fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mapf_root(F : fieldType) (R : nzRingType) (f : {rmorphism F -> R}) (p : {poly F}) (x : F) : root (map_poly f p) (f x) = root p x. Proof. by rewrite !rootE horner_map fmorph_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
mapf_root
poly_morphX_comm: commr_rmorph (pf \o polyC) (pf 'X). Proof. by move=> a; rewrite /GRing.comm /= -!rmorphM // commr_polyX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
poly_morphX_comm
poly_initial: pf =1 horner_morph poly_morphX_comm. Proof. apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0. by rewrite !rmorphD !rmorphM /= -{}IHp horner_morphC ?horner_morphX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
poly_initial
comp_polyq p := p^:P.[q]. Local Notation "p \Po q" := (comp_poly q p) : ring_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_poly
size_map_polyCp : size p^:P = size p. Proof. exact/(size_map_inj_poly polyC_inj). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_map_polyC
map_polyC_eq0p : (p^:P == 0) = (p == 0). Proof. by rewrite -!size_poly_eq0 size_map_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
map_polyC_eq0
root_polyCp x : root p^:P x%:P = root p x. Proof. by rewrite rootE horner_map polyC_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
root_polyC
comp_polyEp q : p \Po q = \sum_(i < size p) p`_i *: q^+i. Proof. by rewrite [p \Po q]horner_poly; apply: eq_bigr => i _; rewrite mul_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyE
coef_comp_polyp q n : (p \Po q)`_n = \sum_(i < size p) p`_i * (q ^+ i)`_n. Proof. by rewrite comp_polyE coef_sum; apply: eq_bigr => i; rewrite coefZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_comp_poly
polyOver_comp(ringS : semiringClosed R) : {in polyOver ringS &, forall p q, p \Po q \in polyOver ringS}. Proof. move=> p q /polyOverP Sp Sq; rewrite comp_polyE rpred_sum // => i _. by rewrite polyOverZ ?rpredX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
polyOver_comp
comp_polyCrp c : p \Po c%:P = p.[c]%:P. Proof. exact: horner_map. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyCr
comp_poly0rp : p \Po 0 = (p`_0)%:P. Proof. by rewrite comp_polyCr horner_coef0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_poly0r
comp_polyCc p : c%:P \Po p = c%:P. Proof. by rewrite /(_ \Po p) map_polyC hornerC. Qed. Fact comp_poly_is_semilinear p : semilinear (comp_poly p). Proof. split=> [a q|q r]; last by rewrite /comp_poly linearD /= hornerD. by rewrite /comp_poly linearZ /= hornerZ mul_polyC. Qed. HB.instance Definition _ p := GRing.isSemilinear.Build R {poly R} {poly R} _ (comp_poly p) (comp_poly_is_semilinear p).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyC
comp_poly0p : 0 \Po p = 0. Proof. exact: raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_poly0
comp_polyDp q r : (p + q) \Po r = (p \Po r) + (q \Po r). Proof. exact: raddfD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyD
comp_polyZc p q : (c *: p) \Po q = c *: (p \Po q). Proof. exact: linearZZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyZ
comp_polyXrp : p \Po 'X = p. Proof. by rewrite -{2}/(idfun p) poly_initial. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyXr
comp_polyXp : 'X \Po p = p. Proof. by rewrite /(_ \Po p) map_polyX hornerX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyX
comp_poly_MXaddCc p q : (p * 'X + c%:P) \Po q = (p \Po q) * q + c%:P. Proof. by rewrite /(_ \Po q) rmorphD rmorphM /= map_polyX map_polyC hornerMXaddC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_poly_MXaddC
size_comp_poly_leqp q : size (p \Po q) <= ((size p).-1 * (size q).-1).+1. Proof. rewrite comp_polyE (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP => i _. rewrite (leq_trans (size_scale_leq _ _))//. rewrite (leq_trans (size_poly_exp_leq _ _))//. by rewrite ltnS mulnC leq_mul // -{2}(subnKC (valP i)) leq_addr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_comp_poly_leq
comp_Xn_polyp n : 'X^n \Po p = p ^+ n. Proof. by rewrite /(_ \Po p) map_polyXn hornerXn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_Xn_poly
coef_comp_poly_Xnp n i : 0 < n -> (p \Po 'X^n)`_i = if n %| i then p`_(i %/ n) else 0. Proof. move=> n_gt0; rewrite comp_polyE; under eq_bigr do rewrite -exprM mulnC. rewrite coef_sumMXn/=; case: dvdnP => [[j ->]|nD]; last first. by rewrite big1// => j /eqP ?; case: nD; exists j. under eq_bigl do rewrite eqn_mul2r gtn_eqF//. by rewrite big_ord1_eq if_nth ?leqVgt ?mulnK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_comp_poly_Xn
comp_poly_Xnp n : 0 < n -> p \Po 'X^n = \poly_(i < size p * n) if n %| i then p`_(i %/ n) else 0. Proof. move=> n_gt0; apply/polyP => i; rewrite coef_comp_poly_Xn // coef_poly. case: dvdnP => [[k ->]|]; last by rewrite if_same. by rewrite mulnK // ltn_mul2r n_gt0 if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_poly_Xn
map_comp_poly(aR rR : nzRingType) (f : {rmorphism aR -> rR}) p q : map_poly f (p \Po q) = map_poly f p \Po map_poly f q. Proof. elim/poly_ind: p => [|p a IHp]; first by rewrite !raddf0. rewrite comp_poly_MXaddC !rmorphD !rmorphM /= !map_polyC map_polyX. by rewrite comp_poly_MXaddC -IHp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
map_comp_poly
prim_root_pcharFp : (p %| n)%N -> p \in [pchar R] = false. Proof. move=> pn; apply: contraTF isT => pchar_p; have p_prime := pcharf_prime pchar_p. have /dvdnP[[|k] n_eq_kp] := pn; first by rewrite n_eq_kp in (n_gt0). have /eqP := prim_expr_order prim_z; rewrite n_eq_kp exprM. rewrite -pFrobenius_autE -(pFrobenius_aut1 pchar_p) -subr_eq0 -rmorphB/=. rewrite pFrobenius_autE expf_eq0// prime_gt0//= subr_eq0. rewrite -(prim_order_dvd prim_z) n_eq_kp mulnC -dvdn_divRL// divnn/= dvdn1. by case: ltngtP (prime_gt1 p_prime). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
prim_root_pcharF
pchar_prim_root: [pchar R]^'.-nat n. Proof. by apply/pnatP=> // p pp pn; rewrite inE/= prim_root_pcharF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
pchar_prim_root
prim_root_pi_eq0m : \pi(n).-nat m -> m%:R != 0 :> R. Proof. rewrite natf_neq0_pchar; apply: sub_in_pnat => p _. exact: pnatPpi pchar_prim_root. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
prim_root_pi_eq0
prim_root_dvd_eq0m : (m %| n)%N -> m%:R != 0 :> R. Proof. case: m => [|m mn]; first by rewrite dvd0n gtn_eqF. by rewrite prim_root_pi_eq0 ?(sub_in_pnat (in1W (pi_of_dvd mn _))) ?pnat_pi. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
prim_root_dvd_eq0
prim_root_natf_neq0: n%:R != 0 :> R. Proof. by rewrite prim_root_dvd_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
prim_root_natf_neq0
prim_root_charF:= prim_root_pcharF (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pchar_prim_root instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
prim_root_charF
char_prim_root:= pchar_prim_root (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
char_prim_root
comp_polyBp q r : (p - q) \Po r = (p \Po r) - (q \Po r). Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyB
comp_polyXaddC_Kp z : (p \Po ('X + z%:P)) \Po ('X - z%:P) = p. Proof. have addzK: ('X + z%:P) \Po ('X - z%:P) = 'X. by rewrite raddfD /= comp_polyC comp_polyX subrK. elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_poly0. rewrite comp_poly_MXaddC linearD /= comp_polyC {1}/comp_poly rmorphM /=. by rewrite hornerM_comm /comm_poly -!/(_ \Po _) ?IHp ?addzK ?commr_polyX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyXaddC_K
even_polyp : {poly R} := \poly_(i < uphalf (size p)) p`_i.*2.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
even_poly
size_even_polyp : size (even_poly p) <= uphalf (size p). Proof. exact: size_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_even_poly
coef_even_polyp i : (even_poly p)`_i = p`_i.*2. Proof. by rewrite coef_poly gtn_uphalf_double if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_even_poly
even_polyEs p : size p <= s.*2 -> even_poly p = \poly_(i < s) p`_i.*2. Proof. move=> pLs2; apply/polyP => i; rewrite coef_even_poly !coef_poly if_nth //. by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?leq_double. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
even_polyE
size_even_poly_eqp : odd (size p) -> size (even_poly p) = uphalf (size p). Proof. move=> p_even; rewrite size_poly_eq// double_pred odd_uphalfK//=. by rewrite lead_coef_eq0 -size_poly_eq0; case: size p_even. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_even_poly_eq
even_polyDp q : even_poly (p + q) = even_poly p + even_poly q. Proof. by apply/polyP => i; rewrite !(coef_even_poly, coefD). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
even_polyD
even_polyZk p : even_poly (k *: p) = k *: even_poly p. Proof. by apply/polyP => i; rewrite !(coefZ, coef_even_poly). Qed. HB.instance Definition _ := GRing.isSemilinear.Build R {poly R} {poly R} _ even_poly (even_polyZ, even_polyD).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
even_polyZ
even_polyC(c : R) : even_poly c%:P = c%:P. Proof. by apply/polyP => i; rewrite coef_even_poly !coefC; case: i. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
even_polyC
odd_polyp : {poly R} := \poly_(i < (size p)./2) p`_i.*2.+1.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
odd_poly
size_odd_polyp : size (odd_poly p) <= (size p)./2. Proof. exact: size_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_odd_poly
coef_odd_polyp i : (odd_poly p)`_i = p`_i.*2.+1. Proof. by rewrite coef_poly gtn_half_double if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_odd_poly
odd_polyEs p : size p <= s.*2.+1 -> odd_poly p = \poly_(i < s) p`_i.*2.+1. Proof. move=> pLs2; apply/polyP => i; rewrite coef_odd_poly !coef_poly if_nth //. by case: ltnP => //= ?; rewrite (leq_trans pLs2) ?ltnS ?leq_double. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
odd_polyE
odd_polyC(c : R) : odd_poly c%:P = 0. Proof. by apply/polyP => i; rewrite coef_odd_poly !coefC; case: i. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
odd_polyC
odd_polyDp q : odd_poly (p + q) = odd_poly p + odd_poly q. Proof. by apply/polyP => i; rewrite !(coef_odd_poly, coefD). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
odd_polyD
odd_polyZk p : odd_poly (k *: p) = k *: odd_poly p. Proof. by apply/polyP => i; rewrite !(coefZ, coef_odd_poly). Qed. HB.instance Definition _ := GRing.isSemilinear.Build R {poly R} {poly R} _ odd_poly (odd_polyZ, odd_polyD).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
odd_polyZ
size_odd_poly_eqp : ~~ odd (size p) -> size (odd_poly p) = (size p)./2. Proof. have [->|p_neq0] := eqVneq p 0; first by rewrite odd_polyC size_poly0. move=> p_odd; rewrite size_poly_eq// -subn1 doubleB subn2 even_halfK//. rewrite prednK ?lead_coef_eq0// ltn_predRL. by move: p_neq0 p_odd; rewrite -size_poly_eq0; case: (size p) => [|[]]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_odd_poly_eq
odd_polyMXp : odd_poly (p * 'X) = even_poly p. Proof. have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC. by apply/polyP => i; rewrite !coef_poly size_mulX // coefMX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
odd_polyMX
even_polyMXp : even_poly (p * 'X) = odd_poly p * 'X. Proof. have [->|pN0] := eqVneq p 0; first by rewrite mul0r even_polyC odd_polyC mul0r. by apply/polyP => -[|i]; rewrite !(coefMX, coef_poly, if_same, size_mulX). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
even_polyMX
sum_even_polyp : \sum_(i < size p | ~~ odd i) p`_i *: 'X^i = even_poly p \Po 'X^2. Proof. apply/polyP => i; rewrite coef_comp_poly_Xn// coef_sumMXn coef_even_poly. rewrite (big_ord1_cond_eq _ _ (negb \o _))/= -dvdn2 andbC -muln2. by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
sum_even_poly
sum_odd_polyp : \sum_(i < size p | odd i) p`_i *: 'X^i = (odd_poly p \Po 'X^2) * 'X. Proof. apply/polyP => i; rewrite coefMX coef_comp_poly_Xn// coef_sumMXn coef_odd_poly/=. case: i => [|i]//=; first by rewrite big_andbC big1// => -[[|j]//]. rewrite big_ord1_cond_eq/= -dvdn2 andbC -muln2. by case: dvdnP => //= -[k ->]; rewrite mulnK// if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
sum_odd_poly
poly_even_oddp : even_poly p \Po 'X^2 + (odd_poly p \Po 'X^2) * 'X = p. Proof. rewrite -sum_even_poly -sum_odd_poly addrC -(bigID _ xpredT). by rewrite -[RHS]coefK poly_def. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
poly_even_odd
take_polym p := \poly_(i < m) p`_i.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_poly
size_take_polym p : size (take_poly m p) <= m. Proof. exact: size_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_take_poly
coef_take_polym p i : (take_poly m p)`_i = if i < m then p`_i else 0. Proof. exact: coef_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_take_poly
take_poly_idm p : size p <= m -> take_poly m p = p. Proof. move=> /leq_trans gep; apply/polyP => i; rewrite coef_poly if_nth//=. by case: ltnP => // /gep->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_poly_id
take_polyDm p q : take_poly m (p + q) = take_poly m p + take_poly m q. Proof. by apply/polyP => i; rewrite !(coefD, coef_poly); case: leqP; rewrite ?add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_polyD
take_polyZk m p : take_poly m (k *: p) = k *: take_poly m p. Proof. apply/polyP => i; rewrite !(coefZ, coef_take_poly); case: leqP => //. by rewrite mulr0. Qed. HB.instance Definition _ m := GRing.isSemilinear.Build R {poly R} {poly R} _ (take_poly m) (take_polyZ^~ m, take_polyD m).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_polyZ
take_poly_summ I r P (p : I -> {poly R}) : take_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r| P i) take_poly m (p i). Proof. exact: linear_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_poly_sum
take_poly0lp : take_poly 0 p = 0. Proof. exact/size_poly_leq0P/size_take_poly. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_poly0l
take_poly0rm : take_poly m 0 = 0. Proof. exact: linear0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_poly0r
take_polyMXnm n p : take_poly m (p * 'X^n) = take_poly (m - n) p * 'X^n. Proof. have [->|/eqP p_neq0] := p =P 0; first by rewrite !(mul0r, take_poly0r). apply/polyP => i; rewrite !(coef_take_poly, coefMXn). by have [iLn|nLi] := leqP n i; rewrite ?if_same// ltn_sub2rE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_polyMXn
take_polyMXn_0n p : take_poly n (p * 'X^n) = 0. Proof. by rewrite take_polyMXn subnn take_poly0l mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_polyMXn_0
take_polyDMXnn p q : size p <= n -> take_poly n (p + q * 'X^n) = p. Proof. by move=> ?; rewrite take_polyD take_poly_id// take_polyMXn_0 addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
take_polyDMXn
drop_polym p := \poly_(i < size p - m) p`_(i + m).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_poly
coef_drop_polym p i : (drop_poly m p)`_i = p`_(i + m). Proof. by rewrite coef_poly ltn_subRL addnC if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_drop_poly
drop_poly_eq0m p : size p <= m -> drop_poly m p = 0. Proof. move=> sLm; apply/polyP => i; rewrite coef_poly coef0 ltn_subRL addnC. by rewrite if_nth ?leqVgt// nth_default// (leq_trans _ (leq_addl _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_poly_eq0
size_drop_polyn p : size (drop_poly n p) = (size p - n)%N. Proof. have [pLn|nLp] := leqP (size p) n. by rewrite (eqP pLn) drop_poly_eq0 ?size_poly0. have p_neq0 : p != 0 by rewrite -size_poly_gt0 (leq_trans _ nLp). by rewrite size_poly_eq// predn_sub subnK ?lead_coef_eq0// -ltnS -polySpred. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
size_drop_poly
sum_drop_polyn p : \sum_(n <= i < size p) p`_i *: 'X^i = drop_poly n p * 'X^n. Proof. rewrite (big_addn 0) big_mkord /drop_poly poly_def mulr_suml. by apply: eq_bigr => i _; rewrite exprD scalerAl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
sum_drop_poly
drop_polyDm p q : drop_poly m (p + q) = drop_poly m p + drop_poly m q. Proof. by apply/polyP => i; rewrite coefD !coef_drop_poly coefD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_polyD
drop_polyZk m p : drop_poly m (k *: p) = k *: drop_poly m p. Proof. by apply/polyP => i; rewrite coefZ !coef_drop_poly coefZ. Qed. HB.instance Definition _ m := GRing.isSemilinear.Build R {poly R} {poly R} _ (drop_poly m) (drop_polyZ^~ m, drop_polyD m).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_polyZ
drop_poly_summ I r P (p : I -> {poly R}) : drop_poly m (\sum_(i <- r | P i) p i) = \sum_(i <- r | P i) drop_poly m (p i). Proof. exact: linear_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_poly_sum
drop_poly0lp : drop_poly 0 p = p. Proof. by apply/polyP => i; rewrite coef_poly subn0 addn0 if_nth ?leqVgt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_poly0l
drop_poly0rm : drop_poly m 0 = 0. Proof. exact: linear0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_poly0r
drop_polyMXnm n p : drop_poly m (p * 'X^n) = drop_poly (m - n) p * 'X^(n - m). Proof. have [->|p_neq0] := eqVneq p 0; first by rewrite mul0r !drop_poly0r mul0r. apply/polyP => i; rewrite !(coefMXn, coef_drop_poly) ltn_subRL [(m + i)%N]addnC. have [i_small|i_big]// := ltnP; congr nth. by have [mn|/ltnW mn] := leqP m n; rewrite (eqP mn) (addn0, subn0) (subnBA, addnBA). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_polyMXn
drop_polyMXn_idn p : drop_poly n (p * 'X^ n) = p. Proof. by rewrite drop_polyMXn subnn drop_poly0l expr0 mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_polyMXn_id
drop_polyDMXnn p q : size p <= n -> drop_poly n (p + q * 'X^n) = q. Proof. by move=> ?; rewrite drop_polyD drop_poly_eq0// drop_polyMXn_id add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
drop_polyDMXn
poly_take_dropn p : take_poly n p + drop_poly n p * 'X^n = p. Proof. apply/polyP => i; rewrite coefD coefMXn coef_take_poly coef_drop_poly. by case: ltnP => ni; rewrite ?addr0 ?add0r//= subnK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
poly_take_drop
eqp_take_dropn p q : take_poly n p = take_poly n q -> drop_poly n p = drop_poly n q -> p = q. Proof. by move=> tpq dpq; rewrite -[p](poly_take_drop n) -[q](poly_take_drop n) tpq dpq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
eqp_take_drop
coefE:= (coef0, coef1, coefC, coefX, coefXn, coef_sumMXn, coefZ, coefMC, coefCM, coefXnM, coefMXn, coefXM, coefMX, coefMNn, coefMn, coefN, coefB, coefD, coef_even_poly, coef_odd_poly, coef_take_poly, coef_drop_poly, coef_cons, coef_Poly, coef_poly, coef_deriv, coef_nderivn, coef_derivn, coef_map, coef_sum, coef_comp_poly_Xn, coef_comp_poly).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coefE
Definition_ := GRing.PzSemiRing_hasCommutativeMul.Build {poly R} poly_mul_comm. HB.instance Definition _ := GRing.LSemiAlgebra_isComSemiAlgebra.Build R {poly R}.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
Definition
hornerMp q x : (p * q).[x] = p.[x] * q.[x]. Proof. by rewrite hornerM_comm //; apply: mulrC. Qed. Fact horner_eval_is_monoid_morphism (x : R) : monoid_morphism (horner_eval x). Proof. by split => [|p q]; rewrite /horner_eval (hornerC, hornerM). Qed. #[deprecated(since="mathcomp 2.5.0", note="use `horner_eval_is_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
hornerM
horner_eval_is_multiplicativex := (fun g => (g.2, g.1)) (horner_eval_is_monoid_morphism x). HB.instance Definition _ x := GRing.isMonoidMorphism.Build {poly R} R (horner_eval x) (horner_eval_is_monoid_morphism x).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
horner_eval_is_multiplicative
horner_expp x n : (p ^+ n).[x] = p.[x] ^+ n. Proof. exact: (rmorphXn (horner_eval _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
horner_exp
horner_prodI r (P : pred I) (F : I -> {poly R}) x : (\prod_(i <- r | P i) F i).[x] = \prod_(i <- r | P i) (F i).[x]. Proof. exact: (rmorph_prod (horner_eval _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
horner_prod
hornerE:= (hornerD, hornerN, hornerX, hornerC, horner_exp, simp, hornerCM, hornerZ, hornerM, horner_cons). Fact comp_poly_is_monoid_morphism q : monoid_morphism (comp_poly q). Proof. split=> [|p1 p2]; first by rewrite comp_polyC. by rewrite /comp_poly rmorphM hornerM_comm //; apply: mulrC. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `comp_poly_is_monoid_morphism` instead")]
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
hornerE
comp_poly_multiplicativeq := (fun g => (g.2, g.1)) (comp_poly_is_monoid_morphism q). HB.instance Definition _ q := GRing.isMonoidMorphism.Build _ _ (comp_poly q) (comp_poly_is_monoid_morphism q).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_poly_multiplicative
comp_polyMp q r : (p * q) \Po r = (p \Po r) * (q \Po r). Proof. exact: rmorphM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyM
comp_polyAp q r : p \Po (q \Po r) = (p \Po q) \Po r. Proof. elim/poly_ind: p => [|p c IHp]; first by rewrite !comp_polyC. by rewrite !comp_polyD !comp_polyM !comp_polyX IHp !comp_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
comp_polyA
horner_compp q x : (p \Po q).[x] = p.[q.[x]]. Proof. by apply: polyC_inj; rewrite -!comp_polyCr comp_polyA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
horner_comp
root_compp q x : root (p \Po q) x = root p (q.[x]). Proof. by rewrite !rootE horner_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
root_comp
deriv_compp q : (p \Po q) ^`() = (p ^`() \Po q) * q^`(). Proof. elim/poly_ind: p => [|p c IHp]; first by rewrite !(deriv0, comp_poly0) mul0r. rewrite comp_poly_MXaddC derivD derivC derivM IHp derivMXaddC comp_polyD. by rewrite comp_polyM comp_polyX addr0 addrC mulrAC -mulrDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
deriv_comp
deriv_expp n : (p ^+ n)^`() = p^`() * p ^+ n.-1 *+ n. Proof. elim: n => [|n IHn]; first by rewrite expr0 mulr0n derivC. by rewrite exprS derivM {}IHn (mulrC p) mulrnAl -mulrA -exprSr mulrS; case n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
deriv_exp
derivCE:= (derivE, deriv_exp).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
derivCE
Definition_ := GRing.NzRing.on {poly R}.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
Definition
coef_prod_XsubC(ps : seq R) (n : nat) : (n <= size ps)%N -> (\prod_(p <- ps) ('X - p%:P))`_n = (-1) ^+ (size ps - n)%N * \sum_(I in {set 'I_(size ps)} | #|I| == (size ps - n)%N) \prod_(i in I) ps`_i. Proof. move=> nle. under eq_bigr => i _ do rewrite addrC -raddfN/=. rewrite -{1}(in_tupleE ps) -(map_tnth_enum (_ ps)) big_map. rewrite enumT bigA_distr /= coef_sum. transitivity (\sum_(I in {set 'I_(size ps)}) if #|I| == (size ps - n)%N then \prod_(i < size ps | i \in I) - ps`_i else 0). apply eq_bigr => I _. rewrite big_if/= big_const iter_mulr_1 -rmorph_prod/= coefCM coefXn. under eq_bigr => i _ do rewrite (tnth_nth 0)/=. rewrite -[#|I| == _](eqn_add2r n) subnK//. rewrite -[X in (_ + _)%N == X]card_ord -(cardC I) eqn_add2l. by case: ifP; rewrite ?mulr1 ?mulr0. by rewrite -big_mkcond mulr_sumr/=; apply: eq_bigr => I /eqP <-; rewrite prodrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef_prod_XsubC
coefPn_prod_XsubC(ps : seq R) : size ps != 0 -> (\prod_(p <- ps) ('X - p%:P))`_((size ps).-1) = - \sum_(p <- ps) p. Proof. rewrite coef_prod_XsubC ?leq_pred// => ps0. have -> : (size ps - (size ps).-1 = 1)%N. by move: ps0; case: (size ps) => // n _; exact: subSnn. rewrite expr1 mulN1r; congr GRing.opp. set f : 'I_(size ps) -> {set 'I_(size ps)} := fun a => [set a]. transitivity (\sum_(I in imset f (mem setT)) \prod_(i in I) ps`_i). apply: congr_big => // I /=. by apply/cards1P/imsetP => [[a ->] | [a _ ->]]; exists a. rewrite big_imset/=; last first. by move=> i j _ _ ij; apply/set1P; rewrite -/(f j) -ij set11. rewrite -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT. apply: congr_big => // i; first exact: in_setT. by rewrite big_set1 (tnth_nth 0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coefPn_prod_XsubC
coef0_prod_XsubC(ps : seq R) : (\prod_(p <- ps) ('X - p%:P))`_0 = (-1) ^+ (size ps) * \prod_(p <- ps) p. Proof. rewrite coef_prod_XsubC// subn0; congr GRing.mul. transitivity (\sum_(I in [set setT : {set 'I_(size ps)}]) \prod_(i in I) ps`_i). apply: congr_big =>// i/=. apply/idP/set1P => [/eqP cardE | ->]; last by rewrite cardsT card_ord. by apply/eqP; rewrite eqEcard subsetT cardsT card_ord cardE leqnn. rewrite big_set1 -[in RHS](in_tupleE ps) -(map_tnth_enum (_ ps)) big_map enumT. apply: congr_big => // i; first exact: in_setT. by rewrite (tnth_nth 0). Qed. #[deprecated(since="mathcomp 2.5.0", note="use `linearP` instead")] Fact horner_eval_is_linear x : linear_for *%R (@horner_eval R x). Proof. exact: linearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop finset tuple div ssralg", "From mathcomp Require Import countalg binomial" ]
algebra/poly.v
coef0_prod_XsubC