fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
mapf_root(F : fieldType) (R : nzRingType) (f : {rmorphism F -> R})
(p : {poly F}) (x : F) : root (map_poly f p) (f x) = root p x.
Proof. by rewrite !rootE horner_map fmorph_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
mapf_root
| |
poly_morphX_comm: commr_rmorph (pf \o polyC) (pf 'X).
Proof. by move=> a; rewrite /GRing.comm /= -!rmorphM // commr_polyX. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_morphX_comm
| |
poly_initial: pf =1 horner_morph poly_morphX_comm.
Proof.
apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0.
by rewrite !rmorphD !rmorphM /= -{}IHp horner_morphC ?horner_morphX.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_initial
| |
comp_polyq p := p^:P.[q].
Local Notation "p \Po q" := (comp_poly q p) : ring_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_poly
| |
size_map_polyCp : size p^:P = size p.
Proof. exact/(size_map_inj_poly polyC_inj). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_map_polyC
| |
map_polyC_eq0p : (p^:P == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 size_map_polyC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyC_eq0
| |
root_polyCp x : root p^:P x%:P = root p x.
Proof. by rewrite rootE horner_map polyC_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
root_polyC
| |
comp_polyEp q : p \Po q = \sum_(i < size p) p`_i *: q^+i.
Proof.
by rewrite [p \Po q]horner_poly; apply: eq_bigr => i _; rewrite mul_polyC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyE
| |
coef_comp_polyp q n :
(p \Po q)`_n = \sum_(i < size p) p`_i * (q ^+ i)`_n.
Proof. by rewrite comp_polyE coef_sum; apply: eq_bigr => i; rewrite coefZ. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_comp_poly
| |
polyOver_comp(ringS : semiringClosed R) :
{in polyOver ringS &, forall p q, p \Po q \in polyOver ringS}.
Proof.
move=> p q /polyOverP Sp Sq; rewrite comp_polyE rpred_sum // => i _.
by rewrite polyOverZ ?rpredX.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyOver_comp
| |
comp_polyCrp c : p \Po c%:P = p.[c]%:P.
Proof. exact: horner_map. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyCr
| |
comp_poly0rp : p \Po 0 = (p`_0)%:P.
Proof. by rewrite comp_polyCr horner_coef0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_poly0r
| |
comp_polyCc p : c%:P \Po p = c%:P.
Proof. by rewrite /(_ \Po p) map_polyC hornerC. Qed.
Fact comp_poly_is_semilinear p : semilinear (comp_poly p).
Proof.
split=> [a q|q r]; last by rewrite /comp_poly linearD /= hornerD.
by rewrite /comp_poly linearZ /= hornerZ mul_polyC.
Qed.
HB.instance Definition _ p :=
GRing.isSemilinear.Build R {poly R} {poly R} _ (comp_poly p)
(comp_poly_is_semilinear p).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyC
| |
comp_poly0p : 0 \Po p = 0.
Proof. exact: raddf0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_poly0
| |
comp_polyDp q r : (p + q) \Po r = (p \Po r) + (q \Po r).
Proof. exact: raddfD. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyD
| |
comp_polyZc p q : (c *: p) \Po q = c *: (p \Po q).
Proof. exact: linearZZ. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyZ
| |
comp_polyXrp : p \Po 'X = p.
Proof. by rewrite -{2}/(idfun p) poly_initial. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyXr
| |
comp_polyXp : 'X \Po p = p.
Proof. by rewrite /(_ \Po p) map_polyX hornerX. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyX
| |
comp_poly_MXaddCc p q : (p * 'X + c%:P) \Po q = (p \Po q) * q + c%:P.
Proof.
by rewrite /(_ \Po q) rmorphD rmorphM /= map_polyX map_polyC hornerMXaddC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_poly_MXaddC
| |
size_comp_poly_leqp q :
size (p \Po q) <= ((size p).-1 * (size q).-1).+1.
Proof.
rewrite comp_polyE (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP => i _.
rewrite (leq_trans (size_scale_leq _ _))//.
rewrite (leq_trans (size_poly_exp_leq _ _))//.
by rewrite ltnS mulnC leq_mul // -{2}(subnKC (valP i)) leq_addr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_comp_poly_leq
| |
comp_Xn_polyp n : 'X^n \Po p = p ^+ n.
Proof. by rewrite /(_ \Po p) map_polyXn hornerXn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_Xn_poly
| |
coef_comp_poly_Xnp n i : 0 < n ->
(p \Po 'X^n)`_i = if n %| i then p`_(i %/ n) else 0.
Proof.
move=> n_gt0; rewrite comp_polyE; under eq_bigr do rewrite -exprM mulnC.
rewrite coef_sumMXn/=; case: dvdnP => [[j ->]|nD]; last first.
by rewrite big1// => j /eqP ?; case: nD; exists j.
under eq_bigl do rewrite eqn_mul2r gtn_eqF//.
by rewrite big_ord1_eq if_nth ?leqVgt ?mulnK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_comp_poly_Xn
| |
comp_poly_Xnp n : 0 < n ->
p \Po 'X^n = \poly_(i < size p * n) if n %| i then p`_(i %/ n) else 0.
Proof.
move=> n_gt0; apply/polyP => i; rewrite coef_comp_poly_Xn // coef_poly.
case: dvdnP => [[k ->]|]; last by rewrite if_same.
by rewrite mulnK // ltn_mul2r n_gt0 if_nth ?leqVgt.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_poly_Xn
| |
map_comp_poly(aR rR : nzRingType) (f : {rmorphism aR -> rR}) p q :
map_poly f (p \Po q) = map_poly f p \Po map_poly f q.
Proof.
elim/poly_ind: p => [|p a IHp]; first by rewrite !raddf0.
rewrite comp_poly_MXaddC !rmorphD !rmorphM /= !map_polyC map_polyX.
by rewrite comp_poly_MXaddC -IHp.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_comp_poly
| |
prim_root_pcharFp : (p %| n)%N -> p \in [pchar R] = false.
Proof.
move=> pn; apply: contraTF isT => pchar_p; have p_prime := pcharf_prime pchar_p.
have /dvdnP[[|k] n_eq_kp] := pn; first by rewrite n_eq_kp in (n_gt0).
have /eqP := prim_expr_order prim_z; rewrite n_eq_kp exprM.
rewrite -pFrobenius_autE -(pFrobenius_aut1 pchar_p) -subr_eq0 -rmorphB/=.
rewrite pFrobenius_autE expf_eq0// prime_gt0//= subr_eq0.
rewrite -(prim_order_dvd prim_z) n_eq_kp mulnC -dvdn_divRL// divnn/= dvdn1.
by case: ltngtP (prime_gt1 p_prime).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_pcharF
| |
pchar_prim_root: [pchar R]^'.-nat n.
Proof. by apply/pnatP=> // p pp pn; rewrite inE/= prim_root_pcharF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
pchar_prim_root
| |
prim_root_pi_eq0m : \pi(n).-nat m -> m%:R != 0 :> R.
Proof.
rewrite natf_neq0_pchar; apply: sub_in_pnat => p _.
exact: pnatPpi pchar_prim_root.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_pi_eq0
| |
prim_root_dvd_eq0m : (m %| n)%N -> m%:R != 0 :> R.
Proof.
case: m => [|m mn]; first by rewrite dvd0n gtn_eqF.
by rewrite prim_root_pi_eq0 ?(sub_in_pnat (in1W (pi_of_dvd mn _))) ?pnat_pi.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_dvd_eq0
| |
prim_root_natf_neq0: n%:R != 0 :> R.
Proof. by rewrite prim_root_dvd_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_natf_neq0
| |
prim_root_charF:= prim_root_pcharF (only parsing).
#[deprecated(since="mathcomp 2.4.0", note="Use pchar_prim_root instead.")]
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_charF
| |
char_prim_root:= pchar_prim_root (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
char_prim_root
| |
comp_polyBp q r : (p - q) \Po r = (p \Po r) - (q \Po r).
Proof. exact: raddfB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyB
| |
comp_polyXaddC_Kp z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p.
Proof.
have addzK: ('X + z%:P) \Po ('X - z%:P) = 'X.
by rewrite raddfD /= comp_polyC comp_polyX subrK.
elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_poly0.
rewrite comp_poly_MXaddC linearD /= comp_polyC {1}/comp_poly rmorphM /=.
by rewrite hornerM_comm /comm_poly -!/(_ \Po _) ?IHp ?addzK ?commr_polyX.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyXaddC_K
| |
even_polyp : {poly R} := \poly_(i < uphalf (size p)) p`_i.*2.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
even_poly
| |
size_even_polyp : size (even_poly p) <= uphalf (size p).
Proof. exact: size_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_even_poly
| |
coef_even_polyp i : (even_poly p)`_i = p`_i.*2.
Proof. by rewrite coef_poly gtn_uphalf_double if_nth ?leqVgt. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_even_poly
| |
even_polyEs p : size p <= s.*2 -> even_poly p = \poly_(i < s) p`_i.*2.
Proof.
move=> pLs2; apply/polyP => i; rewrite coef_even_poly !coef_poly if_nth //.
by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?leq_double.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
even_polyE
| |
size_even_poly_eqp : odd (size p) ->
size (even_poly p) = uphalf (size p).
Proof.
move=> p_even; rewrite size_poly_eq// double_pred odd_uphalfK//=.
by rewrite lead_coef_eq0 -size_poly_eq0; case: size p_even.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_even_poly_eq
| |
even_polyDp q : even_poly (p + q) = even_poly p + even_poly q.
Proof. by apply/polyP => i; rewrite !(coef_even_poly, coefD). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
even_polyD
| |
even_polyZk p : even_poly (k *: p) = k *: even_poly p.
Proof. by apply/polyP => i; rewrite !(coefZ, coef_even_poly). Qed.
HB.instance Definition _ :=
GRing.isSemilinear.Build R {poly R} {poly R} _ even_poly
(even_polyZ, even_polyD).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
even_polyZ
| |
even_polyC(c : R) : even_poly c%:P = c%:P.
Proof. by apply/polyP => i; rewrite coef_even_poly !coefC; case: i. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
even_polyC
| |
odd_polyp : {poly R} := \poly_(i < (size p)./2) p`_i.*2.+1.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
odd_poly
| |
size_odd_polyp : size (odd_poly p) <= (size p)./2.
Proof. exact: size_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_odd_poly
| |
coef_odd_polyp i : (odd_poly p)`_i = p`_i.*2.+1.
Proof. by rewrite coef_poly gtn_half_double if_nth ?leqVgt. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_odd_poly
| |
odd_polyEs p :
size p <= s.*2.+1 -> odd_poly p = \poly_(i < s) p`_i.*2.+1.
Proof.
move=> pLs2; apply/polyP => i; rewrite coef_odd_poly !coef_poly if_nth //.
by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?ltnS ?leq_double.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
odd_polyE
| |
odd_polyC(c : R) : odd_poly c%:P = 0.
Proof. by apply/polyP => i; rewrite coef_odd_poly !coefC; case: i. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
odd_polyC
| |
odd_polyDp q : odd_poly (p + q) = odd_poly p + odd_poly q.
Proof. by apply/polyP => i; rewrite !(coef_odd_poly, coefD). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
odd_polyD
| |
odd_polyZk p : odd_poly (k *: p) = k *: odd_poly p.
Proof. by apply/polyP => i; rewrite !(coefZ, coef_odd_poly). Qed.
HB.instance Definition _ :=
GRing.isSemilinear.Build R {poly R} {poly R} _ odd_poly
(odd_polyZ, odd_polyD).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
odd_polyZ
| |
size_odd_poly_eqp : ~~ odd (size p) -> size (odd_poly p) = (size p)./2.
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite odd_polyC size_poly0.
move=> p_odd; rewrite size_poly_eq// -subn1 doubleB subn2 even_halfK//.
rewrite prednK ?lead_coef_eq0// ltn_predRL.
by move: p_neq0 p_odd; rewrite -size_poly_eq0; case: (size p) => [|[]].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_odd_poly_eq
| |
odd_polyMXp : odd_poly (p * 'X) = even_poly p.
Proof.
have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC.
by apply/polyP => i; rewrite !coef_poly size_mulX // coefMX.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
odd_polyMX
| |
even_polyMXp : even_poly (p * 'X) = odd_poly p * 'X.
Proof.
have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC mul0r.
by apply/polyP => -[|i]; rewrite !(coefMX, coef_poly, if_same, size_mulX).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
even_polyMX
| |
sum_even_polyp :
\sum_(i < size p | ~~ odd i) p`_i *: 'X^i = even_poly p \Po 'X^2.
Proof.
apply/polyP => i; rewrite coef_comp_poly_Xn// coef_sumMXn coef_even_poly.
rewrite (big_ord1_cond_eq _ _ (negb \o _))/= -dvdn2 andbC -muln2.
by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
sum_even_poly
| |
sum_odd_polyp :
\sum_(i < size p | odd i) p`_i *: 'X^i = (odd_poly p \Po 'X^2) * 'X.
Proof.
apply/polyP => i; rewrite coefMX coef_comp_poly_Xn// coef_sumMXn coef_odd_poly/=.
case: i => [|i]//=; first by rewrite big_andbC big1// => -[[|j]//].
rewrite big_ord1_cond_eq/= -dvdn2 andbC -muln2.
by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
sum_odd_poly
| |
poly_even_oddp : even_poly p \Po 'X^2 + (odd_poly p \Po 'X^2) * 'X = p.
Proof.
rewrite -sum_even_poly -sum_odd_poly addrC -(bigID _ xpredT).
by rewrite -[RHS]coefK poly_def.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_even_odd
| |
take_polym p := \poly_(i < m) p`_i.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_poly
| |
size_take_polym p : size (take_poly m p) <= m.
Proof. exact: size_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_take_poly
| |
coef_take_polym p i : (take_poly m p)`_i = if i < m then p`_i else 0.
Proof. exact: coef_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_take_poly
| |
take_poly_idm p : size p <= m -> take_poly m p = p.
Proof.
move=> /leq_trans gep; apply/polyP => i; rewrite coef_poly if_nth//=.
by case: ltnP => // /gep->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_poly_id
| |
take_polyDm p q : take_poly m (p + q) = take_poly m p + take_poly m q.
Proof.
by apply/polyP => i; rewrite !(coefD, coef_poly); case: leqP; rewrite ?add0r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_polyD
| |
take_polyZk m p : take_poly m (k *: p) = k *: take_poly m p.
Proof.
apply/polyP => i; rewrite !(coefZ, coef_take_poly); case: leqP => //.
by rewrite mulr0.
Qed.
HB.instance Definition _ m := GRing.isSemilinear.Build R {poly R} {poly R} _
(take_poly m) (take_polyZ^~ m, take_polyD m).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_polyZ
| |
take_poly_summ I r P (p : I -> {poly R}) :
take_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r| P i) take_poly m (p i).
Proof. exact: linear_sum. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_poly_sum
| |
take_poly0lp : take_poly 0 p = 0.
Proof. exact/size_poly_leq0P/size_take_poly. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_poly0l
| |
take_poly0rm : take_poly m 0 = 0.
Proof. exact: linear0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_poly0r
| |
take_polyMXnm n p : take_poly m (p * 'X^n) = take_poly (m - n) p * 'X^n.
Proof.
have [->|/eqP p_neq0] := p =P 0; first by rewrite !(mul0r, take_poly0r).
apply/polyP => i; rewrite !(coef_take_poly, coefMXn).
by have [iLn|nLi] := leqP n i; rewrite ?if_same// ltn_sub2rE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_polyMXn
| |
take_polyMXn_0n p : take_poly n (p * 'X^n) = 0.
Proof. by rewrite take_polyMXn subnn take_poly0l mul0r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_polyMXn_0
| |
take_polyDMXnn p q : size p <= n -> take_poly n (p + q * 'X^n) = p.
Proof. by move=> ?; rewrite take_polyD take_poly_id// take_polyMXn_0 addr0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
take_polyDMXn
| |
drop_polym p := \poly_(i < size p - m) p`_(i + m).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_poly
| |
coef_drop_polym p i : (drop_poly m p)`_i = p`_(i + m).
Proof. by rewrite coef_poly ltn_subRL addnC if_nth ?leqVgt. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_drop_poly
| |
drop_poly_eq0m p : size p <= m -> drop_poly m p = 0.
Proof.
move=> sLm; apply/polyP => i; rewrite coef_poly coef0 ltn_subRL addnC.
by rewrite if_nth ?leqVgt// nth_default// (leq_trans _ (leq_addl _ _)).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_poly_eq0
| |
size_drop_polyn p : size (drop_poly n p) = (size p - n)%N.
Proof.
have [pLn|nLp] := leqP (size p) n.
by rewrite (eqP pLn) drop_poly_eq0 ?size_poly0.
have p_neq0 : p != 0 by rewrite -size_poly_gt0 (leq_trans _ nLp).
by rewrite size_poly_eq// predn_sub subnK ?lead_coef_eq0// -ltnS -polySpred.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_drop_poly
| |
sum_drop_polyn p :
\sum_(n <= i < size p) p`_i *: 'X^i = drop_poly n p * 'X^n.
Proof.
rewrite (big_addn 0) big_mkord /drop_poly poly_def mulr_suml.
by apply: eq_bigr => i _; rewrite exprD scalerAl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
sum_drop_poly
| |
drop_polyDm p q : drop_poly m (p + q) = drop_poly m p + drop_poly m q.
Proof. by apply/polyP => i; rewrite coefD !coef_drop_poly coefD. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_polyD
| |
drop_polyZk m p : drop_poly m (k *: p) = k *: drop_poly m p.
Proof. by apply/polyP => i; rewrite coefZ !coef_drop_poly coefZ. Qed.
HB.instance Definition _ m := GRing.isSemilinear.Build R {poly R} {poly R} _
(drop_poly m) (drop_polyZ^~ m, drop_polyD m).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_polyZ
| |
drop_poly_summ I r P (p : I -> {poly R}) :
drop_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r | P i) drop_poly m (p i).
Proof. exact: linear_sum. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_poly_sum
| |
drop_poly0lp : drop_poly 0 p = p.
Proof. by apply/polyP => i; rewrite coef_poly subn0 addn0 if_nth ?leqVgt. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_poly0l
| |
drop_poly0rm : drop_poly m 0 = 0. Proof. exact: linear0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_poly0r
| |
drop_polyMXnm n p :
drop_poly m (p * 'X^n) = drop_poly (m - n) p * 'X^(n - m).
Proof.
have [->|p_neq0] := eqVneq p 0; first by rewrite mul0r !drop_poly0r mul0r.
apply/polyP => i; rewrite !(coefMXn, coef_drop_poly) ltn_subRL [(m + i)%N]addnC.
have [i_small|i_big]// := ltnP; congr nth.
by have [mn|/ltnW mn] := leqP m n;
rewrite (eqP mn) (addn0, subn0) (subnBA, addnBA).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_polyMXn
| |
drop_polyMXn_idn p : drop_poly n (p * 'X^ n) = p.
Proof. by rewrite drop_polyMXn subnn drop_poly0l expr0 mulr1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_polyMXn_id
| |
drop_polyDMXnn p q : size p <= n -> drop_poly n (p + q * 'X^n) = q.
Proof. by move=> ?; rewrite drop_polyD drop_poly_eq0// drop_polyMXn_id add0r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
drop_polyDMXn
| |
poly_take_dropn p : take_poly n p + drop_poly n p * 'X^n = p.
Proof.
apply/polyP => i; rewrite coefD coefMXn coef_take_poly coef_drop_poly.
by case: ltnP => ni; rewrite ?addr0 ?add0r//= subnK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_take_drop
| |
eqp_take_dropn p q :
take_poly n p = take_poly n q -> drop_poly n p = drop_poly n q -> p = q.
Proof.
by move=> tpq dpq; rewrite -[p](poly_take_drop n) -[q](poly_take_drop n) tpq dpq.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
eqp_take_drop
| |
coefE:=
(coef0, coef1, coefC, coefX, coefXn, coef_sumMXn,
coefZ, coefMC, coefCM, coefXnM, coefMXn, coefXM, coefMX, coefMNn, coefMn,
coefN, coefB, coefD, coef_even_poly, coef_odd_poly,
coef_take_poly, coef_drop_poly, coef_cons, coef_Poly, coef_poly,
coef_deriv, coef_nderivn, coef_derivn, coef_map, coef_sum,
coef_comp_poly_Xn, coef_comp_poly).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefE
| |
Definition_ := GRing.PzSemiRing_hasCommutativeMul.Build {poly R}
poly_mul_comm.
HB.instance Definition _ :=
GRing.LSemiAlgebra_isComSemiAlgebra.Build R {poly R}.
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
Definition
| |
hornerMp q x : (p * q).[x] = p.[x] * q.[x].
Proof. by rewrite hornerM_comm //; apply: mulrC. Qed.
Fact horner_eval_is_monoid_morphism (x : R) : monoid_morphism (horner_eval x).
Proof. by split => [|p q]; rewrite /horner_eval (hornerC, hornerM). Qed.
#[deprecated(since="mathcomp 2.5.0",
note="use `horner_eval_is_monoid_morphism` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
hornerM
| |
horner_eval_is_multiplicativex :=
(fun g => (g.2, g.1)) (horner_eval_is_monoid_morphism x).
HB.instance Definition _ x :=
GRing.isMonoidMorphism.Build {poly R} R (horner_eval x)
(horner_eval_is_monoid_morphism x).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_eval_is_multiplicative
| |
horner_expp x n : (p ^+ n).[x] = p.[x] ^+ n.
Proof. exact: (rmorphXn (horner_eval _)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_exp
| |
horner_prodI r (P : pred I) (F : I -> {poly R}) x :
(\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x].
Proof. exact: (rmorph_prod (horner_eval _)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_prod
| |
hornerE:=
(hornerD, hornerN, hornerX, hornerC, horner_exp,
simp, hornerCM, hornerZ, hornerM, horner_cons).
Fact comp_poly_is_monoid_morphism q : monoid_morphism (comp_poly q).
Proof.
split=> [|p1 p2]; first by rewrite comp_polyC.
by rewrite /comp_poly rmorphM hornerM_comm //; apply: mulrC.
Qed.
#[deprecated(since="mathcomp 2.5.0",
note="use `comp_poly_is_monoid_morphism` instead")]
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
hornerE
| |
comp_poly_multiplicativeq :=
(fun g => (g.2, g.1)) (comp_poly_is_monoid_morphism q).
HB.instance Definition _ q := GRing.isMonoidMorphism.Build _ _ (comp_poly q)
(comp_poly_is_monoid_morphism q).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_poly_multiplicative
| |
comp_polyMp q r : (p * q) \Po r = (p \Po r) * (q \Po r).
Proof. exact: rmorphM. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyM
| |
comp_polyAp q r : p \Po (q \Po r) = (p \Po q) \Po r.
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_polyC.
by rewrite !comp_polyD !comp_polyM !comp_polyX IHp !comp_polyC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
comp_polyA
| |
horner_compp q x : (p \Po q).[x] = p.[q.[x]].
Proof. by apply: polyC_inj; rewrite -!comp_polyCr comp_polyA. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_comp
| |
root_compp q x : root (p \Po q) x = root p (q.[x]).
Proof. by rewrite !rootE horner_comp. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
root_comp
| |
deriv_compp q : (p \Po q) ^`() = (p ^`() \Po q) * q^`().
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(deriv0, comp_poly0) mul0r.
rewrite comp_poly_MXaddC derivD derivC derivM IHp derivMXaddC comp_polyD.
by rewrite comp_polyM comp_polyX addr0 addrC mulrAC -mulrDl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
deriv_comp
| |
deriv_expp n : (p ^+ n)^`() = p^`() * p ^+ n.-1 *+ n.
Proof.
elim: n => [|n IHn]; first by rewrite expr0 mulr0n derivC.
by rewrite exprS derivM {}IHn (mulrC p) mulrnAl -mulrA -exprSr mulrS; case n.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
deriv_exp
| |
derivCE:= (derivE, deriv_exp).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivCE
| |
Definition_ := GRing.NzRing.on {poly R}.
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
Definition
| |
coef_prod_XsubC(ps : seq R) (n : nat) :
(n <= size ps)%N ->
(\prod_(p <- ps) ('X - p%:P))`_n =
(-1) ^+ (size ps - n)%N *
\sum_(I in {set 'I_(size ps)} | #|I| == (size ps - n)%N)
\prod_(i in I) ps`_i.
Proof.
move=> nle.
under eq_bigr => i _ do rewrite addrC -raddfN/=.
rewrite -{1}(in_tupleE ps) -(map_tnth_enum (_ ps)) big_map.
rewrite enumT bigA_distr /= coef_sum.
transitivity (\sum_(I in {set 'I_(size ps)}) if #|I| == (size ps - n)%N then
\prod_(i < size ps | i \in I) - ps`_i else 0).
apply eq_bigr => I _.
rewrite big_if/= big_const iter_mulr_1 -rmorph_prod/= coefCM coefXn.
under eq_bigr => i _ do rewrite (tnth_nth 0)/=.
rewrite -[#|I| == _](eqn_add2r n) subnK//.
rewrite -[X in (_ + _)%N == X]card_ord -(cardC I) eqn_add2l.
by case: ifP; rewrite ?mulr1 ?mulr0.
by rewrite -big_mkcond mulr_sumr/=; apply: eq_bigr => I /eqP <-; rewrite prodrN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_prod_XsubC
| |
coefPn_prod_XsubC(ps : seq R) : size ps != 0 ->
(\prod_(p <- ps) ('X - p%:P))`_((size ps).-1) = - \sum_(p <- ps) p.
Proof.
rewrite coef_prod_XsubC ?leq_pred// => ps0.
have -> : (size ps - (size ps).-1 = 1)%N.
by move: ps0; case: (size ps) => // n _; exact: subSnn.
rewrite expr1 mulN1r; congr GRing.opp.
set f : 'I_(size ps) -> {set 'I_(size ps)} := fun a => [set a].
transitivity (\sum_(I in imset f (mem setT)) \prod_(i in I) ps`_i).
apply: congr_big => // I /=.
by apply/cards1P/imsetP => [[a ->] | [a _ ->]]; exists a.
rewrite big_imset/=; last first.
by move=> i j _ _ ij; apply/set1P; rewrite -/(f j) -ij set11.
rewrite -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT.
apply: congr_big => // i; first exact: in_setT.
by rewrite big_set1 (tnth_nth 0).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coefPn_prod_XsubC
| |
coef0_prod_XsubC(ps : seq R) :
(\prod_(p <- ps) ('X - p%:P))`_0 = (-1) ^+ (size ps) * \prod_(p <- ps) p.
Proof.
rewrite coef_prod_XsubC// subn0; congr GRing.mul.
transitivity (\sum_(I in [set setT : {set 'I_(size ps)}]) \prod_(i in I) ps`_i).
apply: congr_big =>// i/=.
apply/idP/set1P => [/eqP cardE | ->]; last by rewrite cardsT card_ord.
by apply/eqP; rewrite eqEcard subsetT cardsT card_ord cardE leqnn.
rewrite big_set1 -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT.
apply: congr_big => // i; first exact: in_setT.
by rewrite (tnth_nth 0).
Qed.
#[deprecated(since="mathcomp 2.5.0", note="use `linearP` instead")]
Fact horner_eval_is_linear x : linear_for *%R (@horner_eval R x).
Proof. exact: linearP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef0_prod_XsubC
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.