fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
similar_diagPpm n (P : 'M[F]_(m, n)) A :
reflect (forall i j : 'I__, i != j :> nat -> conjmx P A i j = 0)
(similar_diag P A).
Proof. exact: @is_diag_mxP. Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
similar_diagPp
| |
similar_diagPn (P : 'M[F]_n) A : P \in unitmx ->
reflect (forall i j : 'I__, i != j :> nat -> (P *m A *m invmx P) i j = 0)
(similar_diag P A).
Proof. by move=> Pu; rewrite -conjumx//; exact: is_diag_mxP. Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
similar_diagP
| |
similar_diagPex{m} {n} {P : 'M[F]_(m, n)} {A} :
reflect (exists D, similar P A (diag_mx D)) (similar_diag P A).
Proof. by apply: (iffP (diag_mxP _)) => -[D]/eqP; exists D. Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
similar_diagPex
| |
similar_diagLRn {P : 'M[F]_n} {A} : P \in unitmx ->
reflect (exists D, A = conjmx (invmx P) (diag_mx D)) (similar_diag P A).
Proof.
by move=> Punit; apply: (iffP similar_diagPex) => -[D /(similarLR Punit)]; exists D.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
similar_diagLR
| |
similar_diag_mxminpoly{n} {p f : 'M[F]_n.+1}
(rs := undup [seq conjmx p f i i | i <- enum 'I_n.+1]) :
p \in unitmx -> similar_diag p f ->
mxminpoly f = \prod_(r <- rs) ('X - r%:P).
Proof.
rewrite /rs => pu /(similar_diagLR pu)[d {f rs}->].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by rewrite [in RHS](@eq_map _ _ _ (d 0))// => i; rewrite conjmxVK// mxE eqxx.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
similar_diag_mxminpoly
| |
similar_diag_sum(F : fieldType) (m n : nat) (p_ : 'I_n -> nat)
(V_ : forall i, 'M[F]_(p_ i, m)) (f : 'M[F]_m) :
mxdirect (\sum_i <<V_ i>>) ->
(forall i, stablemx (V_ i) f) ->
(forall i, row_free (V_ i)) ->
similar_diag (\mxcol_i V_ i) f = [forall i, similar_diag (V_ i) f].
Proof.
move=> Vd Vf rfV; have aVf : stablemx (\mxcol_i V_ i) f.
rewrite (eqmx_stable _ (eqmx_col _)) stablemx_sums//.
by move=> i; rewrite (eqmx_stable _ (genmxE _)).
apply/similar_diagPex/'forall_similar_diagPex => /=
[[D /(similarPp aVf) +] i|/(_ _)/sigW Dof].
rewrite mxcol_mul -[D]submxrowK diag_mxrow mul_mxdiag_mxcol.
move=> /eq_mxcolP/(_ i); set D0 := (submxrow _ _) => VMeq.
by exists D0; apply/similarW.
exists (\mxrow_i tag (Dof i)); apply/similarW.
rewrite -row_leq_rank eqmx_col (mxdirectP Vd)/=.
by under [X in (_ <= X)%N]eq_bigr do rewrite genmxE (eqP (rfV _)).
rewrite mxcol_mul diag_mxrow mul_mxdiag_mxcol; apply: eq_mxcol => i.
by case: Dof => /= k /(similarPp); rewrite Vf => /(_ isT) ->.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
similar_diag_sum
| |
codiagonalizable1n (A : 'M[F]_n) :
codiagonalizable [:: A] <-> diagonalizable A.
Proof. by split=> -[P Punit PA]; exists P; move: PA; rewrite //= andbT. Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
codiagonalizable1
| |
codiagonalizablePfulln (As : seq 'M[F]_n) :
codiagonalizable As <-> exists m,
exists2 P : 'M_(m, n), row_full P & all [pred A | similar_diag P A] As.
Proof.
split => [[P Punit SPA]|[m [P Pfull SPA]]].
by exists n => //; exists P; rewrite ?row_full_unit.
have Qfull := fullrowsub_unit Pfull.
exists (rowsub (fullrankfun Pfull) P) => //; apply/allP => A AAs/=.
have /allP /(_ _ AAs)/= /similar_diagPex[d /similarPp] := SPA.
rewrite submx_full// => /(_ isT) PA_eq.
apply/similar_diagPex; exists (colsub (fullrankfun Pfull) d).
apply/similarP => //; apply/row_matrixP => i.
rewrite !row_mul row_diag_mx -scalemxAl -rowE !row_rowsub !mxE.
have /(congr1 (row (fullrankfun Pfull i))) := PA_eq.
by rewrite !row_mul row_diag_mx -scalemxAl -rowE => ->.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
codiagonalizablePfull
| |
codiagonalizable_onm n (V_ : 'I_n -> 'M[F]_m) (As : seq 'M[F]_m) :
(\sum_i V_ i :=: 1%:M)%MS -> mxdirect (\sum_i V_ i) ->
(forall i, all (fun A => stablemx (V_ i) A) As) ->
(forall i, codiagonalizable (map (restrictmx (V_ i)) As)) -> codiagonalizable As.
Proof.
move=> V1 Vdirect /(_ _)/allP AV /(_ _) /sig2W/= Pof.
pose P_ i := tag (Pof i).
have P_unit i : P_ i \in unitmx by rewrite /P_; case: {+}Pof.
have P_diag i A : A \in As -> similar_diag (P_ i *m row_base (V_ i)) A.
move=> AAs; rewrite /P_; case: {+}Pof => /= P Punit.
rewrite all_map => /allP/(_ A AAs); rewrite /similar_to/=.
by rewrite conjuMmx ?row_base_free ?stablemx_row_base ?AV.
pose P := \mxcol_i (P_ i *m row_base (V_ i)).
have P_full i : row_full (P_ i) by rewrite row_full_unit.
have PrV i : (P_ i *m row_base (V_ i) :=: V_ i)%MS.
exact/(eqmx_trans _ (eq_row_base _))/eqmxMfull.
apply/codiagonalizablePfull; eexists _; last exists P; rewrite /=.
- rewrite -sub1mx eqmx_col.
by under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
apply/allP => A AAs /=; rewrite similar_diag_sum.
- by apply/forallP => i; apply: P_diag.
- rewrite mxdirectE/=.
under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1.
by under eq_bigr do rewrite genmxE PrV; rewrite -(mxdirectP Vdirect)//= V1.
- by move=> i; rewrite (eqmx_stable _ (PrV _)) ?AV.
- by move=> i; rewrite /row_free eqmxMfull ?eq_row_base ?row_full_unit.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
codiagonalizable_on
| |
diagonalizable_diag{n} (d : 'rV[F]_n) : diagonalizable (diag_mx d).
Proof.
by exists 1%:M; rewrite ?unitmx1// /similar_to conj1mx diag_mx_is_diag.
Qed.
Hint Resolve diagonalizable_diag : core.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
diagonalizable_diag
| |
diagonalizable_scalar{n} (a : F) : diagonalizable (a%:M : 'M_n).
Proof. by rewrite -diag_const_mx. Qed.
Hint Resolve diagonalizable_scalar : core.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
diagonalizable_scalar
| |
diagonalizable0{n} : diagonalizable (0 : 'M[F]_n).
Proof.
by rewrite (_ : 0 = 0%:M)//; apply/matrixP => i j; rewrite !mxE// mul0rn.
Qed.
Hint Resolve diagonalizable0 : core.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
diagonalizable0
| |
diagonalizablePeigen{n} {f : 'M[F]_n} :
diagonalizable f <->
exists2 rs, uniq rs & (\sum_(r <- rs) eigenspace f r :=: 1%:M)%MS.
Proof.
split=> [df|[rs urs rsP]].
suff [rs rsP] : exists rs, (\sum_(r <- rs) eigenspace f r :=: 1%:M)%MS.
exists (undup rs); rewrite ?undup_uniq//; apply: eqmx_trans rsP.
elim: rs => //= r rs IHrs; rewrite big_cons.
case: ifPn => in_rs; rewrite ?big_cons; last exact: adds_eqmx.
apply/(eqmx_trans IHrs)/eqmx_sym/addsmx_idPr.
have rrs : (index r rs < size rs)%N by rewrite index_mem.
rewrite (big_nth 0) big_mkord (sumsmx_sup (Ordinal rrs)) ?nth_index//.
move: df => [P Punit /(similar_diagLR Punit)[d ->]].
exists [seq d 0 i | i <- enum 'I_n]; rewrite big_image/=.
apply: (@eqmx_trans _ _ _ _ _ _ P); apply/eqmxP;
rewrite ?sub1mx ?submx1 ?row_full_unit//.
rewrite submx_full ?row_full_unit//=.
apply/row_subP => i; rewrite rowE (sumsmx_sup i)//.
apply/eigenspaceP; rewrite conjVmx// !mulmxA mulmxK//.
by rewrite -rowE row_diag_mx scalemxAl.
have mxdirect_eigenspaces : mxdirect (\sum_(i < size rs) eigenspace f rs`_i).
apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
by apply: uniqP rsij; rewrite ?inE.
rewrite (big_nth 0) big_mkord in rsP; apply/codiagonalizable1.
apply/(codiagonalizable_on _ mxdirect_eigenspaces) => // i/=.
case: n => [|n] in f {mxdirect_eigenspaces} rsP *.
by rewrite thinmx0 sub0mx.
by rewrite comm_mx_stable_eigenspace.
apply/codiagonalizable1.
by rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_
...
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
diagonalizablePeigen
| |
diagonalizablePn' (n := n'.+1) (f : 'M[F]_n) :
diagonalizable f <->
exists2 rs, uniq rs & mxminpoly f %| \prod_(x <- rs) ('X - x%:P).
Proof.
split=> [[P Punit /similar_diagPex[d /(similarLR Punit)->]]|].
rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag.
by eexists; [|by []]; rewrite undup_uniq.
move=> [rs rsU rsP]; apply: diagonalizablePeigen.2.
exists rs => //.
rewrite (big_nth 0) big_mkord (eq_bigr _ (fun _ _ => eigenspace_poly _ _)).
apply: (eqmx_trans (eqmx_sym (kermxpoly_prod _ _)) (kermxpoly_min _)).
by move=> i j _ _; rewrite coprimep_XsubC root_XsubC nth_uniq.
by rewrite (big_nth 0) big_mkord in rsP.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
diagonalizableP
| |
diagonalizable_conj_diagm n (V : 'M[F]_(m, n)) (d : 'rV[F]_n) :
stablemx V (diag_mx d) -> row_free V -> diagonalizable (conjmx V (diag_mx d)).
Proof.
(move: m n => [|m] [|n] in V d *; rewrite ?thinmx0; [by []|by []| |]) => Vd rdV.
- by rewrite /row_free mxrank0 in rdV.
- apply/diagonalizableP; pose u := undup [seq d 0 i | i <- enum 'I_n.+1].
exists u; first by rewrite undup_uniq.
by rewrite (dvdp_trans (mxminpoly_conj rdV _))// mxminpoly_diag.
Qed.
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
diagonalizable_conj_diag
| |
codiagonalizablePn (fs : seq 'M[F]_n) :
{in fs &, forall f g, comm_mx f g} /\ (forall f, f \in fs -> diagonalizable f)
<-> codiagonalizable fs.
Proof.
split => [cdfs|[P Punit /allP/= fsD]]/=; last first.
split; last by exists P; rewrite // fsD.
move=> f g ffs gfs; move=> /(_ _ _)/similar_diagPex/sigW in fsD.
have [[df /similarLR->//] [dg /similarLR->//]] := (fsD _ ffs, fsD _ gfs).
by rewrite /comm_mx -!conjmxM 1?diag_mxC// inE stablemx_unit ?unitmx_inv.
move: cdfs => [/(rwP (all_comm_mxP _)).1 cdfs1 cdfs2].
have [k] := ubnP (size fs); elim: k => [|k IHk]//= in n fs cdfs1 cdfs2 *.
case: fs cdfs1 cdfs2 => [|f fs]//=; first by exists 1%:M; rewrite ?unitmx1.
rewrite ltnS all_comm_mx_cons => /andP[/allP/(_ _ _)/eqP ffsC fsC dffs] fsk.
have /diagonalizablePeigen [rs urs rs1] := dffs _ (mem_head _ _).
rewrite (big_nth 0) big_mkord in rs1.
have efg (i : 'I_(size rs)) g : g \in f :: fs -> stablemx (eigenspace f rs`_i) g.
case: n => [|n'] in g f fs ffsC fsC {dffs rs1 fsk} * => g_ffs.
by rewrite thinmx0 sub0mx.
rewrite comm_mx_stable_eigenspace//.
by move: g_ffs; rewrite !inE => /predU1P [->//|/ffsC].
apply/(@codiagonalizable_on _ _ _ (_ :: _) rs1) => [|i|i /=].
- apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj.
by apply: uniqP rsij; rewrite ?inE.
- by apply/allP => g g_ffs; rewrite efg.
rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free//.
set gs := map _ _; suff [P Punit /= Pgs] : codiagonalizable gs.
exists P; rewrite /= ?Pgs ?andbT// /simi
...
|
Lemma
|
algebra
|
[
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype finfun bigop fingroup perm order",
"From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly"
] |
algebra/mxred.v
|
codiagonalizableP
| |
polynomial:= Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.
HB.instance Definition _ := [isSub for polyseq].
HB.instance Definition _ := [Choice of polynomial by <:].
|
Record
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polynomial
| |
poly_inj: injective polyseq. Proof. exact: val_inj. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_inj
| |
coefpi (p : polynomial) := p`_i.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefp
| |
lead_coefp := p`_(size p).-1.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef
| |
lead_coefEp : lead_coef p = p`_(size p).-1. Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coefE
| |
poly_nil:= @Polynomial R [::] (oner_neq0 R).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_nil
| |
polyCc : {poly R} := insubd poly_nil [:: c].
Local Notation "c %:P" := (polyC c).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyC
| |
polyseqCc : c%:P = nseq (c != 0) c :> seq R.
Proof. by rewrite val_insubd /=; case: (c == 0). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyseqC
| |
size_polyCc : size c%:P = (c != 0).
Proof. by rewrite polyseqC size_nseq. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_polyC
| |
coefCc i : c%:P`_i = if i == 0 then c else 0.
Proof. by rewrite polyseqC; case: i => [|[]]; case: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefC
| |
polyCK: cancel polyC (coefp 0).
Proof. by move=> c; rewrite [coefp 0 _]coefC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyCK
| |
polyC_inj: injective polyC.
Proof. exact: can_inj polyCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyC_inj
| |
lead_coefCc : lead_coef c%:P = c.
Proof. by rewrite /lead_coef polyseqC; case: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coefC
| |
polyPp q : nth 0 p =1 nth 0 q <-> p = q.
Proof.
split=> [eq_pq | -> //]; apply: poly_inj.
without loss lt_pq: p q eq_pq / size p < size q.
move=> IH; case: (ltngtP (size p) (size q)); try by move/IH->.
by move/(@eq_from_nth _ 0); apply.
case: q => q nz_q /= in lt_pq eq_pq *; case/eqP: nz_q.
by rewrite (last_nth 0) -(subnKC lt_pq) /= -eq_pq nth_default ?leq_addr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyP
| |
size1_polyCp : size p <= 1 -> p = (p`_0)%:P.
Proof.
move=> le_p_1; apply/polyP=> i; rewrite coefC.
by case: i => // i; rewrite nth_default // (leq_trans le_p_1).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size1_polyC
| |
cons_polyc p : {poly R} :=
if p is Polynomial ((_ :: _) as s) ns then
@Polynomial R (c :: s) ns
else c%:P.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
cons_poly
| |
polyseq_consc p :
cons_poly c p = (if ~~ nilp p then c :: p else c%:P) :> seq R.
Proof. by case: p => [[]]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyseq_cons
| |
size_cons_polyc p :
size (cons_poly c p) = (if nilp p && (c == 0) then 0 else (size p).+1).
Proof. by case: p => [[|c' s] _] //=; rewrite size_polyC; case: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_cons_poly
| |
coef_consc p i : (cons_poly c p)`_i = if i == 0 then c else p`_i.-1.
Proof.
by case: p i => [[|c' s] _] [] //=; rewrite polyseqC; case: eqP => //= _ [].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_cons
| |
Poly:= foldr cons_poly 0%:P.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
Poly
| |
PolyKc s : last c s != 0 -> Poly s = s :> seq R.
Proof.
case: s => {c}/= [_ |c s]; first by rewrite polyseqC eqxx.
elim: s c => /= [|a s IHs] c nz_c; rewrite polyseq_cons ?{}IHs //.
by rewrite !polyseqC !eqxx nz_c.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
PolyK
| |
polyseqKp : Poly p = p.
Proof. by apply: poly_inj; apply: PolyK (valP p). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyseqK
| |
size_Polys : size (Poly s) <= size s.
Proof.
elim: s => [|c s IHs] /=; first by rewrite polyseqC eqxx.
by rewrite size_cons_poly; case: ifP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_Poly
| |
coef_Polys i : (Poly s)`_i = s`_i.
Proof.
by elim: s i => [|c s IHs] /= [|i]; rewrite !(coefC, eqxx, coef_cons) /=.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_Poly
| |
poly_expanded_defn E := Poly (mkseq E n).
Fact poly_key : unit. Proof. by []. Qed.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_expanded_def
| |
poly:= locked_with poly_key poly_expanded_def.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly
| |
poly_unlockable:= [unlockable fun poly].
Local Notation "\poly_ ( i < n ) E" := (poly n (fun i : nat => E)).
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_unlockable
| |
polyseq_polyn E :
E n.-1 != 0 -> \poly_(i < n) E i = mkseq [eta E] n :> seq R.
Proof.
rewrite unlock; case: n => [|n] nzEn; first by rewrite polyseqC eqxx.
by rewrite (@PolyK 0) // -nth_last nth_mkseq size_mkseq.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyseq_poly
| |
size_polyn E : size (\poly_(i < n) E i) <= n.
Proof. by rewrite unlock (leq_trans (size_Poly _)) ?size_mkseq. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly
| |
size_poly_eqn E : E n.-1 != 0 -> size (\poly_(i < n) E i) = n.
Proof. by move/polyseq_poly->; apply: size_mkseq. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly_eq
| |
coef_polyn E k : (\poly_(i < n) E i)`_k = (if k < n then E k else 0).
Proof.
rewrite unlock coef_Poly.
have [lt_kn | le_nk] := ltnP k n; first by rewrite nth_mkseq.
by rewrite nth_default // size_mkseq.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_poly
| |
lead_coef_polyn E :
n > 0 -> E n.-1 != 0 -> lead_coef (\poly_(i < n) E i) = E n.-1.
Proof.
by case: n => // n _ nzE; rewrite /lead_coef size_poly_eq // coef_poly leqnn.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_poly
| |
coefKp : \poly_(i < size p) p`_i = p.
Proof.
by apply/polyP=> i; rewrite coef_poly; case: ltnP => // /(nth_default 0)->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefK
| |
add_poly_defp q := \poly_(i < maxn (size p) (size q)) (p`_i + q`_i).
Fact add_poly_key : unit. Proof. by []. Qed.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
add_poly_def
| |
add_poly:= locked_with add_poly_key add_poly_def.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
add_poly
| |
add_poly_unlockable:= [unlockable fun add_poly].
Fact coef_add_poly p q i : (add_poly p q)`_i = p`_i + q`_i.
Proof.
rewrite unlock coef_poly; case: leqP => //.
by rewrite geq_max => /andP[le_p_i le_q_i]; rewrite !nth_default ?add0r.
Qed.
Fact add_polyA : associative add_poly.
Proof. by move=> p q r; apply/polyP=> i; rewrite !coef_add_poly addrA. Qed.
Fact add_polyC : commutative add_poly.
Proof. by move=> p q; apply/polyP=> i; rewrite !coef_add_poly addrC. Qed.
Fact add_poly0 : left_id 0%:P add_poly.
Proof.
by move=> p; apply/polyP=> i; rewrite coef_add_poly coefC if_same add0r.
Qed.
HB.instance Definition _ := GRing.isNmodule.Build (polynomial R)
add_polyA add_polyC add_poly0.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
add_poly_unlockable
| |
polyC0: 0%:P = 0 :> {poly R}. Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyC0
| |
polyseq0: (0 : {poly R}) = [::] :> seq R.
Proof. by rewrite polyseqC eqxx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyseq0
| |
size_poly0: size (0 : {poly R}) = 0%N.
Proof. by rewrite polyseq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly0
| |
coef0i : (0 : {poly R})`_i = 0.
Proof. by rewrite coefC if_same. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef0
| |
lead_coef0: lead_coef 0 = 0 :> R. Proof. exact: lead_coefC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef0
| |
size_poly_eq0p : (size p == 0) = (p == 0).
Proof. by rewrite size_eq0 -polyseq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly_eq0
| |
size_poly_leq0p : (size p <= 0) = (p == 0).
Proof. by rewrite leqn0 size_poly_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly_leq0
| |
size_poly_leq0Pp : reflect (p = 0) (size p <= 0).
Proof. by apply: (iffP idP); rewrite size_poly_leq0; move/eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly_leq0P
| |
size_poly_gt0p : (0 < size p) = (p != 0).
Proof. by rewrite lt0n size_poly_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly_gt0
| |
gt_size_poly_neq0p n : size p > n -> p != 0.
Proof. by move=> /(leq_ltn_trans _) h; rewrite -size_poly_eq0 lt0n_neq0 ?h. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
gt_size_poly_neq0
| |
nil_polyp : nilp p = (p == 0).
Proof. exact: size_poly_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
nil_poly
| |
poly0Vposp : {p = 0} + {size p > 0}.
Proof. by rewrite lt0n size_poly_eq0; case: eqVneq; [left | right]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly0Vpos
| |
polySpredp : p != 0 -> size p = (size p).-1.+1.
Proof. by rewrite -size_poly_eq0 -lt0n => /prednK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polySpred
| |
lead_coef_eq0p : (lead_coef p == 0) = (p == 0).
Proof.
rewrite -nil_poly /lead_coef nth_last.
by case: p => [[|x s] /= /negbTE // _]; rewrite eqxx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_eq0
| |
polyC_eq0c : (c%:P == 0) = (c == 0).
Proof. by rewrite -nil_poly polyseqC; case: (c == 0). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyC_eq0
| |
size_poly1Pp : reflect (exists2 c, c != 0 & p = c%:P) (size p == 1).
Proof.
apply: (iffP eqP) => [pC | [c nz_c ->]]; last by rewrite size_polyC nz_c.
have def_p: p = (p`_0)%:P by rewrite -size1_polyC ?pC.
by exists p`_0; rewrite // -polyC_eq0 -def_p -size_poly_eq0 pC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly1P
| |
size_polyC_leq1c : (size c%:P <= 1)%N.
Proof. by rewrite size_polyC; case: (c == 0). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_polyC_leq1
| |
leq_sizePp i : reflect (forall j, i <= j -> p`_j = 0) (size p <= i).
Proof.
apply: (iffP idP) => [hp j hij| hp].
by apply: nth_default; apply: leq_trans hij.
case: (eqVneq p) (lead_coef_eq0 p) => [->|p0]; first by rewrite size_poly0.
rewrite leqNgt; apply/contraFN => hs.
by apply/eqP/hp; rewrite -ltnS (ltn_predK hs).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
leq_sizeP
| |
coefDp q i : (p + q)`_i = p`_i + q`_i.
Proof. exact: coef_add_poly. Qed.
HB.instance Definition _ i := GRing.isNmodMorphism.Build {poly R} R (coefp i)
(coef0 i, fun p q => coefD p q i).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefD
| |
coefMnp n i : (p *+ n)`_i = p`_i *+ n.
Proof. exact: (raddfMn (coefp i)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefMn
| |
coef_sumI (r : seq I) (P : pred I) (F : I -> {poly R}) k :
(\sum_(i <- r | P i) F i)`_k = \sum_(i <- r | P i) (F i)`_k.
Proof. exact: (raddf_sum (coefp k)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_sum
| |
polyCD: {morph polyC : a b / a + b}.
Proof. by move=> a b; apply/polyP=> [[|i]]; rewrite coefD !coefC ?addr0. Qed.
HB.instance Definition _ := GRing.isNmodMorphism.Build R {poly R} polyC
(polyC0, polyCD).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyCD
| |
polyCMnn : {morph polyC : c / c *+ n}. Proof. exact: raddfMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyCMn
| |
size_polyDp q : size (p + q) <= maxn (size p) (size q).
Proof. by rewrite -[+%R]/add_poly unlock; exact: size_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_polyD
| |
size_polyDlp q : size p > size q -> size (p + q) = size p.
Proof.
move=> ltqp; rewrite -[+%R]/add_poly unlock size_poly_eq (maxn_idPl (ltnW _))//.
by rewrite addrC nth_default ?simp ?nth_last //; case: p ltqp => [[]].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_polyDl
| |
size_sumI (r : seq I) (P : pred I) (F : I -> {poly R}) :
size (\sum_(i <- r | P i) F i) <= \max_(i <- r | P i) size (F i).
Proof.
elim/big_rec2: _ => [|i p q _ IHp]; first by rewrite size_poly0.
by rewrite -(maxn_idPr IHp) maxnA leq_max size_polyD.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_sum
| |
lead_coefDlp q : size p > size q -> lead_coef (p + q) = lead_coef p.
Proof.
move=> ltqp; rewrite /lead_coef coefD size_polyDl //.
by rewrite addrC nth_default ?simp // -ltnS (ltn_predK ltqp).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coefDl
| |
lead_coefDrp q : size q > size p -> lead_coef (p + q) = lead_coef q.
Proof. by move/lead_coefDl<-; rewrite addrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coefDr
| |
mul_poly_defp q :=
\poly_(i < (size p + size q).-1) (\sum_(j < i.+1) p`_j * q`_(i - j)).
Fact mul_poly_key : unit. Proof. by []. Qed.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
mul_poly_def
| |
mul_poly:= locked_with mul_poly_key mul_poly_def.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
mul_poly
| |
mul_poly_unlockable:= [unlockable fun mul_poly].
Fact coef_mul_poly p q i :
(mul_poly p q)`_i = \sum_(j < i.+1) p`_j * q`_(i - j).
Proof.
rewrite unlock coef_poly ltn_predRL; case: leqP => // le_pq_i1.
rewrite big1 // => j _; have [lq_p_j|lt_j_p] := leqP (size p) j.
by rewrite nth_default ?mul0r.
rewrite [q`__]nth_default ?mulr0 // leq_subRL -ltnS //.
by rewrite (leq_trans _ le_pq_i1) // ltn_add2r.
Qed.
Fact coef_mul_poly_rev p q i :
(mul_poly p q)`_i = \sum_(j < i.+1) p`_(i - j) * q`_j.
Proof.
rewrite coef_mul_poly (reindex_inj rev_ord_inj) /=.
by apply: eq_bigr => j _; rewrite (sub_ordK j).
Qed.
Fact mul_polyA : associative mul_poly.
Proof.
move=> p q r; apply/polyP=> i; rewrite coef_mul_poly coef_mul_poly_rev.
pose coef3 j k := p`_j * (q`_(i - j - k) * r`_k).
transitivity (\sum_(j < i.+1) \sum_(k < i.+1 | k <= i - j) coef3 j k).
apply: eq_bigr => /= j _; rewrite coef_mul_poly_rev big_distrr /=.
by rewrite (big_ord_narrow_leq (leq_subr _ _)).
rewrite (exchange_big_dep predT) //=; apply: eq_bigr => k _.
transitivity (\sum_(j < i.+1 | j <= i - k) coef3 j k).
apply: eq_bigl => j; rewrite -ltnS -(ltnS j) -!subSn ?leq_ord //.
by rewrite -subn_gt0 -(subn_gt0 j) -!subnDA addnC.
rewrite (big_ord_narrow_leq (leq_subr _ _)) coef_mul_poly big_distrl /=.
by apply: eq_bigr => j _; rewrite /coef3 -!subnDA addnC mulrA.
Qed.
Fact mul_1poly : left_id 1%:P mul_poly.
Proof.
move=> p; apply/polyP => i; rewrite coef_mul_poly big_ord_recl subn0.
by rewrite big1 => [|j _]; rewrite coefC !simp.
Qed.
|
Canonical
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
mul_poly_unlockable
| |
polyC1: 1%:P = 1 :> {poly R}. Proof. by []. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyC1
| |
polyseq1: (1 : {poly R}) = [:: 1] :> seq R.
Proof. by rewrite polyseqC oner_neq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyseq1
| |
size_poly1: size (1 : {poly R}) = 1.
Proof. by rewrite polyseq1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly1
| |
coef1i : (1 : {poly R})`_i = (i == 0)%:R.
Proof. by case: i => [|i]; rewrite polyseq1 /= ?nth_nil. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef1
| |
lead_coef1: lead_coef 1 = 1 :> R. Proof. exact: lead_coefC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef1
| |
coefMp q i : (p * q)`_i = \sum_(j < i.+1) p`_j * q`_(i - j).
Proof. exact: coef_mul_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefM
| |
coefMrp q i : (p * q)`_i = \sum_(j < i.+1) p`_(i - j) * q`_j.
Proof. exact: coef_mul_poly_rev. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefMr
| |
coef0Mp q : (p * q)`_0 = p`_0 * q`_0.
Proof. by rewrite coefM big_ord1. Qed.
Fact coefp0_is_monoid_morphism : monoid_morphism (coefp 0).
Proof. by split; [exact: polyCK | exact: coef0M]. Qed.
#[deprecated(since="mathcomp 2.5.0",
note="use `coefp0_is_monoid_morphism` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef0M
| |
coefp0_multiplicative:=
(fun g => (g.2, g.1)) coefp0_is_monoid_morphism.
HB.instance Definition _ := GRing.isMonoidMorphism.Build {poly R} R (coefp 0)
coefp0_is_monoid_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefp0_multiplicative
| |
coef0_prodI rI (F : I -> {poly R}) P :
(\prod_(i <- rI| P i) F i)`_0 = \prod_(i <- rI | P i) (F i)`_0.
Proof. exact: (rmorph_prod (coefp 0)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef0_prod
| |
size_polyMleqp q : size (p * q) <= (size p + size q).-1.
Proof. by rewrite -[*%R]/mul_poly unlock size_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_polyMleq
| |
mul_lead_coefp q :
lead_coef p * lead_coef q = (p * q)`_(size p + size q).-2.
Proof.
pose dp := (size p).-1; pose dq := (size q).-1.
have [-> | nz_p] := eqVneq p 0; first by rewrite lead_coef0 !mul0r coef0.
have [-> | nz_q] := eqVneq q 0; first by rewrite lead_coef0 !mulr0 coef0.
have ->: (size p + size q).-2 = (dp + dq)%N.
by do 2!rewrite polySpred // addSn addnC.
have lt_p_pq: dp < (dp + dq).+1 by rewrite ltnS leq_addr.
rewrite coefM (bigD1 (Ordinal lt_p_pq)) ?big1 ?simp ?addKn //= => i.
rewrite -val_eqE neq_ltn /= => /orP[lt_i_p | gt_i_p]; last first.
by rewrite nth_default ?mul0r //; rewrite -polySpred in gt_i_p.
rewrite [q`__]nth_default ?mulr0 //= -subSS -{1}addnS -polySpred //.
by rewrite addnC -addnBA ?leq_addr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
mul_lead_coef
| |
size_proper_mulp q :
lead_coef p * lead_coef q != 0 -> size (p * q) = (size p + size q).-1.
Proof.
apply: contraNeq; rewrite mul_lead_coef eqn_leq size_polyMleq -ltnNge => lt_pq.
by rewrite nth_default // -subn1 -(leq_add2l 1) -leq_subLR leq_sub2r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_proper_mul
| |
lead_coef_proper_mulp q :
let c := lead_coef p * lead_coef q in c != 0 -> lead_coef (p * q) = c.
Proof. by move=> /= nz_c; rewrite mul_lead_coef -size_proper_mul. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_proper_mul
| |
size_poly_prod_leq(I : finType) (P : pred I) (F : I -> {poly R}) :
size (\prod_(i | P i) F i) <= (\sum_(i | P i) size (F i)).+1 - #|P|.
Proof.
rewrite -sum1_card.
elim/big_rec3: _ => [|i n m p _ IHp]; first by rewrite size_poly1.
have [-> | nz_p] := eqVneq p 0; first by rewrite mulr0 size_poly0.
rewrite (leq_trans (size_polyMleq _ _)) // subnS -!subn1 leq_sub2r //.
rewrite -addnS -addnBA ?leq_add2l // ltnW // -subn_gt0 (leq_trans _ IHp) //.
by rewrite polySpred.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_poly_prod_leq
| |
coefCMc p i : (c%:P * p)`_i = c * p`_i.
Proof.
by rewrite coefM big_ord_recl subn0 big1 => [|j _]; rewrite coefC !simp.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefCM
| |
coefMCc p i : (p * c%:P)`_i = p`_i * c.
Proof.
by rewrite coefMr big_ord_recl subn0 big1 => [|j _]; rewrite coefC !simp.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefMC
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.