fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
derivXnn : ('X^n)^`() = 'X^(n.-1) *+ n. Proof. case: n => [|n]; first exact: derivC. apply/polyP=> i; rewrite coef_deriv coefMn !coefXn eqSS. by case: eqP => [-> // | _]; rewrite !mul0rn. Qed. Fact deriv_is_semilinear : semilinear deriv. Proof. split=> [k p|p q]; apply/polyP => i. by rewrite !(coef_deriv, coefZ) mulrnAr. by rewrite !(coef_deriv, coefD) mulrnDl. Qed. HB.instance Definition _ := GRing.isSemilinear.Build R {poly R} {poly R} _ deriv deriv_is_semilinear.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivXn
deriv0: 0^`() = 0. Proof. exact: linear0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
deriv0
derivD: {morph deriv : p q / p + q}. Proof. exact: linearD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivD
derivMnn p : (p *+ n)^`() = p^`() *+ n. Proof. exact: linearMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivMn
derivZc p : (c *: p)^`() = c *: p^`(). Proof. exact: linearZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivZ
deriv_mulCc p : (c%:P * p)^`() = c%:P * p^`(). Proof. by rewrite !mul_polyC derivZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
deriv_mulC
derivMXaddCp c : (p * 'X + c%:P)^`() = p + p^`() * 'X. Proof. apply/polyP=> i; rewrite raddfD /= derivC addr0 coefD !(coefMX, coef_deriv). by case: i; rewrite ?addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivMXaddC
derivMp q : (p * q)^`() = p^`() * q + p * q^`(). Proof. elim/poly_ind: p => [|p b IHp]; first by rewrite !(mul0r, add0r, derivC). rewrite mulrDl -mulrA -commr_polyX mulrA -[_ * 'X]addr0 raddfD /= !derivMXaddC. by rewrite deriv_mulC IHp !mulrDl -!mulrA !commr_polyX !addrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivM
derivnn p := iter n deriv p. Local Notation "a ^` ( n )" := (derivn n a) : ring_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivn
derivn0p : p^`(0) = p. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivn0
derivn1p : p^`(1) = p^`(). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivn1
derivnSp n : p^`(n.+1) = p^`(n)^`(). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnS
derivSnp n : p^`(n.+1) = p^`()^`(n). Proof. exact: iterSr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivSn
coef_derivnn p i : p^`(n)`_i = p`_(n + i) *+ (n + i) ^_ n. Proof. elim: n i => [|n IHn] i; first by rewrite ffactn0 mulr1n. by rewrite derivnS coef_deriv IHn -mulrnA ffactnSr addSnnS addKn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_derivn
polyOver_derivn(ringS : semiringClosed R) : {in polyOver ringS, forall p n, p^`(n) \is a polyOver ringS}. Proof. move=> p /polyOverP Kp /= n; apply/polyOverP=> i. by rewrite coef_derivn rpredMn. Qed. Fact derivn_is_semilinear n : semilinear (derivn n). Proof. by elim: n => // n IHn; split=> [a p|p q]; rewrite derivnS IHn semilinearPZ. Qed. HB.instance Definition _ n := GRing.isSemilinear.Build R {poly R} {poly R} _ (derivn n) (derivn_is_semilinear n).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyOver_derivn
derivnCc n : c%:P^`(n) = if n == 0 then c%:P else 0. Proof. by case: n => // n; rewrite derivSn derivC linear0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnC
derivnDn : {morph derivn n : p q / p + q}. Proof. exact: linearD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnD
derivnMnn m p : (p *+ m)^`(n) = p^`(n) *+ m. Proof. exact: linearMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnMn
derivnZn : scalable (derivn n). Proof. exact: linearZZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnZ
derivnXnm n : ('X^m)^`(n) = 'X^(m - n) *+ m ^_ n. Proof. apply/polyP=>i; rewrite coef_derivn coefMn !coefXn. case: (ltnP m n) => [lt_m_n | le_m_n]. by rewrite eqn_leq leqNgt ltn_addr // mul0rn ffact_small. by rewrite -{1 3}(subnKC le_m_n) eqn_add2l; case: eqP => [->|]; rewrite ?mul0rn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnXn
derivnMXaddCn p c : (p * 'X + c%:P)^`(n.+1) = p^`(n) *+ n.+1 + p^`(n.+1) * 'X. Proof. elim: n => [|n IHn]; first by rewrite derivn1 derivMXaddC. rewrite derivnS IHn derivD derivM derivX mulr1 derivMn -!derivnS. by rewrite addrA addrAC -mulrSr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivnMXaddC
derivn_poly0p n : size p <= n -> p^`(n) = 0. Proof. move=> le_p_n; apply/polyP=> i; rewrite coef_derivn. rewrite nth_default; first by rewrite mul0rn coef0. exact/(leq_trans le_p_n)/leq_addr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivn_poly0
lt_size_deriv(p : {poly R}) : p != 0 -> size p^`() < size p. Proof. by move=> /polySpred->; apply: size_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lt_size_deriv
nderivnn p := \poly_(i < size p - n) (p`_(n + i) *+ 'C(n + i, n)). Local Notation "a ^`N ( n )" := (nderivn n a) : ring_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivn
coef_nderivnn p i : p^`N(n)`_i = p`_(n + i) *+ 'C(n + i, n). Proof. rewrite coef_poly ltn_subRL; case: leqP => // le_p_ni. by rewrite nth_default ?mul0rn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_nderivn
nderivn_defn p : p^`(n) = p^`N(n) *+ n`!. Proof. by apply/polyP=> i; rewrite coefMn coef_nderivn coef_derivn -mulrnA bin_ffact. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivn_def
polyOver_nderivn(ringS : semiringClosed R) : {in polyOver ringS, forall p n, p^`N(n) \in polyOver ringS}. Proof. move=> p /polyOverP Sp /= n; apply/polyOverP=> i. by rewrite coef_nderivn rpredMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyOver_nderivn
nderivn0p : p^`N(0) = p. Proof. by rewrite -[p^`N(0)](nderivn_def 0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivn0
nderivn1p : p^`N(1) = p^`(). Proof. by rewrite -[p^`N(1)](nderivn_def 1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivn1
nderivnCc n : (c%:P)^`N(n) = if n == 0 then c%:P else 0. Proof. apply/polyP=> i; rewrite coef_nderivn. by case: n => [|n]; rewrite ?bin0 // coef0 coefC mul0rn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivnC
nderivnXnm n : ('X^m)^`N(n) = 'X^(m - n) *+ 'C(m, n). Proof. apply/polyP=> i; rewrite coef_nderivn coefMn !coefXn. have [lt_m_n | le_n_m] := ltnP m n. by rewrite eqn_leq leqNgt ltn_addr // mul0rn bin_small. by rewrite -{1 3}(subnKC le_n_m) eqn_add2l; case: eqP => [->|]; rewrite ?mul0rn. Qed. Fact nderivn_is_semilinear n : semilinear (nderivn n). Proof. split=> [k p|p q]; apply/polyP => i. by rewrite !(coef_nderivn, coefZ) mulrnAr. by rewrite !(coef_nderivn, coefD) mulrnDl. Qed. HB.instance Definition _ n := GRing.isSemilinear.Build R {poly R} {poly R} _ (nderivn n) (nderivn_is_semilinear n).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivnXn
nderivnDn : {morph nderivn n : p q / p + q}. Proof. exact: linearD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivnD
nderivnMnn m p : (p *+ m)^`N(n) = p^`N(n) *+ m. Proof. exact: linearMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivnMn
nderivnZn : scalable (nderivn n). Proof. exact: linearZZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivnZ
nderivnMXaddCn p c : (p * 'X + c%:P)^`N(n.+1) = p^`N(n) + p^`N(n.+1) * 'X. Proof. apply/polyP=> i; rewrite coef_nderivn !coefD !coefMX coefC. rewrite !addSn /= !coef_nderivn addr0 binS mulrnDr addrC; congr (_ + _). by rewrite addSnnS; case: i; rewrite // addn0 bin_small. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivnMXaddC
nderivn_poly0p n : size p <= n -> p^`N(n) = 0. Proof. move=> le_p_n; apply/polyP=> i; rewrite coef_nderivn. rewrite nth_default; first by rewrite mul0rn coef0. exact/(leq_trans le_p_n)/leq_addr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderivn_poly0
nderiv_taylorp x h : GRing.comm x h -> p.[x + h] = \sum_(i < size p) p^`N(i).[x] * h ^+ i. Proof. move/commrX=> cxh; elim/poly_ind: p => [|p c IHp]. by rewrite size_poly0 big_ord0 horner0. rewrite hornerMXaddC size_MXaddC. have [-> | nz_p] := eqVneq p 0. rewrite horner0 !simp; have [-> | _] := c =P 0; first by rewrite big_ord0. by rewrite size_poly0 big_ord_recl big_ord0 nderivn0 hornerC !simp. rewrite big_ord_recl nderivn0 !simp hornerMXaddC addrAC; congr (_ + _). rewrite mulrDr {}IHp !big_distrl polySpred //= big_ord_recl /= mulr1 -addrA. rewrite nderivn0 /bump /(addn 1) /=; congr (_ + _). rewrite !big_ord_recr /= nderivnMXaddC -mulrA -exprSr -polySpred // !addrA. congr (_ + _); last by rewrite (nderivn_poly0 (leqnn _)) !simp. rewrite addrC -big_split /=; apply: eq_bigr => i _. rewrite nderivnMXaddC hornerD (hornerM_comm _ (comm_polyX _)) hornerX. by rewrite mulrDl -!mulrA -exprSr cxh. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderiv_taylor
nderiv_taylor_widen p x h : GRing.comm x h -> size p <= n -> p.[x + h] = \sum_(i < n) p^`N(i).[x] * h ^+ i. Proof. move/nderiv_taylor=> -> le_p_n. rewrite (big_ord_widen n (fun i => p^`N(i).[x] * h ^+ i)) // big_mkcond. apply: eq_bigr => i _; case: leqP => // /nderivn_poly0->. by rewrite horner0 simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
nderiv_taylor_wide
monic_pred:= fun p => lead_coef p == 1. Arguments monic_pred _ /.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic_pred
monic:= [qualify p | monic_pred p].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic
monicEp : (p \is monic) = (lead_coef p == 1). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicE
monicPp : reflect (lead_coef p = 1) (p \is monic). Proof. exact: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicP
monic1: 1 \is monic. Proof. exact/eqP/lead_coef1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic1
monicX: 'X \is monic. Proof. exact/eqP/lead_coefX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicX
monicXnn : 'X^n \is monic. Proof. exact/eqP/lead_coefXn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicXn
monic_neq0p : p \is monic -> p != 0. Proof. by rewrite -lead_coef_eq0 => /eqP->; apply: oner_neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic_neq0
lead_coef_monicMp q : p \is monic -> lead_coef (p * q) = lead_coef q. Proof. have [-> | nz_q] := eqVneq q 0; first by rewrite mulr0. by move/monicP=> mon_p; rewrite lead_coef_proper_mul mon_p mul1r ?lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lead_coef_monicM
lead_coef_Mmonicp q : q \is monic -> lead_coef (p * q) = lead_coef p. Proof. have [-> | nz_p] := eqVneq p 0; first by rewrite mul0r. by move/monicP=> mon_q; rewrite lead_coef_proper_mul mon_q mulr1 ?lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lead_coef_Mmonic
size_monicMp q : p \is monic -> q != 0 -> size (p * q) = (size p + size q).-1. Proof. move/monicP=> mon_p nz_q. by rewrite size_proper_mul // mon_p mul1r lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_monicM
size_Mmonicp q : p != 0 -> q \is monic -> size (p * q) = (size p + size q).-1. Proof. move=> nz_p /monicP mon_q. by rewrite size_proper_mul // mon_q mulr1 lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_Mmonic
monicMlp q : p \is monic -> (p * q \is monic) = (q \is monic). Proof. by move=> mon_p; rewrite !monicE lead_coef_monicM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicMl
monicMrp q : q \is monic -> (p * q \is monic) = (p \is monic). Proof. by move=> mon_q; rewrite !monicE lead_coef_Mmonic. Qed. Fact monic_mulr_closed : mulr_closed monic. Proof. by split=> [|p q mon_p]; rewrite (monic1, monicMl). Qed. HB.instance Definition _ := GRing.isMulClosed.Build {poly R} monic_pred monic_mulr_closed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicMr
monic_expp n : p \is monic -> p ^+ n \is monic. Proof. exact: rpredX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic_exp
monic_prodI rI (P : pred I) (F : I -> {poly R}): (forall i, P i -> F i \is monic) -> \prod_(i <- rI | P i) F i \is monic. Proof. exact: rpred_prod. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic_prod
monicXaddCc : 'X + c%:P \is monic. Proof. exact/eqP/lead_coefXaddC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicXaddC
monicXnaddCn c : 0 < n -> 'X^n + c%:P \is monic. Proof. by move=> n_gt0; rewrite monicE lead_coefXnaddC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monicXnaddC
lreg_lead0p : GRing.lreg (lead_coef p) -> p != 0. Proof. by move/lreg_neq0; rewrite lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lreg_lead0
rreg_lead0p : GRing.rreg (lead_coef p) -> p != 0. Proof. by move/rreg_neq0; rewrite lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rreg_lead0
lreg_sizec p : GRing.lreg c -> size (c *: p) = size p. Proof. move=> reg_c; have [-> | nz_p] := eqVneq p 0; first by rewrite scaler0. rewrite -mul_polyC size_proper_mul; first by rewrite size_polyC lreg_neq0. by rewrite lead_coefC mulrI_eq0 ?lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lreg_size
lreg_polyZ_eq0c p : GRing.lreg c -> (c *: p == 0) = (p == 0). Proof. by rewrite -!size_poly_eq0 => /lreg_size->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lreg_polyZ_eq0
lead_coef_lregc p : GRing.lreg c -> lead_coef (c *: p) = c * lead_coef p. Proof. by move=> reg_c; rewrite !lead_coefE coefZ lreg_size. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lead_coef_lreg
rreg_sizec p : GRing.rreg c -> size (p * c%:P) = size p. Proof. move=> reg_c; have [-> | nz_p] := eqVneq p 0; first by rewrite mul0r. rewrite size_proper_mul; first by rewrite size_polyC rreg_neq0 ?addn1. by rewrite lead_coefC mulIr_eq0 ?lead_coef_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rreg_size
rreg_polyMC_eq0c p : GRing.rreg c -> (p * c%:P == 0) = (p == 0). Proof. by rewrite -!size_poly_eq0 => /rreg_size->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rreg_polyMC_eq0
rreg_div0q r d : GRing.rreg (lead_coef d) -> size r < size d -> (q * d + r == 0) = (q == 0) && (r == 0). Proof. move=> /mulIr_eq0 reg_d lt_r_d; rewrite addrC. have [-> | nz_q] := eqVneq q 0; first by rewrite mul0r addr0. have qd0: lead_coef q * lead_coef d != 0 by rewrite reg_d lead_coef_eq0. apply/negbTE; rewrite -size_poly_eq0 addrC size_polyDl. by rewrite size_poly_eq0 -lead_coef_eq0 lead_coef_proper_mul. apply: leq_trans lt_r_d _; rewrite size_proper_mul //. move: nz_q; rewrite -size_poly_eq0. by case: (size q) => [//|] ? _; rewrite addSn /= leq_addl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rreg_div0
monic_comregp : p \is monic -> GRing.comm p (lead_coef p)%:P /\ GRing.rreg (lead_coef p). Proof. by move/monicP->; split; [apply: commr1 | apply: rreg1]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
monic_comreg
rootp : pred R := fun x => p.[x] == 0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
root
mem_rootp x : x \in root p = (p.[x] == 0). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
mem_root
rootEp x : (root p x = (p.[x] == 0)) * ((x \in root p) = (p.[x] == 0)). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rootE
rootPp x : reflect (p.[x] = 0) (root p x). Proof. exact: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rootP
rootPtp x : reflect (p.[x] == 0) (root p x). Proof. exact: idP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rootPt
rootPfp x : reflect ((p.[x] == 0) = false) (~~ root p x). Proof. exact: negPf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rootPf
rootCa x : root a%:P x = (a == 0). Proof. by rewrite rootE hornerC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rootC
root0x : root 0 x. Proof. by rewrite rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
root0
root1x : ~~ root 1 x. Proof. by rewrite rootC oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
root1
rootXx : root 'X x = (x == 0). Proof. by rewrite rootE hornerX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
rootX
root_size_gt1a p : p != 0 -> root p a -> 1 < size p. Proof. rewrite ltnNge => nz_p; apply: contraL => /size1_polyC Dp. by rewrite Dp rootC -polyC_eq0 -Dp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
root_size_gt1
size_add:= size_polyD (only parsing). #[deprecated(since="mathcomp 2.4.0", note="renamed to `size_polyDl`")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_add
size_addl:= size_polyDl (only parsing). #[deprecated(since="mathcomp 2.4.0", note="renamed to `size_polyMleq`")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_addl
size_mul_leq:= size_polyMleq (only parsing). #[deprecated(since="mathcomp 2.4.0", note="renamed to `size_poly_prod_leq`")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_mul_leq
size_prod_leq:= size_poly_prod_leq (only parsing). #[deprecated(since="mathcomp 2.4.0", note="renamed to `size_poly_exp_leq`")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_prod_leq
size_exp_leq:= size_poly_exp_leq (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pchar_poly instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_exp_leq
char_poly:= pchar_poly (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
char_poly
opp_poly_defp := \poly_(i < size p) - p`_i. Fact opp_poly_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
opp_poly_def
opp_poly:= locked_with opp_poly_key opp_poly_def.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
opp_poly
opp_poly_unlockable:= [unlockable fun opp_poly]. Fact coef_opp_poly p i : (opp_poly p)`_i = - p`_i. Proof. rewrite unlock coef_poly /=. by case: leqP => // le_p_i; rewrite nth_default ?oppr0. Qed. Fact add_polyN : left_inverse 0%:P opp_poly (@add_poly _). Proof. by move=> p; apply/polyP => i; rewrite coefD coef_opp_poly coef0 addNr. Qed. HB.instance Definition _ := GRing.Nmodule_isZmodule.Build (polynomial R) add_polyN.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
opp_poly_unlockable
coefNp i : (- p)`_i = - p`_i. Proof. exact: coef_opp_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coefN
coefBp q i : (p - q)`_i = p`_i - q`_i. Proof. by rewrite coefD coefN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coefB
coefMNnp n i : (p *- n)`_i = p`_i *- n. Proof. by rewrite coefN coefMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coefMNn
polyCN: {morph (@polyC R) : c / - c}. Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyCN
polyCB: {morph (@polyC R) : a b / a - b}. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyCB
size_polyNp : size (- p) = size p. Proof. by apply/eqP; rewrite eqn_leq -{3}(opprK p) -[-%R]/opp_poly unlock !size_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_polyN
lead_coefNp : lead_coef (- p) = - lead_coef p. Proof. by rewrite /lead_coef size_polyN coefN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lead_coefN
size_Msignp n : size ((-1) ^+ n * p) = size p. Proof. by rewrite -signr_odd; case: (odd n); rewrite ?mul1r // mulN1r size_polyN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_Msign
polyseqXsubCa : 'X - a%:P = [:: - a; 1] :> seq R. Proof. by rewrite -polyCN polyseqXaddC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyseqXsubC
size_XsubCa : size ('X - a%:P) = 2. Proof. by rewrite polyseqXsubC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_XsubC
lead_coefXsubCa : lead_coef ('X - a%:P) = 1. Proof. by rewrite lead_coefE polyseqXsubC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lead_coefXsubC
polyXsubC_eq0a : ('X - a%:P == 0) = false. Proof. by rewrite -nil_poly polyseqXsubC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyXsubC_eq0
lead_coefXnsubCn c : 0 < n -> lead_coef ('X^n - c%:P) = 1. Proof. by move=> n_gt0; rewrite -polyCN lead_coefXnaddC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
lead_coefXnsubC
size_XnsubCn c : 0 < n -> size ('X^n - c%:P) = n.+1. Proof. by move=> *; rewrite -polyCN size_XnaddC. Qed. #[deprecated(since="mathcomp 2.3.0",note="Use size_XnsubC instead.")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_XnsubC
size_Xn_sub_1n : n > 0 -> size ('X^n - 1 : {poly R}) = n.+1. Proof. exact/size_XnsubC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_Xn_sub_1