fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
maxrowsub_free: row_free (rowsub mxf A). Proof. rewrite /mxf; case: arg_maxnP => //= f _ fM; apply/negP => /negP rfA. have [i NriA] : exists i, ~~ (row i A <= rowsub f A)%MS. by apply/row_subPn; apply: contraNN rfA => /mxrankS; rewrite row_leq_rank. have [j rjfA] : exists j, (row (f j) A <= rowsub (f \o lift j) A)%MS. case/row_freePn: rfA => j. by rewrite row_rowsub row'Esub -mxsub_comp; exists j. pose g : 'I_m ^ \rank A := finfun [eta f with j |-> i]. suff: (rowsub f A < rowsub g A)%MS by rewrite ltmxErank andbC ltnNge fM. rewrite ltmxE; apply/andP; split; last first. apply: contra NriA; apply: submx_trans. by rewrite (eq_row_sub j)// row_rowsub ffunE/= eqxx. apply/row_subP => k; rewrite !row_rowsub. have [->|/negPf eq_kjF] := eqVneq k j; last first. by rewrite (eq_row_sub k)// row_rowsub ffunE/= eq_kjF. rewrite (submx_trans rjfA)// (submx_rowsub (lift j))// => l /=. by rewrite ffunE/= eq_sym (negPf (neq_lift _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
maxrowsub_free
eq_maxrowsub: (rowsub mxf A :=: A)%MS. Proof. apply/eqmxP; rewrite -(eq_leqif (mxrank_leqif_eq _))//. exact: maxrowsub_free. apply/row_subP => i; apply/submxP; exists (delta_mx 0 (mxf i)). by rewrite -rowE; apply/rowP => j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eq_maxrowsub
maxrankfun_inj: injective mxf. Proof. move=> i j eqAij; have /row_free_inj := maxrowsub_free. move=> /(_ 1) /(_ (delta_mx 0 i) (delta_mx 0 j)). rewrite -!rowE !row_rowsub eqAij => /(_ erefl) /matrixP /(_ 0 i) /eqP. by rewrite !mxE !eqxx/=; case: (i =P j); rewrite // oner_eq0. Qed. Variable (rkA : row_full A).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
maxrankfun_inj
maxrowsub_full: row_full (rowsub mxf A). Proof. by rewrite /row_full eq_maxrowsub. Qed. Hint Resolve maxrowsub_full : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
maxrowsub_full
fullrankfun: 'I_m ^ n := finfun (mxf \o cast_ord (esym (eqP rkA))). Local Notation frf := fullrankfun.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
fullrankfun
fullrowsub_full: row_full (rowsub frf A). Proof. by rewrite mxsub_ffunl rowsub_comp rowsub_cast esymK row_full_castmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
fullrowsub_full
fullrowsub_unit: rowsub frf A \in unitmx. Proof. by rewrite -row_full_unit fullrowsub_full. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
fullrowsub_unit
fullrowsub_free: row_free (rowsub frf A). Proof. by rewrite row_free_unit fullrowsub_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
fullrowsub_free
mxrank_fullrowsub: \rank (rowsub frf A) = n. Proof. exact/eqP/fullrowsub_full. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_fullrowsub
eq_fullrowsub: (rowsub frf A :=: A)%MS. Proof. rewrite mxsub_ffunl rowsub_comp rowsub_cast esymK. exact: (eqmx_trans (eqmx_cast _ _) eq_maxrowsub). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eq_fullrowsub
fullrankfun_inj: injective frf. Proof. by move=> i j; rewrite !ffunE => /maxrankfun_inj /(congr1 val)/= /val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
fullrankfun_inj
mxsum_specn : forall m, 'M[F]_(m, n) -> nat -> Prop := | TrivialMxsum m A : @mxsum_spec n m A (\rank A) | ProperMxsum m1 m2 T1 T2 r1 r2 of @mxsum_spec n m1 T1 r1 & @mxsum_spec n m2 T2 r2 : mxsum_spec (T1 + T2)%MS (r1 + r2)%N. Arguments mxsum_spec {n%_N m%_N} T%_MS r%_N.
Inductive
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxsum_spec
mxsum_exprm n := Mxsum { mxsum_val :> wrapped 'M_(m, n); mxsum_rank : wrapped nat; _ : mxsum_spec (unwrap mxsum_val) (unwrap mxsum_rank) }.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxsum_expr
trivial_mxsumm n A := @Mxsum m n (Wrap A) (Wrap (\rank A)) (TrivialMxsum A).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
trivial_mxsum
proper_mxsum_exprn := ProperMxsumExpr { proper_mxsum_val :> 'M_n; proper_mxsum_rank : nat; _ : mxsum_spec proper_mxsum_val proper_mxsum_rank }.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
proper_mxsum_expr
proper_mxsumPn (S : proper_mxsum_expr n) := let: ProperMxsumExpr _ _ termS := S return mxsum_spec S (proper_mxsum_rank S) in termS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
proper_mxsumP
sum_mxsumn (S : proper_mxsum_expr n) := @Mxsum n n (wrap (S : 'M_n)) (wrap (proper_mxsum_rank S)) (proper_mxsumP S).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sum_mxsum
binary_mxsum_expr:= ProperMxsumExpr binary_mxsum_proof.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
binary_mxsum_expr
nary_mxsum_expr:= ProperMxsumExpr nary_mxsum_proof.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
nary_mxsum_expr
mxdirect_defm n T of phantom 'M_(m, n) (unwrap (mxsum_val T)) := \rank (unwrap T) == unwrap (mxsum_rank T).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_def
mxdirectA := (mxdirect_def (Phantom 'M_(_,_) A%MS)).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect
mxdirectPn (S : proper_mxsum_expr n) : reflect (\rank S = proper_mxsum_rank S) (mxdirect S). Proof. exact: eqnP. Qed. Arguments mxdirectP {n S}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirectP
mxdirect_trivialm n A : mxdirect (unwrap (@trivial_mxsum m n A)). Proof. exact: eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_trivial
mxrank_sum_leqifm n (S : mxsum_expr m n) : \rank (unwrap S) <= unwrap (mxsum_rank S) ?= iff mxdirect (unwrap S). Proof. rewrite /mxdirect_def; case: S => [[A] [r] /= defAr]; split=> //=. elim: m A r / defAr => // m1 m2 A1 A2 r1 r2 _ leAr1 _ leAr2. by apply: leq_trans (leq_add leAr1 leAr2); rewrite mxrank_adds_leqif. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxrank_sum_leqif
mxdirectEm n (S : mxsum_expr m n) : mxdirect (unwrap S) = (\rank (unwrap S) == unwrap (mxsum_rank S)). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirectE
mxdirectEgeqm n (S : mxsum_expr m n) : mxdirect (unwrap S) = (\rank (unwrap S) >= unwrap (mxsum_rank S)). Proof. by rewrite (geq_leqif (mxrank_sum_leqif S)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirectEgeq
mxdirect_addsE(S1 : mxsum_expr m1 n) (S2 : mxsum_expr m2 n) : mxdirect (unwrap S1 + unwrap S2) = [&& mxdirect (unwrap S1), mxdirect (unwrap S2) & unwrap S1 :&: unwrap S2 == 0]%MS. Proof. rewrite (@mxdirectE n) /=. have:= leqif_add (mxrank_sum_leqif S1) (mxrank_sum_leqif S2). move/(leqif_trans (mxrank_adds_leqif (unwrap S1) (unwrap S2)))=> ->. by rewrite andbC -andbA submx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_addsE
mxdirect_addsP(A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (A :&: B = 0)%MS (mxdirect (A + B)). Proof. by rewrite mxdirect_addsE !mxdirect_trivial; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_addsP
mxdirect_sumsP(A_ : I -> 'M_n) : reflect (forall i, P i -> A_ i :&: (\sum_(j | P j && (j != i)) A_ j) = 0)%MS (mxdirect (\sum_(i | P i) A_ i)). Proof. apply: (iffP (mxdirect_sums_recP _)) => dxA i /dxA; first by case. by rewrite mxdirect_trivial. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_sumsP
mxdirect_sumsE(S_ : I -> mxsum_expr n n) (xunwrap := unwrap) : reflect (and (forall i, P i -> mxdirect (unwrap (S_ i))) (mxdirect (\sum_(i | P i) (xunwrap (S_ i))))) (mxdirect (\sum_(i | P i) (unwrap (S_ i)))). Proof. apply: (iffP (mxdirect_sums_recP _)) => [dxS | [dxS_ dxS] i Pi]. by do [split; last apply/mxdirect_sumsP] => i; case/dxS. by split; [apply: dxS_ | apply: mxdirect_sumsP Pi]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_sumsE
sub_daddsmx_spec: Prop := SubDaddsmxSpec A1 A2 of (A1 <= B1)%MS & (A2 <= B2)%MS & A = A1 + A2 & forall C1 C2, (C1 <= B1)%MS -> (C2 <= B2)%MS -> A = C1 + C2 -> C1 = A1 /\ C2 = A2.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub_daddsmx_spec
sub_daddsmx: (B1 :&: B2 = 0)%MS -> (A <= B1 + B2)%MS -> sub_daddsmx_spec. Proof. move=> dxB /sub_addsmxP[u defA]. exists (u.1 *m B1) (u.2 *m B2); rewrite ?submxMl // => C1 C2 sCB1 sCB2. move/(canLR (addrK _)) => defC1. suffices: (C2 - u.2 *m B2 <= B1 :&: B2)%MS. by rewrite dxB submx0 subr_eq0 -defC1 defA; move/eqP->; rewrite addrK. rewrite sub_capmx -opprB -{1}(canLR (addKr _) defA) -addrA defC1. by rewrite !(eqmx_opp, addmx_sub) ?submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub_daddsmx
sub_dsumsmx_spec: Prop := SubDsumsmxSpec A_ of forall i, P i -> (A_ i <= B i)%MS & A = \sum_(i | P i) A_ i & forall C, (forall i, P i -> C i <= B i)%MS -> A = \sum_(i | P i) C i -> {in SimplPred P, C =1 A_}.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub_dsumsmx_spec
sub_dsumsmx: mxdirect (\sum_(i | P i) B i) -> (A <= \sum_(i | P i) B i)%MS -> sub_dsumsmx_spec. Proof. move/mxdirect_sumsP=> dxB /sub_sumsmxP[u defA]. pose A_ i := u i *m B i. exists A_ => //= [i _ | C sCB defAC i Pi]; first exact: submxMl. apply/eqP; rewrite -subr_eq0 -submx0 -{dxB}(dxB i Pi) /=. rewrite sub_capmx addmx_sub ?eqmx_opp ?submxMl ?sCB //=. rewrite -(subrK A (C i)) -addrA -opprB addmx_sub ?eqmx_opp //. rewrite addrC defAC (bigD1 i) // addKr /= summx_sub // => j Pi'j. by rewrite (sumsmx_sup j) ?sCB //; case/andP: Pi'j. rewrite addrC defA (bigD1 i) // addKr /= summx_sub // => j Pi'j. by rewrite (sumsmx_sup j) ?submxMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
sub_dsumsmx
eigenspacea := kermx (g - a%:M).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eigenspace
eigenvalue: pred F := fun a => eigenspace a != 0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eigenvalue
eigenspacePa m (W : 'M_(m, n)) : reflect (W *m g = a *: W) (W <= eigenspace a)%MS. Proof. by rewrite sub_kermx mulmxBr subr_eq0 mul_mx_scalar; apply/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eigenspaceP
eigenvaluePa : reflect (exists2 v : 'rV_n, v *m g = a *: v & v != 0) (eigenvalue a). Proof. by apply: (iffP (rowV0Pn _)) => [] [v]; move/eigenspaceP; exists v. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eigenvalueP
stablemxV f := (V%MS *m f%R <= V%MS)%MS.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemx
eigenvectorP{v : 'rV_n} : reflect (exists a, (v <= eigenspace a)%MS) (stablemx v g). Proof. by apply: (iffP (sub_rVP _ _)) => -[a] /eigenspaceP; exists a. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eigenvectorP
mxdirect_sum_eigenspace(P : pred I) a_ : {in P &, injective a_} -> mxdirect (\sum_(i | P i) eigenspace (a_ i)). Proof. have [m] := ubnP #|P|; elim: m P => // m IHm P lePm inj_a. apply/mxdirect_sumsP=> i Pi; apply/eqP/rowV0P => v. rewrite sub_capmx => /andP[/eigenspaceP def_vg]. set Vi' := (\sum_(i | _) _)%MS => Vi'v. have dxVi': mxdirect Vi'. rewrite (cardD1x Pi) in lePm; apply: IHm => //. by apply: sub_in2 inj_a => j /andP[]. case/sub_dsumsmx: Vi'v => // u Vi'u def_v _. rewrite def_v big1 // => j Pi'j; apply/eqP. have nz_aij: a_ i - a_ j != 0. by case/andP: Pi'j => Pj ne_ji; rewrite subr_eq0 eq_sym (inj_in_eq inj_a). case: (sub_dsumsmx dxVi' (sub0mx 1 _)) => C _ _ uniqC. rewrite -(eqmx_eq0 (eqmx_scale _ nz_aij)). rewrite (uniqC (fun k => (a_ i - a_ k) *: u k)) => // [|k Pi'k|]. - by rewrite -(uniqC (fun _ => 0)) ?big1 // => k Pi'k; apply: sub0mx. - by rewrite scalemx_sub ?Vi'u. rewrite -{1}(subrr (v *m g)) {1}def_vg def_v scaler_sumr mulmx_suml -sumrB. by apply: eq_bigr => k /Vi'u/eigenspaceP->; rewrite scalerBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_sum_eigenspace
mxdirectS := (mxdirect_def (Phantom 'M_(_,_) S%MS)).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect
eqmx_stablem m' n (V : 'M[F]_(m, n)) (V' : 'M[F]_(m', n)) (f : 'M[F]_n) : (V :=: V')%MS -> stablemx V f = stablemx V' f. Proof. by move=> eqVV'; rewrite (eqmxMr _ eqVV') eqVV'. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
eqmx_stable
stablemx_row_base: (stablemx (row_base V) f) = (stablemx V f). Proof. by apply: eqmx_stable; apply: eq_row_base. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemx_row_base
stablemx_full: row_full V -> stablemx V f. Proof. exact: submx_full. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemx_full
stablemxM: stablemx V f -> stablemx V g -> stablemx V (f *m g). Proof. by move=> f_stab /(submx_trans _)->//; rewrite mulmxA submxMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemxM
stablemxD: stablemx V f -> stablemx V g -> stablemx V (f + g). Proof. by move=> f_stab g_stab; rewrite mulmxDr addmx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemxD
stablemxN: stablemx V (- f) = stablemx V f. Proof. by rewrite mulmxN eqmx_opp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemxN
stablemxCx : stablemx V x%:M. Proof. by rewrite mul_mx_scalar scalemx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemxC
stablemx0: stablemx V 0. Proof. by rewrite mulmx0 sub0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemx0
stableDmx: stablemx V f -> stablemx W f -> stablemx (V + W)%MS f. Proof. by move=> fV fW; rewrite addsmxMr addsmxS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stableDmx
stableNmx: stablemx (- V) f = stablemx V f. Proof. by rewrite mulNmx !eqmx_opp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stableNmx
stable0mx: stablemx (0 : 'M_(m, n)) f. Proof. by rewrite mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stable0mx
stableCmx(m n : nat) x (f : 'M[F]_(m, n)) : stablemx x%:M f. Proof. have [->|x_neq0] := eqVneq x 0; first by rewrite mul_scalar_mx scale0r sub0mx. by rewrite -![x%:M]scalemx1 eqmx_scale// submx_full// -sub1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stableCmx
stablemx_sums(n : nat) (I : finType) (V_ : I -> 'M[F]_n) (f : 'M_n) : (forall i, stablemx (V_ i) f) -> stablemx (\sum_i V_ i)%MS f. Proof. by move=> fV; rewrite sumsmxMr; apply/sumsmx_subP => i; rewrite (sumsmx_sup i). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemx_sums
stablemx_unit(n : nat) (V f : 'M[F]_n) : V \in unitmx -> stablemx V f. Proof. by move=> Vunit; rewrite submx_full ?row_full_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
stablemx_unit
comm_mx_stable(f g : 'M[F]_n) : comm_mx f g -> stablemx f g. Proof. by move=> comm_fg; rewrite [_ *m _]comm_fg mulmx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
comm_mx_stable
comm_mx_stable_ker(f g : 'M[F]_n) : comm_mx f g -> stablemx (kermx f) g. Proof. move=> comm_fg; apply/sub_kermxP. by rewrite -mulmxA -[g *m _]comm_fg mulmxA mulmx_ker mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
comm_mx_stable_ker
comm_mx_stable_eigenspace(f g : 'M[F]_n) a : comm_mx f g -> stablemx (eigenspace f a) g. Proof. move=> cfg; rewrite comm_mx_stable_ker//. by apply/comm_mx_sym/comm_mxB => //; apply:comm_mx_scalar. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
comm_mx_stable_eigenspace
mxdirect_deltan f : {in P &, injective f} -> mxdirect (\sum_(i | P i) <<delta_mx 0 (f i) : 'rV[F]_n>>). Proof. pose fP := image f P => Uf; have UfP: uniq fP by apply/dinjectiveP. suffices /mxdirectP : mxdirect (\sum_i <<delta_mx 0 i : 'rV[F]_n>>). rewrite /= !(bigID [in fP] predT) -!big_uniq //= !big_map !big_enum. by move/mxdirectP; rewrite mxdirect_addsE => /andP[]. apply/mxdirectP=> /=; transitivity (mxrank (1%:M : 'M[F]_n)). apply/eqmx_rank; rewrite submx1 mx1_sum_delta summx_sub_sums // => i _. by rewrite -(mul_delta_mx (0 : 'I_1)) genmxE submxMl. rewrite mxrank1 -[LHS]card_ord -sum1_card. by apply/eq_bigr=> i _; rewrite /= mxrank_gen mxrank_delta. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxdirect_delta
card_GLn : n > 0 -> #|'GL_n[F]| = (#|F| ^ 'C(n, 2) * \prod_(1 <= i < n.+1) (#|F| ^ i - 1))%N. Proof. case: n => // n' _; set n := n'.+1; set p := #|F|. rewrite big_nat_rev big_add1 -bin2_sum expn_sum -big_split /=. pose fr m := [pred A : 'M[F]_(m, n) | \rank A == m]. set m := n; rewrite [in m.+1]/m; transitivity #|fr m|. by rewrite cardsT /= card_sub; apply: eq_card => A; rewrite -row_free_unit. have: m <= n by []; elim: m => [_ | m IHm /ltnW-le_mn]. rewrite (@eq_card1 _ (0 : 'M_(0, n))) ?big_geq //= => A. by rewrite flatmx0 !inE mxrank.unlock !eqxx. rewrite big_nat_recr // -{}IHm //= !subSS mulnBr muln1 -expnD subnKC //. rewrite -sum_nat_const /= -sum1_card -add1n. rewrite (partition_big dsubmx (fr m)) /= => [|A]; last first. rewrite !inE -{1}(vsubmxK A); move: {A}(_ A) (_ A) => Ad Au Afull. rewrite eqn_leq rank_leq_row -(leq_add2l (\rank Au)) -mxrank_sum_cap. rewrite {1 3}[@mxrank]lock addsmxE (eqnP Afull) -lock -addnA. by rewrite leq_add ?rank_leq_row ?leq_addr. apply: eq_bigr => A rAm; rewrite (reindex (col_mx^~ A)) /=; last first. exists usubmx => [v _ | vA]; first by rewrite col_mxKu. by case/andP=> _ /eqP <-; rewrite vsubmxK. transitivity #|~: [set v *m A | v in 'rV_m]|; last first. rewrite cardsCs setCK card_imset ?card_mx ?card_ord ?mul1n //. have [B AB1] := row_freeP rAm; apply: can_inj (mulmx^~ B) _ => v. by rewrite -mulmxA AB1 mulmx1. rewrite -sum1_card; apply: eq_bigl => v; rewrite !inE col_mxKd eqxx. rewrite andbT eqn_leq rank_leq_row /= -(leq ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
card_GL
LUP_card_GLn : n > 0 -> #|'GL_n[F]| = (#|F| ^ 'C(n, 2) * \prod_(1 <= i < n.+1) (#|F| ^ i - 1))%N. Proof. case: n => // n' _; set n := n'.+1; set p := #|F|. rewrite cardsT /= card_sub /GRing.unit /= big_add1 /= -bin2_sum -/n /=. elim: {n'}n => [|n IHn]. rewrite !big_geq // mul1n (@eq_card _ _ predT) ?card_mx //= => M. by rewrite {1}[M]flatmx0 -(flatmx0 1%:M) unitmx1. rewrite !big_nat_recr //= expnD mulnAC mulnA -{}IHn -mulnA mulnC. set LHS := #|_|; rewrite -[n.+1]muln1 -{2}[n]mul1n {}/LHS. rewrite -!card_mx subn1 -(cardC1 0) -mulnA; set nzC := predC1 _. rewrite -sum1_card (partition_big lsubmx nzC) => [|A]; last first. rewrite unitmxE unitfE; apply: contra; move/eqP=> v0. rewrite -[A]hsubmxK v0 -[n.+1]/(1 + n)%N -col_mx0. rewrite -[rsubmx _]vsubmxK -det_tr tr_row_mx !tr_col_mx !trmx0. by rewrite det_lblock [0]mx11_scalar det_scalar1 mxE mul0r. rewrite -sum_nat_const; apply: eq_bigr => /= v /cV0Pn[k nza]. have xrkK: involutive (@xrow F _ _ 0 k). by move=> m A /=; rewrite /xrow -row_permM tperm2 row_perm1. rewrite (reindex_inj (inv_inj (xrkK (1 + n)%N))) /= -[n.+1]/(1 + n)%N. rewrite (partition_big ursubmx xpredT) //= -sum_nat_const. apply: eq_bigr => u _; set a : F := v _ _ in nza. set v1 : 'cV_(1 + n) := xrow 0 k v. have def_a: usubmx v1 = a%:M. by rewrite [_ v1]mx11_scalar mxE lshift0 mxE tpermL. pose Schur := dsubmx v1 *m (a^-1 *: u). pose L : 'M_(1 + n) := block_mx a%:M 0 (dsubmx v1) 1%:M. pose U B : 'M_(1 + n) := block_mx 1 (a^-1 *: u) 0 B. rewrite (reindex (fun B = ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
LUP_card_GL
card_GL_1: #|'GL_1[F]| = #|F|.-1. Proof. by rewrite card_GL // mul1n big_nat1 expn1 subn1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
card_GL_1
card_GL_2: #|'GL_2[F]| = (#|F| * #|F|.-1 ^ 2 * #|F|.+1)%N. Proof. rewrite card_GL // big_ltn // big_nat1 expn1 -(addn1 #|F|) -subn1 -!mulnA. by rewrite -subn_sqr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
card_GL_2
logn_card_GL_pn p : prime p -> logn p #|'GL_n(p)| = 'C(n, 2). Proof. move=> p_pr; have p_gt1 := prime_gt1 p_pr. have p_i_gt0: p ^ _ > 0 by move=> i; rewrite expn_gt0 ltnW. have <- : #|'GL_n.-1.+1(p)| = #|'GL_n(p)| by []. rewrite (card_GL _ (ltn0Sn n.-1)) card_ord Fp_cast // big_add1 /=. pose p'gt0 m := m > 0 /\ logn p m = 0. suffices [Pgt0 p'P]: p'gt0 (\prod_(0 <= i < n.-1.+1) (p ^ i.+1 - 1))%N. by rewrite lognM // p'P pfactorK // addn0; case n. apply: big_ind => [|m1 m2 [m10 p'm1] [m20]|i _]; rewrite {}/p'gt0 ?logn1 //. by rewrite muln_gt0 m10 lognM ?p'm1. rewrite lognE -if_neg subn_gt0 p_pr /= -{1 2}(exp1n i.+1) ltn_exp2r // p_gt1. by rewrite dvdn_subr ?dvdn_exp // gtnNdvd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
logn_card_GL_p
mem0mxm n (R : 'A_(m, n)) : 0 \in R. Proof. by rewrite linear0 sub0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mem0mx
memmx0n A : (A \in (0 : 'A_n)) -> A = 0. Proof. by rewrite submx0 mxvec_eq0; move/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
memmx0
memmx1n (A : 'M_n) : (A \in mxvec 1%:M) = is_scalar_mx A. Proof. apply/sub_rVP/is_scalar_mxP=> [[a] | [a ->]]. by rewrite -linearZ scale_scalar_mx mulr1 => /(can_inj mxvecK); exists a. by exists a; rewrite -linearZ scale_scalar_mx mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
memmx1
memmx_subPm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (forall A, A \in R1 -> A \in R2) (R1 <= R2)%MS. Proof. apply: (iffP idP) => [sR12 A R1_A | sR12]; first exact: submx_trans sR12. by apply/rV_subP=> vA; rewrite -(vec_mxK vA); apply: sR12. Qed. Arguments memmx_subP {m1 m2 n R1 R2}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
memmx_subP
memmx_eqPm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (forall A, (A \in R1) = (A \in R2)) (R1 == R2)%MS. Proof. apply: (iffP eqmxP) => [eqR12 A | eqR12]; first by rewrite eqR12. by apply/eqmxP/rV_eqP=> vA; rewrite -(vec_mxK vA) eqR12. Qed. Arguments memmx_eqP {m1 m2 n R1 R2}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
memmx_eqP
memmx_addsPm1 m2 n A (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (exists D, [/\ D.1 \in R1, D.2 \in R2 & A = D.1 + D.2]) (A \in R1 + R2)%MS. Proof. apply: (iffP sub_addsmxP) => [[u /(canRL mxvecK)->] | [D []]]. exists (vec_mx (u.1 *m R1), vec_mx (u.2 *m R2)). by rewrite /= linearD !vec_mxK !submxMl. case/submxP=> u1 defD1 /submxP[u2 defD2] ->. by exists (u1, u2); rewrite linearD /= defD1 defD2. Qed. Arguments memmx_addsP {m1 m2 n A R1 R2}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
memmx_addsP
memmx_sumsP(I : finType) (P : pred I) n (A : 'M_n) R_ : reflect (exists2 A_, A = \sum_(i | P i) A_ i & forall i, A_ i \in R_ i) (A \in \sum_(i | P i) R_ i)%MS. Proof. apply: (iffP sub_sumsmxP) => [[C defA] | [A_ -> R_A] {A}]. exists (fun i => vec_mx (C i *m R_ i)) => [|i]. by rewrite -linear_sum -defA /= mxvecK. by rewrite vec_mxK submxMl. exists (fun i => mxvec (A_ i) *m pinvmx (R_ i)). by rewrite linear_sum; apply: eq_bigr => i _; rewrite mulmxKpV. Qed. Arguments memmx_sumsP {I P n A R_}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
memmx_sumsP
has_non_scalar_mxPm n (R : 'A_(m, n)) : (1%:M \in R)%MS -> reflect (exists2 A, A \in R & ~~ is_scalar_mx A)%MS (1 < \rank R). Proof. case: (posnP n) => [-> | n_gt0] in R *; set S := mxvec _ => sSR. by rewrite [R]thinmx0 mxrank0; right; case; rewrite /is_scalar_mx ?insubF. have rankS: \rank S = 1%N. apply/eqP; rewrite eqn_leq rank_leq_row lt0n mxrank_eq0 mxvec_eq0. by rewrite -mxrank_eq0 mxrank1 -lt0n. rewrite -{2}rankS (ltn_leqif (mxrank_leqif_sup sSR)). apply: (iffP idP) => [/row_subPn[i] | [A sAR]]. rewrite -[row i R]vec_mxK memmx1; set A := vec_mx _ => nsA. by exists A; rewrite // vec_mxK row_sub. by rewrite -memmx1; apply/contra/submx_trans. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
has_non_scalar_mxP
mulsmxm1 m2 n (R1 : 'A[F]_(m1, n)) (R2 : 'A_(m2, n)) := (\sum_i <<R1 *m lin_mx (mulmxr (vec_mx (row i R2)))>>)%MS. Arguments mulsmx {m1%_N m2%_N n%_N} R1%_MS R2%_MS. Local Notation "R1 * R2" := (mulsmx R1 R2) : matrix_set_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmx
genmx_mulsm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : <<(R1 * R2)%MS>>%MS = (R1 * R2)%MS. Proof. by rewrite genmx_sums; apply: eq_bigr => i; rewrite genmx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
genmx_muls
mem_mulsmxm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) A1 A2 : (A1 \in R1 -> A2 \in R2 -> A1 *m A2 \in R1 * R2)%MS. Proof. move=> R_A1 R_A2; rewrite -[A2]mxvecK; case/submxP: R_A2 => a ->{A2}. rewrite mulmx_sum_row !linear_sum summx_sub // => i _. rewrite 3!linearZ scalemx_sub {a}//= (sumsmx_sup i) // genmxE. rewrite -[A1]mxvecK; case/submxP: R_A1 => a ->{A1}. by apply/submxP; exists a; rewrite mulmxA mul_rV_lin. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mem_mulsmx
mulsmx_subPm1 m2 m n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R : 'A_(m, n)) : reflect (forall A1 A2, A1 \in R1 -> A2 \in R2 -> A1 *m A2 \in R) (R1 * R2 <= R)%MS. Proof. apply: (iffP memmx_subP) => [sR12R A1 A2 R_A1 R_A2 | sR12R A]. by rewrite sR12R ?mem_mulsmx. case/memmx_sumsP=> A_ -> R_A; rewrite linear_sum summx_sub //= => j _. rewrite (submx_trans (R_A _)) // genmxE; apply/row_subP=> i. by rewrite row_mul mul_rV_lin sR12R ?vec_mxK ?row_sub. Qed. Arguments mulsmx_subP {m1 m2 m n R1 R2 R}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmx_subP
mulsmxSm1 m2 m3 m4 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) (R4 : 'A_(m4, n)) : (R1 <= R3 -> R2 <= R4 -> R1 * R2 <= R3 * R4)%MS. Proof. move=> sR13 sR24; apply/mulsmx_subP=> A1 A2 R_A1 R_A2. by apply: mem_mulsmx; [apply: submx_trans sR13 | apply: submx_trans sR24]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmxS
muls_eqmxm1 m2 m3 m4 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) (R4 : 'A_(m4, n)) : (R1 :=: R3 -> R2 :=: R4 -> R1 * R2 = R3 * R4)%MS. Proof. move=> eqR13 eqR24; rewrite -(genmx_muls R1 R2) -(genmx_muls R3 R4). by apply/genmxP; rewrite !mulsmxS ?eqR13 ?eqR24. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
muls_eqmx
mulsmxPm1 m2 n A (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (exists2 A1, forall i, A1 i \in R1 & exists2 A2, forall i, A2 i \in R2 & A = \sum_(i < n ^ 2) A1 i *m A2 i) (A \in R1 * R2)%MS. Proof. apply: (iffP idP) => [R_A|[A1 R_A1 [A2 R_A2 ->{A}]]]; last first. by rewrite linear_sum summx_sub // => i _; rewrite mem_mulsmx. have{R_A}: (A \in R1 * <<R2>>)%MS. by apply: memmx_subP R_A; rewrite mulsmxS ?genmxE. case/memmx_sumsP=> A_ -> R_A; pose A2_ i := vec_mx (row i <<R2>>%MS). pose A1_ i := mxvec (A_ i) *m pinvmx (R1 *m lin_mx (mulmxr (A2_ i))) *m R1. exists (vec_mx \o A1_) => [i|]; first by rewrite vec_mxK submxMl. exists A2_ => [i|]; first by rewrite vec_mxK -(genmxE R2) row_sub. apply: eq_bigr => i _; rewrite -[_ *m _](mx_rV_lin (mulmxr (A2_ i))). by rewrite -mulmxA mulmxKpV ?mxvecK // -(genmxE (_ *m _)) R_A. Qed. Arguments mulsmxP {m1 m2 n A R1 R2}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmxP
mulsmxAm1 m2 m3 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) : (R1 * (R2 * R3) = R1 * R2 * R3)%MS. Proof. rewrite -(genmx_muls (_ * _)%MS) -genmx_muls; apply/genmxP/andP; split. apply/mulsmx_subP=> A1 A23 R_A1; case/mulsmxP=> A2 R_A2 [A3 R_A3 ->{A23}]. by rewrite !linear_sum summx_sub //= => i _; rewrite mulmxA !mem_mulsmx. apply/mulsmx_subP=> _ A3 /mulsmxP[A1 R_A1 [A2 R_A2 ->]] R_A3. rewrite mulmx_suml linear_sum summx_sub //= => i _. by rewrite -mulmxA !mem_mulsmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmxA
mulsmxDlm1 m2 m3 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) : ((R1 + R2) * R3 = R1 * R3 + R2 * R3)%MS. Proof. rewrite -(genmx_muls R2 R3) -(genmx_muls R1 R3) -genmx_muls -genmx_adds. apply/genmxP; rewrite andbC addsmx_sub !mulsmxS ?addsmxSl ?addsmxSr //=. apply/mulsmx_subP=> _ A3 /memmx_addsP[A [R_A1 R_A2 ->]] R_A3. by rewrite mulmxDl linearD addmx_sub_adds ?mem_mulsmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmxDl
mulsmxDrm1 m2 m3 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) : (R1 * (R2 + R3) = R1 * R2 + R1 * R3)%MS. Proof. rewrite -(genmx_muls R1 R3) -(genmx_muls R1 R2) -genmx_muls -genmx_adds. apply/genmxP; rewrite andbC addsmx_sub !mulsmxS ?addsmxSl ?addsmxSr //=. apply/mulsmx_subP=> A1 _ R_A1 /memmx_addsP[A [R_A2 R_A3 ->]]. by rewrite mulmxDr linearD addmx_sub_adds ?mem_mulsmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmxDr
mulsmx0m1 m2 n (R1 : 'A_(m1, n)) : (R1 * (0 : 'A_(m2, n)) = 0)%MS. Proof. apply/eqP; rewrite -submx0; apply/mulsmx_subP=> A1 A0 _. by rewrite [A0 \in 0]eqmx0 => /memmx0->; rewrite mulmx0 mem0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mulsmx0
muls0mxm1 m2 n (R2 : 'A_(m2, n)) : ((0 : 'A_(m1, n)) * R2 = 0)%MS. Proof. apply/eqP; rewrite -submx0; apply/mulsmx_subP=> A0 A2. by rewrite [A0 \in 0]eqmx0 => /memmx0->; rewrite mul0mx mem0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
muls0mx
left_mx_idealm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) := (R1 * R2 <= R2)%MS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
left_mx_ideal
right_mx_idealm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) := (R2 * R1 <= R2)%MS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
right_mx_ideal
mx_idealm1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) := left_mx_ideal R1 R2 && right_mx_ideal R1 R2.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mx_ideal
mxring_idm n (R : 'A_(m, n)) e := [/\ e != 0, e \in R, forall A, A \in R -> e *m A = A & forall A, A \in R -> A *m e = A]%MS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxring_id
has_mxring_idm n (R : 'A[F]_(m , n)) := (R != 0) && (row_mx 0 (row_mx (mxvec R) (mxvec R)) <= row_mx (cokermx R) (row_mx (lin_mx (mulmx R \o lin_mulmx)) (lin_mx (mulmx R \o lin_mulmxr))))%MS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
has_mxring_id
mxringm n (R : 'A_(m, n)) := left_mx_ideal R R && has_mxring_id R.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxring
mxring_idPm n (R : 'A_(m, n)) : reflect (exists e, mxring_id R e) (has_mxring_id R). Proof. apply: (iffP andP) => [[nzR] | [e [nz_e Re ideR idRe]]]. case/submxP=> v; rewrite -[v]vec_mxK; move/vec_mx: v => e. rewrite !mul_mx_row; case/eq_row_mx => /eqP. rewrite eq_sym -submxE => Re. case/eq_row_mx; rewrite !{1}mul_rV_lin1 /= mxvecK. set u := (_ *m _) => /(can_inj mxvecK) idRe /(can_inj mxvecK) ideR. exists e; split=> // [ | A /submxP[a defA] | A /submxP[a defA]]. - by apply: contra nzR; rewrite ideR => /eqP->; rewrite !linear0. - by rewrite -{2}[A]mxvecK defA idRe mulmxA mx_rV_lin -defA /= mxvecK. by rewrite -{2}[A]mxvecK defA ideR mulmxA mx_rV_lin -defA /= mxvecK. split. by apply: contraNneq nz_e => R0; rewrite R0 eqmx0 in Re; rewrite (memmx0 Re). apply/submxP; exists (mxvec e); rewrite !mul_mx_row !{1}mul_rV_lin1. rewrite submxE in Re; rewrite {Re}(eqP Re). congr (row_mx 0 (row_mx (mxvec _) (mxvec _))); apply/row_matrixP=> i. by rewrite !row_mul !mul_rV_lin1 /= mxvecK ideR vec_mxK ?row_sub. by rewrite !row_mul !mul_rV_lin1 /= mxvecK idRe vec_mxK ?row_sub. Qed. Arguments mxring_idP {m n R}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
mxring_idP
cent_mx_fun(B : 'M[F]_n) := R *m lin_mx (mulmxr B \- mulmx B).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
cent_mx_fun
cent_mx_fun_is_linear: linear cent_mx_fun. Proof. move=> a A B; apply/row_matrixP=> i; rewrite linearP row_mul mul_rV_lin. rewrite /= [row i _ as v in a *: v]row_mul mul_rV_lin row_mul mul_rV_lin. by rewrite -linearP -(linearP (mulmx (vec_mx (row i R)) \- mulmxr _)). Qed. HB.instance Definition _ := GRing.isSemilinear.Build F 'M[F]_n 'M[F]_(m, n * n) _ cent_mx_fun (GRing.semilinear_linear cent_mx_fun_is_linear).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
cent_mx_fun_is_linear
cent_mx:= kermx (lin_mx cent_mx_fun).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
cent_mx
center_mx:= (R :&: cent_mx)%MS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
center_mx
cent_rowPm n B (R : 'A_(m, n)) : reflect (forall i (A := vec_mx (row i R)), A *m B = B *m A) (B \in 'C(R))%MS. Proof. apply: (iffP sub_kermxP); rewrite mul_vec_lin => cBE. move/(canRL mxvecK): cBE => cBE i A /=; move/(congr1 (row i)): cBE. rewrite row_mul mul_rV_lin -/A; move/(canRL mxvecK). by move/(canRL (subrK _)); rewrite !linear0 add0r. apply: (canLR vec_mxK); apply/row_matrixP=> i. by rewrite row_mul mul_rV_lin /= cBE subrr !linear0. Qed. Arguments cent_rowP {m n B R}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
cent_rowP
cent_mxPm n B (R : 'A_(m, n)) : reflect (forall A, A \in R -> A *m B = B *m A) (B \in 'C(R))%MS. Proof. apply: (iffP cent_rowP) => cEB => [A sAE | i A]. rewrite -[A]mxvecK -(mulmxKpV sAE); move: (mxvec A *m _) => u. rewrite !mulmx_sum_row !linear_sum mulmx_suml; apply: eq_bigr => i _ /=. by rewrite 2!linearZ -scalemxAl /= cEB. by rewrite cEB // vec_mxK row_sub. Qed. Arguments cent_mxP {m n B R}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
cent_mxP
scalar_mx_centm n a (R : 'A_(m, n)) : (a%:M \in 'C(R))%MS. Proof. by apply/cent_mxP=> A _; apply: scalar_mxC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
scalar_mx_cent
center_mx_subm n (R : 'A_(m, n)) : ('Z(R) <= R)%MS. Proof. exact: capmxSl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup perm order", "From mathcomp Require Import div prime binomial ssralg finalg zmodp matrix" ]
algebra/mxalgebra.v
center_mx_sub