move/eqmxP->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_rank
lt_eqmxm1 m2 m3 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A :=: B)%MS -> forall C : 'M_(m3, n), (((A < C) = (B < C))%MS * ((C < A) = (C < B))%MS)%type. Proof. by move=> eqAB C; rewrite /ltmx !eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
lt_eqmx
eqmxMrm1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) : (A :=: B)%MS -> (A *m C :=: B *m C)%MS. Proof. by move=> eqAB; apply/eqmxP; rewrite !submxMr ?eqAB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmxMr
eqmxMfullm n p (A : 'M_(m, n)) (B : 'M_(n, p)) : row_full A -> (A *m B :=: B)%MS. Proof. case/row_fullP=> A' A'A; apply/eqmxP; rewrite submxMl /=. by apply/submxP; exists A'; rewrite mulmxA A'A mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmxMfull
eqmx0m n : ((0 : 'M[F]_(m, n)) :=: (0 : 'M_n))%MS. Proof. by apply/eqmxP; rewrite !sub0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx0
eqmx_scalem n a (A : 'M_(m, n)) : a != 0 -> (a *: A :=: A)%MS. Proof. move=> nz_a; apply/eqmxP; rewrite scalemx_sub //. by rewrite -{1}[A]scale1r -(mulVf nz_a) -scalerA scalemx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_scale
eqmx_oppm n (A : 'M_(m, n)) : (- A :=: A)%MS. Proof. by rewrite -scaleN1r; apply: eqmx_scale => //; rewrite oppr_eq0 oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_opp
submxMfreem1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) : row_free C -> (A *m C <= B *m C)%MS = (A <= B)%MS. Proof. case/row_freeP=> C' C_C'_1; apply/idP/idP=> sAB; last exact: submxMr. by rewrite -[A]mulmx1 -[B]mulmx1 -C_C'_1 !mulmxA submxMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submxMfree
eqmxMfreem1 m2 n p (A : 'M_(m1, n)) (B : 'M_(m2, n)) (C : 'M_(n, p)) : row_free C -> (A *m C :=: B *m C)%MS -> (A :=: B)%MS. Proof. by move=> Cfree eqAB; apply/eqmxP; move/eqmxP: eqAB; rewrite !submxMfree. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmxMfree
mxrankMfreem n p (A : 'M_(m, n)) (B : 'M_(n, p)) : row_free B -> \rank (A *m B) = \rank A. Proof. by move=> Bfree; rewrite -mxrank_tr trmx_mul eqmxMfull /row_full mxrank_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrankMfree
eq_row_basem n (A : 'M_(m, n)) : (row_base A :=: A)%MS. Proof. apply/eqmxP/andP; split; apply/submxP. exists (pid_mx (\rank A) *m invmx (col_ebase A)). by rewrite -{8}[A]mulmx_ebase !mulmxA mulmxKV // pid_mx_id. exists (col_ebase A *m pid_mx (\rank A)). by rewrite mulmxA -(mulmxA _ _ (pid_mx _)) pid_mx_id // mulmx_ebase. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eq_row_base
row_base0(m n : nat) : row_base (0 : 'M[F]_(m, n)) = 0. Proof. by apply/eqmx0P; rewrite !eq_row_base !sub0mx. Qed. Let qidmx_eq1 n (A : 'M_n) : qidmx A = (A == 1%:M). Proof. by rewrite /qidmx eqxx pid_mx_1. Qed. Let genmx_witnessP m n (A : 'M_(m, n)) : equivmx A (row_full A) (genmx_witness A). Proof. rewrite /equivmx qidmx_eq1 /genmx_witness. case fullA: (row_full A); first by rewrite eqxx sub1mx submx1 fullA. set B := _ *m _; have defB : (B == A)%MS. apply/andP; split; apply/submxP. exists (pid_mx (\rank A) *m invmx (col_ebase A)). by rewrite -{3}[A]mulmx_ebase !mulmxA mulmxKV // pid_mx_id. exists (col_ebase A *m pid_mx (\rank A)). by rewrite mulmxA -(mulmxA _ _ (pid_mx _)) pid_mx_id // mulmx_ebase. rewrite defB -negb_add addbF; case: eqP defB => // ->. by rewrite sub1mx fullA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_base0
genmxEm n (A : 'M_(m, n)) : (<<A>> :=: A)%MS. Proof. by rewrite unlock; apply/eqmxP; case/andP: (chooseP (genmx_witnessP A)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
genmxE
eq_genmxm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A :=: B -> <<A>> = <<B>>)%MS. Proof. move=> eqAB; rewrite unlock. have{} eqAB: equivmx A (row_full A) =1 equivmx B (row_full B). by move=> C; rewrite /row_full /equivmx !eqAB. rewrite (eq_choose eqAB) (choose_id _ (genmx_witnessP B)) //. by rewrite -eqAB genmx_witnessP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eq_genmx
genmxPm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (<<A>> = <<B>>)%MS (A == B)%MS. Proof. apply: (iffP idP) => eqAB; first exact: eq_genmx (eqmxP _). by rewrite -!(genmxE A) eqAB !genmxE andbb. Qed. Arguments genmxP {m1 m2 n A B}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
genmxP
genmx0m n : <<0 : 'M_(m, n)>>%MS = 0. Proof. by apply/eqP; rewrite -submx0 genmxE sub0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
genmx0
genmx1n : <<1%:M : 'M_n>>%MS = 1%:M. Proof. rewrite unlock; case/andP: (chooseP (@genmx_witnessP n n 1%:M)) => _ /eqP. by rewrite qidmx_eq1 row_full_unit unitmx1 => /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
genmx1
genmx_idm n (A : 'M_(m, n)) : (<<<<A>>>> = <<A>>)%MS. Proof. exact/eq_genmx/genmxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
genmx_id
row_base_freem n (A : 'M_(m, n)) : row_free (row_base A). Proof. by apply/eqnP; rewrite eq_row_base. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_base_free
mxrank_genm n (A : 'M_(m, n)) : \rank <<A>>%MS = \rank A. Proof. by rewrite genmxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_gen
col_base_fullm n (A : 'M_(m, n)) : row_full (col_base A). Proof. apply/row_fullP; exists (pid_mx (\rank A) *m invmx (col_ebase A)). by rewrite !mulmxA mulmxKV // pid_mx_id // pid_mx_1. Qed. Hint Resolve row_base_free col_base_full : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
col_base_full
mxrank_leqif_supm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS -> \rank A <= \rank B ?= iff (B <= A)%MS. Proof. move=> sAB; split; first by rewrite mxrankS. apply/idP/idP=> [| sBA]; last by rewrite eqn_leq !mxrankS. case/submxP: sAB => D ->; set r := \rank B; rewrite -(mulmx_base B) mulmxA. rewrite mxrankMfree // => /row_fullP[E kE]. by rewrite -[rB in _ *m rB]mul1mx -kE -(mulmxA E) (mulmxA _ E) submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_leqif_sup
mxrank_leqif_eqm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A <= B)%MS -> \rank A <= \rank B ?= iff (A == B)%MS. Proof. by move=> sAB; rewrite sAB; apply: mxrank_leqif_sup. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_leqif_eq
ltmxErankm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A < B)%MS = (A <= B)%MS && (\rank A < \rank B). Proof. by apply: andb_id2l => sAB; rewrite (ltn_leqif (mxrank_leqif_sup sAB)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
ltmxErank
rank_ltmxm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (A < B)%MS -> \rank A < \rank B. Proof. by rewrite ltmxErank => /andP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rank_ltmx
eqmx_castm1 m2 n (A : 'M_(m1, n)) e : ((castmx e A : 'M_(m2, n)) :=: A)%MS. Proof. by case: e A; case: m2 / => A e; rewrite castmx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_cast
row_full_castmxm1 m2 n (A : 'M_(m1, n)) e : row_full (castmx e A : 'M_(m2, n)) = row_full A. Proof. exact/eq_row_full/eqmx_cast. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_full_castmx
row_free_castmxm1 m2 n (A : 'M_(m1, n)) e : row_free (castmx e A : 'M_(m2, n)) = row_free A. Proof. by rewrite /row_free eqmx_cast; congr (_ == _); rewrite e.1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
row_free_castmx
eqmx_conformm1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : (conform_mx A B :=: A \/ conform_mx A B :=: B)%MS. Proof. case: (eqVneq m2 m1) => [-> | neqm12] in B *. by right; rewrite conform_mx_id. by left; rewrite nonconform_mx ?neqm12. Qed. Let eqmx_sum_nop m n (A : 'M_(m, n)) : (addsmx_nop A :=: A)%MS. Proof. case: (eqmx_conform <<A>>%MS A) => // eq_id_gen. exact: eqmx_trans (genmxE A). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_conform
rowsub_comp_sub(m n p q : nat) f (g : 'I_n -> 'I_p) (A : 'M_(m, q)) : (rowsub (f \o g) A <= rowsub f A)%MS. Proof. by rewrite rowsub_comp rowsubE mulmx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
rowsub_comp_sub
submx_rowsub(m n p q : nat) (h : 'I_n -> 'I_p) f g (A : 'M_(m, q)) : f =1 g \o h -> (rowsub f A <= rowsub g A)%MS. Proof. by move=> /eq_rowsub->; rewrite rowsub_comp_sub. Qed. Arguments submx_rowsub [m1 m2 m3 n] h [f g A] _ : rename.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
submx_rowsub
eqmx_rowsub_comp_perm(m1 m2 n : nat) (s : 'S_m2) f (A : 'M_(m1, n)) : (rowsub (f \o s) A :=: rowsub f A)%MS. Proof. rewrite rowsub_comp rowsubE; apply: eqmxMfull. by rewrite -perm_mxEsub row_full_unit unitmx_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_rowsub_comp_perm
eqmx_rowsub_comp(m n p q : nat) f (g : 'I_n -> 'I_p) (A : 'M_(m, q)) : p <= n -> injective g -> (rowsub (f \o g) A :=: rowsub f A)%MS. Proof. move=> leq_pn g_inj; have eq_np : n == p by rewrite eqn_leq leq_pn (inj_leq g). rewrite (eqP eq_np) in g g_inj *. rewrite (eq_rowsub (f \o (perm g_inj))); last by move=> i; rewrite /= permE. exact: eqmx_rowsub_comp_perm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_rowsub_comp
eqmx_rowsub(m n p q : nat) (h : 'I_n -> 'I_p) f g (A : 'M_(m, q)) : injective h -> p <= n -> f =1 g \o h -> (rowsub f A :=: rowsub g A)%MS. Proof. by move=> leq_pn h_inj /eq_rowsub->; apply: eqmx_rowsub_comp. Qed. Arguments eqmx_rowsub [m1 m2 m3 n] h [f g A] _ : rename.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_rowsub
col_mx_subm3 (C : 'M_(m3, n)) : (col_mx A B <= C)%MS = (A <= C)%MS && (B <= C)%MS. Proof. rewrite !submxE mul_col_mx -col_mx0. by apply/eqP/andP; [case/eq_col_mx=> -> -> | case; do 2!move/eqP->]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
col_mx_sub
addsmxE: (A + B :=: col_mx A B)%MS. Proof. have:= submx_refl (col_mx A B); rewrite col_mx_sub; case/andP=> sAS sBS. rewrite unlock; do 2?case: eqP => [AB0 | _]; last exact: genmxE. by apply/eqmxP; rewrite !eqmx_sum_nop sBS col_mx_sub AB0 sub0mx /=. by apply/eqmxP; rewrite !eqmx_sum_nop sAS col_mx_sub AB0 sub0mx andbT /=. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
addsmxE