fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
root_mxminpolya : root p_A a = root (char_poly A) a. Proof. by rewrite -eigenvalue_root_min eigenvalue_root_char. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
root_mxminpoly
mxminpoly_diag{F : fieldType} {n} (d : 'rV[F]_n.+1) (u := undup [seq d 0 i | i <- enum 'I_n.+1]) : mxminpoly (diag_mx d) = \prod_(r <- u) ('X - r%:P). Proof. apply/eqP; rewrite -eqp_monic ?mxminpoly_monic ?monic_prod_XsubC// /eqp. rewrite mxminpoly_min/=; last first. rewrite horner_mx_diag; apply/matrixP => i j; rewrite !mxE horner_prod. case: (altP (i =P j)) => [->|neq_ij//]; rewrite mulr1n. rewrite (bigD1_seq (d 0 j)) ?undup_uniq ?mem_undup ?map_f// /=. by rewrite hornerD hornerN hornerX hornerC subrr mul0r. apply: uniq_roots_dvdp; last by rewrite uniq_rootsE undup_uniq. apply/allP => x; rewrite mem_undup root_mxminpoly char_poly_trig//. rewrite -(big_map _ predT (fun x => _ - x%:P)) root_prod_XsubC. by move=> /mapP[i _ ->]; apply/mapP; exists i; rewrite ?(mxE, eqxx). Qed. Prenex Implicits degree_mxminpoly mxminpoly mx_inv_horner. Arguments mx_inv_hornerK {F n' A} [B] AnB. Arguments horner_rVpoly_inj {F n' A} [u1 u2] eq_u12A : rename.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxminpoly_diag
map_rVpoly(u : 'rV_d) : fp (rVpoly u) = rVpoly u^f. Proof. apply/polyP=> k; rewrite coef_map !coef_rVpoly. by case: (insub k) => [i|]; rewrite /= ?rmorph0 // mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_rVpoly
map_poly_rVp : (poly_rV p)^f = poly_rV (fp p) :> 'rV_d. Proof. by apply/rowP=> j; rewrite !mxE coef_map. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_poly_rV
map_char_poly_mx: map_mx fp (char_poly_mx A) = char_poly_mx A^f. Proof. rewrite raddfB /= map_scalar_mx /= map_polyX; congr (_ - _). by apply/matrixP=> i j; rewrite !mxE map_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_char_poly_mx
map_char_poly: fp (char_poly A) = char_poly A^f. Proof. by rewrite -det_map_mx map_char_poly_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_char_poly
map_resultant(aR rR : nzRingType) (f : {rmorphism {poly aR} -> rR}) p q : f (lead_coef p) != 0 -> f (lead_coef q) != 0 -> f (resultant p q)= resultant (map_poly f p) (map_poly f q). Proof. move=> nz_fp nz_fq; rewrite /resultant /Sylvester_mx !size_map_poly_id0 //. rewrite -det_map_mx /= map_col_mx; congr (\det (col_mx _ _)); by apply: map_lin1_mx => v; rewrite map_poly_rV rmorphM /= map_rVpoly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_resultant
map_powers_mxe : (powers_mx A e)^f = powers_mx A^f e. Proof. by apply/row_matrixP=> i; rewrite -map_row !rowK map_mxvec rmorphXn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_powers_mx
map_horner_mxp : (horner_mx A p)^f = horner_mx A^f (fp p). Proof. rewrite -[p](poly_rV_K (leqnn _)) map_rVpoly. by rewrite !horner_rVpoly map_vec_mx map_mxM map_powers_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_horner_mx
map_mx_companion(e := congr1 predn (size_map_poly _ _)) : (companionmx p)^f = castmx (e, e) (companionmx (fp p)). Proof. apply/matrixP => i j; rewrite !(castmxE, mxE) /= (fun_if f). by rewrite rmorphN coef_map size_map_poly rmorph_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_mx_companion
companion_map_poly(e := esym (congr1 predn (size_map_poly _ _))) : companionmx (fp p) = castmx (e, e) (companionmx p)^f. Proof. by rewrite map_mx_companion castmx_comp castmx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
companion_map_poly
degree_mxminpoly_map: degree_mxminpoly A^f = degree_mxminpoly A. Proof. by apply: eq_ex_minn => e; rewrite -map_powers_mx mxrank_map. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
degree_mxminpoly_map
mxminpoly_map: mxminpoly A^f = fp (mxminpoly A). Proof. rewrite rmorphB; congr (_ - _). by rewrite /= map_polyXn degree_mxminpoly_map. rewrite degree_mxminpoly_map -rmorphXn /=. apply/polyP=> i; rewrite coef_map //= !coef_rVpoly degree_mxminpoly_map. case/insub: i => [i|]; last by rewrite rmorph0. by rewrite -map_powers_mx -map_pinvmx // -map_mxvec -map_mxM // mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxminpoly_map
map_mx_inv_horneru : fp (mx_inv_horner A u) = mx_inv_horner A^f u^f. Proof. rewrite map_rVpoly map_mxM map_mxvec map_pinvmx map_powers_mx. by rewrite /mx_inv_horner degree_mxminpoly_map. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_mx_inv_horner
kermxpolyn (g : 'M_n) (p : {poly K}) : 'M_n := kermx ((if n is n.+1 then horner_mx^~ p : 'M_n.+1 -> 'M_n.+1 else \0) g).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpoly
kermxpolyCn (g : 'M_n) c : c != 0 -> kermxpoly g c%:P = 0. Proof. move=> c_neq0; case: n => [|n] in g *; first by rewrite thinmx0. apply/eqP; rewrite /kermxpoly horner_mx_C kermx_eq0 row_free_unit. by rewrite -scalemx1 scaler_unit ?unitmx1// unitfE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpolyC
kermxpoly1n (g : 'M_n) : kermxpoly g 1 = 0. Proof. by rewrite kermxpolyC ?oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpoly1
kermxpolyXn (g : 'M_n) : kermxpoly g 'X = kermx g. Proof. case: n => [|n] in g *; first by rewrite !thinmx0. by rewrite /kermxpoly horner_mx_X. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpolyX
kermxpoly_minn (g : 'M[K]_n.+1) p : mxminpoly g %| p -> (kermxpoly g p :=: 1)%MS. Proof. by rewrite /kermxpoly => /mxminpoly_minP ->; apply: kermx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpoly_min
comm_mx_stable_kermxpolyn (f g : 'M_n) (p : {poly K}) : comm_mx f g -> stablemx (kermxpoly f p) g. Proof. case: n => [|n] in f g *; first by rewrite !thinmx0. move=> fg; rewrite /kermxpoly; apply: comm_mx_stable_ker. by apply/comm_mx_sym/comm_mx_horner/comm_mx_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
comm_mx_stable_kermxpoly
mxdirect_kermxpolyn (g : 'M_n) (p q : {poly K}) : coprimep p q -> (kermxpoly g p :&: kermxpoly g q = 0)%MS. Proof. case: n => [|n] in g *; first by rewrite thinmx0 ?cap0mx ?submx_refl. move=> /Bezout_eq1_coprimepP [[/= u v]]; rewrite mulrC [v * _]mulrC => cpq. apply/eqP/rowV0P => x. rewrite sub_capmx => /andP[/sub_kermxP xgp0 /sub_kermxP xgq0]. move: cpq => /(congr1 (mulmx x \o horner_mx g))/=. rewrite !(rmorphM, rmorphD, rmorph1, mulmx1, mulmxDr, mulmxA). by rewrite xgp0 xgq0 !mul0mx add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxdirect_kermxpoly
kermxpolyMn (g : 'M_n) (p q : {poly K}) : coprimep p q -> (kermxpoly g (p * q) :=: kermxpoly g p + kermxpoly g q)%MS. Proof. case: n => [|n] in g *; first by rewrite !thinmx0. move=> /Bezout_eq1_coprimepP [[/= u v]]; rewrite mulrC [v * _]mulrC => cpq. apply/eqmxP/andP; split; last first. apply/sub_kermxP/eqmx0P; rewrite !addsmxMr [in X in (_ + X)%MS]mulrC. by rewrite !rmorphM/= !mulmxA !mulmx_ker !mul0mx !addsmx0 submx_refl. move: cpq => /(congr1 (horner_mx g))/=; rewrite rmorph1 rmorphD/=. rewrite -[X in (X <= _)%MS]mulr1 => <-; rewrite mulrDr [p * u]mulrC addrC. rewrite addmx_sub_adds//; apply/sub_kermxP; rewrite mulmxE -mulrA -rmorphM. by rewrite mulrAC [q * p]mulrC rmorphM/= mulrA -!mulmxE mulmx_ker mul0mx. rewrite -[_ * _ * q]mulrA [u * _]mulrC. by rewrite rmorphM mulrA -!mulmxE mulmx_ker mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpolyM
kermxpoly_prodn (g : 'M_n) (I : finType) (P : {pred I}) (p_ : I -> {poly K}) : {in P &, forall i j, j != i -> coprimep (p_ i) (p_ j)} -> (kermxpoly g (\prod_(i | P i) p_ i) :=: \sum_(i | P i) kermxpoly g (p_ i))%MS. Proof. move=> p_coprime; elim: index_enum (index_enum_uniq I). by rewrite !big_nil ?kermxpoly1 ?submx_refl//. move=> j js ihjs /= /andP[jNjs js_uniq]; apply/eqmxP. rewrite !big_cons; case: ifP => [Pj|PNj]; rewrite ?ihjs ?submx_refl//. suff cjjs: coprimep (p_ j) (\prod_(i <- js | P i) p_ i). by rewrite !kermxpolyM// !(adds_eqmx (eqmx_refl _) (ihjs _)) ?submx_refl. rewrite (@big_morph _ _ _ true andb) ?big_all_cond ?coprimep1//; last first. by move=> p q; rewrite coprimepMr. apply/allP => i i_js; apply/implyP => Pi; apply: p_coprime => //. by apply: contraNneq jNjs => <-. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
kermxpoly_prod
mxdirect_sum_kermxn (g : 'M_n) (I : finType) (P : {pred I}) (p_ : I -> {poly K}) : {in P &, forall i j, j != i -> coprimep (p_ i) (p_ j)} -> mxdirect (\sum_(i | P i) kermxpoly g (p_ i))%MS. Proof. move=> p_coprime; apply/mxdirect_sumsP => i Pi; apply/eqmx0P. have cpNi : {in [pred j | P j && (j != i)] &, forall j k : I, k != j -> coprimep (p_ j) (p_ k)}. by move=> j k /andP[Pj _] /andP[Pk _]; apply: p_coprime. rewrite -!(cap_eqmx (eqmx_refl _) (kermxpoly_prod g _))//. rewrite mxdirect_kermxpoly ?submx_refl//. rewrite (@big_morph _ _ _ true andb) ?big_all_cond ?coprimep1//; last first. by move=> p q; rewrite coprimepMr. by apply/allP => j _; apply/implyP => /andP[Pj neq_ji]; apply: p_coprime. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxdirect_sum_kermx
eigenspace_polyn a (f : 'M_n) : eigenspace f a = kermxpoly f ('X - a%:P). Proof. case: n => [|m] in a f *; first by rewrite !thinmx0. by congr (kermx _); rewrite rmorphB /= ?horner_mx_X ?horner_mx_C. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenspace_poly
geigenspacen (g : 'M_n) a := kermxpoly g (('X - a%:P) ^+ n).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
geigenspace
geigenspaceEn' (g : 'M_n'.+1) a : geigenspace g a = kermx ((g - a%:M) ^+ n'.+1). Proof. by rewrite /geigenspace /kermxpoly rmorphXn/= rmorphB/= horner_mx_X horner_mx_C. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
geigenspaceE
eigenspace_sub_geigenn (g : 'M_n) a : (eigenspace g a <= geigenspace g a)%MS. Proof. case: n => [|n] in g *; rewrite ?thinmx0 ?sub0mx// geigenspaceE. by apply/sub_kermxP; rewrite exprS mulmxA mulmx_ker mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenspace_sub_geigen
mxdirect_sum_geigenspace(I : finType) (n : nat) (g : 'M_n) (P : {pred I}) (a_ : I -> K) : {in P &, injective a_} -> mxdirect (\sum_(i | P i) geigenspace g (a_ i)). Proof. move=> /inj_in_eq eq_a; apply: mxdirect_sum_kermx => i j Pi Pj Nji. by rewrite coprimep_expr ?coprimep_expl// coprimep_XsubC root_XsubC eq_a. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxdirect_sum_geigenspace
eigenpolyn (g : 'M_n) : pred {poly K} := (fun p => kermxpoly g p != 0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenpoly
eigenpolyPn (g : 'M_n) (p : {poly K}) : reflect (exists2 v : 'rV_n, (v <= kermxpoly g p)%MS & v != 0) (eigenpoly g p). Proof. exact: rowV0Pn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenpolyP
eigenvalue_polyn a (f : 'M_n) : eigenvalue f a = eigenpoly f ('X - a%:P). Proof. by rewrite /eigenpoly /eigenvalue eigenspace_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenvalue_poly
comm_mx_stable_geigenspacen (f g : 'M_n) a : comm_mx f g -> stablemx (geigenspace f a) g. Proof. exact: comm_mx_stable_kermxpoly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
comm_mx_stable_geigenspace
map_kermxpoly(n : nat) (g : 'M_n) (p : {poly aF}) : map_mx f (kermxpoly g p) = kermxpoly (map_mx f g) (map_poly f p). Proof. by case: n => [|n] in g *; rewrite ?thinmx0// map_kermx map_horner_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_kermxpoly
map_geigenspace(n : nat) (g : 'M_n) (a : aF) : map_mx f (geigenspace g a) = geigenspace (map_mx f g) (f a). Proof. by rewrite map_kermxpoly rmorphXn/= rmorphB /= map_polyX map_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
map_geigenspace
eigenpoly_mapn (g : 'M_n) (p : {poly aF}) : eigenpoly (map_mx f g) (map_poly f p) = eigenpoly g p. Proof. by rewrite /eigenpoly -map_kermxpoly map_mx_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenpoly_map
integralOver(R K : nzRingType) (RtoK : R -> K) (z : K) := exists2 p, p \is monic & root (map_poly RtoK p) z.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integralOver
integralRangeR K RtoK := forall z, @integralOver R K RtoK z. Variables (B R K : nzRingType) (BtoR : B -> R) (RtoK : {rmorphism R -> K}).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integralRange
integral_rmorphx : integralOver BtoR x -> integralOver (RtoK \o BtoR) (RtoK x). Proof. by case=> p; exists p; rewrite // map_poly_comp rmorph_root. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_rmorph
integral_idx : integralOver RtoK (RtoK x). Proof. by exists ('X - x%:P); rewrite ?monicXsubC ?rmorph_root ?root_XsubC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_id
integral_natn : integralOver RtoK n%:R. Proof. by rewrite -(rmorph_nat RtoK); apply: integral_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_nat
integral0: integralOver RtoK 0. Proof. exact: (integral_nat 0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral0
integral1: integralOver RtoK 1. Proof. exact: (integral_nat 1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral1
integral_poly(p : {poly K}) : (forall i, integralOver RtoK p`_i) <-> {in p : seq K, integralRange RtoK}. Proof. split=> intRp => [_ /(nthP 0)[i _ <-] // | i]; rewrite -[p]coefK coef_poly. by case: ifP => [ltip | _]; [apply/intRp/mem_nth | apply: integral0]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_poly
integral_horner_rootw (p q : {poly K}) : p \is monic -> root p w -> {in p : seq K, integralRange RtoK} -> {in q : seq K, integralRange RtoK} -> integralOver RtoK q.[w]. Proof. move=> mon_p pw0 intRp intRq. pose memR y := exists x, y = RtoK x. have memRid x: memR (RtoK x) by exists x. have memR_nat n: memR n%:R by rewrite -(rmorph_nat RtoK) /=. have [memR0 memR1]: memR 0 * memR 1 := (memR_nat 0, memR_nat 1). have memRN1: memR (- 1) by exists (- 1); rewrite rmorphN1. pose rVin (E : K -> Prop) n (a : 'rV[K]_n) := forall i, E (a 0 i). pose pXin (E : K -> Prop) (r : {poly K}) := forall i, E r`_i. pose memM E n (X : 'rV_n) y := exists a, rVin E n a /\ y = (a *m X^T) 0 0. pose finM E S := exists n, exists X, forall y, memM E n X y <-> S y. have tensorM E n1 n2 X Y: finM E (memM (memM E n2 Y) n1 X). exists (n1 * n2)%N, (mxvec (X^T *m Y)) => y. split=> [[a [Ea Dy]] | [a1 [/fin_all_exists[a /all_and2[Ea Da1]] ->]]]. exists (Y *m (vec_mx a)^T); split=> [i|]. exists (row i (vec_mx a)); split=> [j|]; first by rewrite !mxE; apply: Ea. by rewrite -row_mul -{1}[Y]trmxK -trmx_mul !mxE. by rewrite -[Y]trmxK -!trmx_mul mulmxA -mxvec_dotmul trmx_mul trmxK vec_mxK. exists (mxvec (\matrix_i a i)); split. by case/mxvec_indexP=> i j; rewrite mxvecE mxE; apply: Ea. rewrite -[mxvec _]trmxK -trmx_mul mxvec_dotmul -mulmxA trmx_mul !mxE. apply: eq_bigr => i _; rewrite Da1 !mxE; congr (_ * _). by apply: eq_bigr => j _; rewrite !mxE. suffices [m [X [[u [_ Du]] idealM]]]: exists m, ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_horner_root
integral_root_monicu p : p \is monic -> root p u -> {in p : seq K, integralRange RtoK} -> integralOver RtoK u. Proof. move=> mon_p pu0 intRp; rewrite -[u]hornerX. apply: integral_horner_root mon_p pu0 intRp _. by apply/integral_poly => i; rewrite coefX; apply: integral_nat. Qed. Let integral0_RtoK := integral0 RtoK. Let integral1_RtoK := integral1 RtoK. Let monicXsubC_K := @monicXsubC K. Hint Resolve integral0_RtoK integral1_RtoK monicXsubC_K : core. Let XsubC0 (u : K) : root ('X - u%:P) u. Proof. by rewrite root_XsubC. Qed. Let intR_XsubC u : integralOver RtoK (- u) -> {in 'X - u%:P : seq K, integralRange RtoK}. Proof. by move=> intRu v; rewrite polyseqXsubC !inE => /pred2P[]->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_root_monic
integral_oppu : integralOver RtoK u -> integralOver RtoK (- u). Proof. by rewrite -{1}[u]opprK => /intR_XsubC/integral_root_monic; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_opp
integral_horner(p : {poly K}) u : {in p : seq K, integralRange RtoK} -> integralOver RtoK u -> integralOver RtoK p.[u]. Proof. by move=> ? /integral_opp/intR_XsubC/integral_horner_root; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_horner
integral_subu v : integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u - v). Proof. move=> intRu /integral_opp/intR_XsubC/integral_horner/(_ intRu). by rewrite !hornerE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_sub
integral_addu v : integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u + v). Proof. by rewrite -{2}[v]opprK => intRu /integral_opp; apply: integral_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_add
integral_mulu v : integralOver RtoK u -> integralOver RtoK v -> integralOver RtoK (u * v). Proof. rewrite -{2}[v]hornerX -hornerZ => intRu; apply: integral_horner. by apply/integral_poly=> i; rewrite coefZ coefX mulr_natr mulrb; case: ifP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_mul
algebraicOver(fFtoE : F -> E) u := exists2 p, p != 0 & root (map_poly fFtoE p) u.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraicOver
mk_monp := ((lead_coef p)^-1 *: p).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mk_mon
integral_algebraicu : algebraicOver FtoE u <-> integralOver FtoE u. Proof. split=> [] [p p_nz pu0]; last by exists p; rewrite ?monic_neq0. exists (mk_mon p); first by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0. by rewrite linearZ rootE hornerZ (rootP pu0) mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_algebraic
algebraic_ida : algebraicOver FtoE (FtoE a). Proof. exact/integral_algebraic/integral_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_id
algebraic0: algebraicOver FtoE 0. Proof. exact/integral_algebraic/integral0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic0
algebraic1: algebraicOver FtoE 1. Proof. exact/integral_algebraic/integral1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic1
algebraic_oppx : algebraicOver FtoE x -> algebraicOver FtoE (- x). Proof. by move/integral_algebraic/integral_opp/integral_algebraic. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_opp
algebraic_addx y : algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x + y). Proof. move/integral_algebraic=> intFx /integral_algebraic intFy. exact/integral_algebraic/integral_add. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_add
algebraic_subx y : algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x - y). Proof. by move=> algFx /algebraic_opp; apply: algebraic_add. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_sub
algebraic_mulx y : algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x * y). Proof. move/integral_algebraic=> intFx /integral_algebraic intFy. exact/integral_algebraic/integral_mul. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_mul
algebraic_invu : algebraicOver FtoE u -> algebraicOver FtoE u^-1. Proof. have [-> | /expf_neq0 nz_u_n] := eqVneq u 0; first by rewrite invr0. case=> p nz_p pu0; exists (Poly (rev p)). apply/eqP=> /polyP/(_ 0); rewrite coef_Poly coef0 nth_rev ?size_poly_gt0 //. by apply/eqP; rewrite subn1 lead_coef_eq0. apply/eqP/(mulfI (nz_u_n (size p).-1)); rewrite mulr0 -(rootP pu0). rewrite (@horner_coef_wide _ (size p)); last first. by rewrite size_map_poly -(size_rev p) size_Poly. rewrite horner_coef mulr_sumr size_map_poly. rewrite [rhs in _ = rhs](reindex_inj rev_ord_inj) /=. apply: eq_bigr => i _; rewrite !coef_map coef_Poly nth_rev // mulrCA. by congr (_ * _); rewrite -{1}(subnKC (valP i)) addSn addnC exprD exprVn ?mulfK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_inv
algebraic_divx y : algebraicOver FtoE x -> algebraicOver FtoE y -> algebraicOver FtoE (x / y). Proof. by move=> algFx /algebraic_inv; apply: algebraic_mul. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
algebraic_div
integral_invx : integralOver FtoE x -> integralOver FtoE x^-1. Proof. by move/integral_algebraic/algebraic_inv/integral_algebraic. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_inv
integral_divx y : integralOver FtoE x -> integralOver FtoE y -> integralOver FtoE (x / y). Proof. by move=> algFx /integral_inv; apply: integral_mul. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_div
integral_rootp u : p != 0 -> root p u -> {in p : seq E, integralRange FtoE} -> integralOver FtoE u. Proof. move=> nz_p pu0 algFp. have mon_p1: mk_mon p \is monic. by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0. have p1u0: root (mk_mon p) u by rewrite rootE hornerZ (rootP pu0) mulr0. apply: integral_root_monic mon_p1 p1u0 _ => _ /(nthP 0)[i ltip <-]. rewrite coefZ mulrC; rewrite size_scale ?invr_eq0 ?lead_coef_eq0 // in ltip. by apply: integral_div; apply/algFp/mem_nth; rewrite -?polySpred. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
integral_root
eval_mx(e : seq F) := @map_mx term F (eval e).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_mx
mx_term:= @map_mx F term GRing.Const.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mx_term
eval_mx_terme m n (A : 'M_(m, n)) : eval_mx e (mx_term A) = A. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_mx_term
mulmx_termm n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) := \matrix_(i, k) (\big[Add/0]_j (A i j * B j k))%T.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mulmx_term
eval_mulmxe m n p (A : 'M[term]_(m, n)) (B : 'M_(n, p)) : eval_mx e (mulmx_term A B) = eval_mx e A *m eval_mx e B. Proof. apply/matrixP=> i k; rewrite !mxE /= ((big_morph (eval e)) 0 +%R) //=. by apply: eq_bigr => j _; rewrite /= !mxE. Qed. Local Notation morphAnd f := ((big_morph f) true andb). Let Schur m n (A : 'M[term]_(1 + m, 1 + n)) (a := A 0 0) := \matrix_(i, j) (drsubmx A i j - a^-1 * dlsubmx A i 0%R * ursubmx A 0%R j)%T.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_mulmx
mxrank_form(r m n : nat) : 'M_(m, n) -> form := match m, n return 'M_(m, n) -> form with | m'.+1, n'.+1 => fun A : 'M_(1 + m', 1 + n') => let nzA k := A k.1 k.2 != 0 in let xSchur k := Schur (xrow k.1 0%R (xcol k.2 0%R A)) in let recf k := Bool (r > 0) /\ mxrank_form r.-1 (xSchur k) in GRing.Pick nzA recf (Bool (r == 0%N)) | _, _ => fun _ => Bool (r == 0%N) end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxrank_form
mxrank_form_qfr m n (A : 'M_(m, n)) : qf_form (mxrank_form r A). Proof. by elim: m r n A => [|m IHm] r [|n] A //=; rewrite GRing.Pick_form_qf /=. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxrank_form_qf
eval_mxranke r m n (A : 'M_(m, n)) : qf_eval e (mxrank_form r A) = (\rank (eval_mx e A) == r). Proof. elim: m r n A => [|m IHm] r [|n] A /=; try by case r; rewrite unlock. rewrite GRing.eval_Pick !unlock /=; set pf := fun _ => _. rewrite -(@eq_pick _ pf) => [|k]; rewrite {}/pf ?mxE // eq_sym. case: pick => [[i j]|] //=; set B := _ - _; have:= mxrankE B. case: (Gaussian_elimination_ B) r => [[_ _] _] [|r] //= <-; rewrite {}IHm eqSS. by congr (\rank _ == r); apply/matrixP=> k l; rewrite !(mxE, big_ord1) !tpermR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_mxrank
eval_vec_mxe m n (u : 'rV_(m * n)) : eval_mx e (vec_mx u) = vec_mx (eval_mx e u). Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_vec_mx
eval_mxvece m n (A : 'M_(m, n)) : eval_mx e (mxvec A) = mxvec (eval_mx e A). Proof. by rewrite -{2}[A]mxvecK eval_vec_mx vec_mxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_mxvec
submx_form:= \big[And/True]_(r < n.+1) (mxrank_form r (col_mx A B) ==> mxrank_form r B)%T.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
submx_form
eval_col_mxe : eval_mx e (col_mx A B) = col_mx (eval_mx e A) (eval_mx e B). Proof. by apply/matrixP=> i j; do 2![rewrite !mxE //; case: split => ?]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_col_mx
submx_form_qf: qf_form submx_form. Proof. by rewrite (morphAnd (@qf_form _)) ?big1 //= => r _; rewrite !mxrank_form_qf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
submx_form_qf
eval_submxe : qf_eval e submx_form = (eval_mx e A <= eval_mx e B)%MS. Proof. rewrite (morphAnd (qf_eval e)) //= big_andE /=. apply/forallP/idP=> /= [|sAB d]; last first. rewrite !eval_mxrank eval_col_mx -addsmxE; apply/implyP=> /eqP <-. by rewrite mxrank_leqif_sup ?addsmxSr // addsmx_sub sAB /=. move/(_ (inord (\rank (eval_mx e (col_mx A B))))). rewrite inordK ?ltnS ?rank_leq_col // !eval_mxrank eqxx /= eval_col_mx. by rewrite -addsmxE mxrank_leqif_sup ?addsmxSr // addsmx_sub; case/andP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_submx
seq_of_rV(v : 'rV_d) : seq F := fgraph [ffun i => v 0 i].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
seq_of_rV
size_seq_of_rVv : size (seq_of_rV v) = d. Proof. by rewrite tuple.size_tuple card_ord. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
size_seq_of_rV
nth_seq_of_rVx0 v (i : 'I_d) : nth x0 (seq_of_rV v) i = v 0 i. Proof. by rewrite nth_fgraph_ord ffunE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
nth_seq_of_rV
row_vark : 'rV[term]_d := \row_i ('X_(k * d + i))%T.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
row_var
row_env(e : seq 'rV_d) := flatten (map seq_of_rV e).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
row_env
nth_row_enve k (i : 'I_d) : (row_env e)`_(k * d + i) = e`_k 0 i. Proof. elim: e k => [|v e IHe] k; first by rewrite !nth_nil mxE. rewrite /row_env /= nth_cat size_seq_of_rV. case: k => [|k]; first by rewrite (valP i) nth_seq_of_rV. by rewrite mulSn -addnA -if_neg -leqNgt leq_addr addKn IHe. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
nth_row_env
eval_row_vare k : eval_mx (row_env e) (row_var k) = e`_k :> 'rV_d. Proof. by apply/rowP=> i; rewrite !mxE /= nth_row_env. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eval_row_var
Exists_row_formk (f : form) := foldr GRing.Exists f (codom (fun i : 'I_d => k * d + i)%N).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
Exists_row_form
Exists_rowPe k f : d > 0 -> ((exists v : 'rV[F]_d, holds (row_env (set_nth 0 e k v)) f) <-> holds (row_env e) (Exists_row_form k f)). Proof. move=> d_gt0; pose i_ j := Ordinal (ltn_pmod j d_gt0). have d_eq j: (j = j %/ d * d + i_ j)%N := divn_eq j d. split=> [[v f_v] | ]; last case/GRing.foldExistsP=> e' ee' f_e'. apply/GRing.foldExistsP; exists (row_env (set_nth 0 e k v)) => {f f_v}// j. rewrite [j]d_eq !nth_row_env nth_set_nth /=; case: eqP => // ->. by case/imageP; exists (i_ j). exists (\row_i e'`_(k * d + i)); apply: eq_holds f_e' => j /=. move/(_ j): ee'; rewrite [j]d_eq !nth_row_env nth_set_nth /=. case: eqP => [-> | ne_j_k -> //]; first by rewrite mxE. apply/mapP=> [[r lt_r_d]]; rewrite -d_eq => def_j; case: ne_j_k. by rewrite def_j divnMDl // divn_small ?addn0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
Exists_rowP
conjmx(m n : nat) (V : 'M_(m, n)) (f : 'M[F]_n) : 'M_m := V *m f *m pinvmx V.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmx
restrictmxV := (conjmx (row_base V)).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
restrictmx
stablemx_comp(m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) : stablemx W f -> stablemx V (conjmx W f) -> stablemx (V *m W) f. Proof. by move=> Wf /(submxMr W); rewrite -mulmxA mulmxKpV// mulmxA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
stablemx_comp
stablemx_restrictm n (A : 'M[F]_n) (V : 'M_n) (W : 'M_(m, \rank V)): stablemx V A -> stablemx W (restrictmx V A) = stablemx (W *m row_base V) A. Proof. move=> A_stabV; rewrite mulmxA -[in RHS]mulmxA. rewrite -(submxMfree _ W (row_base_free V)) mulmxKpV //. by rewrite mulmx_sub ?stablemx_row_base. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
stablemx_restrict
conjmxM(m n : nat) (V : 'M[F]_(m, n)) : {in [pred f | stablemx V f] &, {morph conjmx V : f g / f *m g}}. Proof. move=> f g; rewrite !inE => Vf Vg /=. by rewrite /conjmx 2!mulmxA mulmxA mulmxKpV ?stablemx_row_base. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmxM
conjMmx(m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) : row_free (V *m W) -> stablemx W f -> stablemx V (conjmx W f) -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. move=> rfVW Wf VWf; apply: (row_free_inj rfVW); rewrite mulmxKpV ?stablemx_comp//. by rewrite mulmxA mulmxKpV// -[RHS]mulmxA mulmxKpV ?mulmxA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjMmx
conjuMmx(m n : nat) (V : 'M[F]_m) (W : 'M_(m, n)) (f : 'M_n) : V \in unitmx -> row_free W -> stablemx W f -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. move=> Vu rfW Wf; rewrite conjMmx ?stablemx_unit//. by rewrite /row_free mxrankMfree// -/(row_free V) row_free_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjuMmx
conjMumx(m n : nat) (V : 'M[F]_(m, n)) (W f : 'M_n) : W \in unitmx -> row_free V -> stablemx V (conjmx W f) -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. move=> Wu rfW Wf; rewrite conjMmx ?stablemx_unit//. by rewrite /row_free mxrankMfree ?row_free_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjMumx
conjuMumx(n : nat) (V W f : 'M[F]_n) : V \in unitmx -> W \in unitmx -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. by move=> Vu Wu; rewrite conjuMmx ?stablemx_unit ?row_free_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjuMumx
conjmx_scalar(m n : nat) (V : 'M[F]_(m, n)) (a : F) : row_free V -> conjmx V a%:M = a%:M. Proof. by move=> rfV; rewrite /conjmx scalar_mxC mulmxKp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmx_scalar
conj0mx(m n : nat) f : conjmx (0 : 'M[F]_(m, n)) f = 0. Proof. by rewrite /conjmx !mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conj0mx