fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
hornerNp x : (- p).[x] = - p.[x].
Proof. by apply/esym/addr0_eq; rewrite -hornerD subrr horner0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
hornerN
| |
hornerXsubCa x : ('X - a%:P).[x] = x - a.
Proof. by rewrite hornerD hornerN hornerC hornerX. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
hornerXsubC
| |
hornerE_comm:=
(hornerD, hornerN, hornerX, hornerC, horner_cons,
simp, hornerCM, hornerZ,
(fun p x => hornerM_comm p (comm_polyX x))).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
hornerE_comm
| |
Definition_ (zmodS : zmodClosed R) :=
GRing.isOppClosed.Build {poly R} (polyOver_pred zmodS) (@polyOverNr _).
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
Definition
| |
Definition_ := GRing.MulClosed.on (polyOver_pred S).
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
Definition
| |
polyOverXaddCc : ('X + c%:P \in polyOver S) = (c \in S).
Proof. by rewrite rpredDl ?polyOverX ?polyOverC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyOverXaddC
| |
polyOverXnaddCn c : ('X^n + c%:P \is a polyOver S) = (c \in S).
Proof. by rewrite rpredDl ?polyOverXn// ?polyOverC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyOverXnaddC
| |
polyOverXsubCc : ('X - c%:P \in polyOver S) = (c \in S).
Proof. by rewrite rpredBl ?polyOverX ?polyOverC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyOverXsubC
| |
polyOverXnsubCn c : ('X^n - c%:P \is a polyOver S) = (c \in S).
Proof. by rewrite rpredBl ?polyOverXn// ?polyOverC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
polyOverXnsubC
| |
derivN: {morph deriv : p / - p}.
Proof. exact: linearN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivN
| |
derivB: {morph deriv : p q / p - q}.
Proof. exact: linearB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivB
| |
derivXsubC(a : R) : ('X - a%:P)^`() = 1.
Proof. by rewrite derivB derivX derivC subr0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivXsubC
| |
derivMNnn p : (p *- n)^`() = p^`() *- n.
Proof. exact: linearMNn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivMNn
| |
derivE:= Eval lazy beta delta [morphism_2 morphism_1] in
(derivZ, deriv_mulC, derivC, derivX, derivMXaddC, derivXsubC, derivM, derivB,
derivD, derivN, derivXn, derivM, derivMn).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivE
| |
derivnBn : {morph derivn n : p q / p - q}.
Proof. exact: linearB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivnB
| |
derivnMNnn m p : (p *- m)^`(n) = p^`(n) *- m.
Proof. exact: linearMNn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivnMNn
| |
derivnNn : {morph derivn n : p / - p}.
Proof. exact: linearN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivnN
| |
nderivnBn : {morph nderivn n : p q / p - q}.
Proof. exact: linearB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
nderivnB
| |
nderivnMNnn m p : (p *- m)^`N(n) = p^`N(n) *- m.
Proof. exact: linearMNn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
nderivnMNn
| |
nderivnNn : {morph nderivn n : p / - p}.
Proof. exact: linearN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
nderivnN
| |
monicXsubCc : 'X - c%:P \is monic.
Proof. exact/eqP/lead_coefXsubC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monicXsubC
| |
monic_prod_XsubCI rI (P : pred I) (F : I -> R) :
\prod_(i <- rI | P i) ('X - (F i)%:P) \is monic.
Proof. by apply: monic_prod => i _; apply: monicXsubC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monic_prod_XsubC
| |
lead_coef_prod_XsubCI rI (P : pred I) (F : I -> R) :
lead_coef (\prod_(i <- rI | P i) ('X - (F i)%:P)) = 1.
Proof. exact/eqP/monic_prod_XsubC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_prod_XsubC
| |
size_prod_XsubCI rI (F : I -> R) :
size (\prod_(i <- rI) ('X - (F i)%:P)) = (size rI).+1.
Proof.
elim: rI => [|i r /= <-]; rewrite ?big_nil ?size_poly1 // big_cons.
rewrite size_monicM ?monicXsubC ?monic_neq0 ?monic_prod_XsubC //.
by rewrite size_XsubC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_prod_XsubC
| |
size_exp_XsubCn a : size (('X - a%:P) ^+ n) = n.+1.
Proof.
rewrite -[n]card_ord -prodr_const -big_filter size_prod_XsubC.
by have [e _ _ [_ ->]] := big_enumP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_exp_XsubC
| |
monicXnsubCn c : 0 < n -> 'X^n - c%:P \is monic.
Proof. by move=> n_gt0; rewrite monicE lead_coefXnsubC. Qed.
#[deprecated(since="mathcomp 2.3.0'",note="Use monicXnsubC instead.")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monicXnsubC
| |
monic_Xn_sub_1n : n > 0 -> 'X^n - 1 \is @monic R.
Proof. exact/monicXnsubC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monic_Xn_sub_1
| |
lreg_leadp : GRing.lreg (lead_coef p) -> GRing.lreg p.
Proof.
move/mulrI_eq0=> reg_p; apply: mulrI0_lreg => q; apply/contra_eq => nz_q.
by rewrite -lead_coef_eq0 lead_coef_proper_mul reg_p lead_coef_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lreg_lead
| |
rreg_leadp : GRing.rreg (lead_coef p) -> GRing.rreg p.
Proof.
move/mulIr_eq0=> reg_p; apply: mulIr0_rreg => q; apply/contra_eq => nz_q.
by rewrite -lead_coef_eq0 lead_coef_proper_mul reg_p lead_coef_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
rreg_lead
| |
monic_lregp : p \is monic -> GRing.lreg p.
Proof. by move=> /eqP lp1; apply/lreg_lead; rewrite lp1; apply/lreg1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monic_lreg
| |
monic_rregp : p \is monic -> GRing.rreg p.
Proof. by move=> /eqP lp1; apply/rreg_lead; rewrite lp1; apply/rreg1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monic_rreg
| |
rootNp x : root (- p) x = root p x.
Proof. by rewrite rootE hornerN oppr_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
rootN
| |
root_XsubCa x : root ('X - a%:P) x = (x == a).
Proof. by rewrite rootE hornerXsubC subr_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
root_XsubC
| |
root_XaddCa x : root ('X + a%:P) x = (x == - a).
Proof. by rewrite -root_XsubC rmorphN opprK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
root_XaddC
| |
factor_theoremp a : reflect (exists q, p = q * ('X - a%:P)) (root p a).
Proof.
apply: (iffP eqP) => [pa0 | [q ->]]; last first.
by rewrite hornerM_comm /comm_poly hornerXsubC subrr ?simp.
exists (\poly_(i < size p) horner_rec (drop i.+1 p) a).
apply/polyP=> i; rewrite mulrBr coefB coefMX coefMC !coef_poly.
apply: canRL (addrK _) _; rewrite addrC; have [le_p_i | lt_i_p] := leqP.
rewrite nth_default // !simp drop_oversize ?if_same //.
exact: leq_trans (leqSpred _).
case: i => [|i] in lt_i_p *; last by rewrite ltnW // (drop_nth 0 lt_i_p).
by rewrite drop1 /= -{}pa0 /horner; case: (p : seq R) lt_i_p.
Qed.
|
Theorem
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
factor_theorem
| |
multiplicity_XsubCp a :
{m | exists2 q, (p != 0) ==> ~~ root q a & p = q * ('X - a%:P) ^+ m}.
Proof.
have [n le_p_n] := ubnP (size p); elim: n => // n IHn in p le_p_n *.
have [-> | nz_p /=] := eqVneq p 0; first by exists 0, 0; rewrite ?mul0r.
have [/sig_eqW[p1 Dp] | nz_pa] := altP (factor_theorem p a); last first.
by exists 0%N, p; rewrite ?mulr1.
have nz_p1: p1 != 0 by apply: contraNneq nz_p => p1_0; rewrite Dp p1_0 mul0r.
have /IHn[m /sig2_eqW[q nz_qa Dp1]]: size p1 < n.
by rewrite Dp size_Mmonic ?monicXsubC // size_XsubC addn2 in le_p_n.
by exists m.+1, q; [rewrite nz_p1 in nz_qa | rewrite exprSr mulrA -Dp1].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
multiplicity_XsubC
| |
root_of_unityn : pred R := root ('X^n - 1).
Local Notation "n .-unity_root" := (root_of_unity n) : ring_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
root_of_unity
| |
unity_rootEn z : n.-unity_root z = (z ^+ n == 1).
Proof.
by rewrite /root_of_unity rootE hornerD hornerN hornerXn hornerC subr_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
unity_rootE
| |
unity_rootPn z : reflect (z ^+ n = 1) (n.-unity_root z).
Proof. by rewrite unity_rootE; apply: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
unity_rootP
| |
primitive_root_of_unityn z :=
(n > 0) && [forall i : 'I_n, i.+1.-unity_root z == (i.+1 == n)].
Local Notation "n .-primitive_root" := (primitive_root_of_unity n) : ring_scope.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
primitive_root_of_unity
| |
prim_order_existsn z :
n > 0 -> z ^+ n = 1 -> {m | m.-primitive_root z & (m %| n)}.
Proof.
move=> n_gt0 zn1.
have: exists m, (m > 0) && (z ^+ m == 1) by exists n; rewrite n_gt0 /= zn1.
case/ex_minnP=> m /andP[m_gt0 /eqP zm1] m_min.
exists m.
apply/andP; split=> //; apply/eqfunP=> [[i]] /=.
rewrite leq_eqVlt unity_rootE.
case: eqP => [-> _ | _]; first by rewrite zm1 eqxx.
by apply: contraTF => zi1; rewrite -leqNgt m_min.
have: n %% m < m by rewrite ltn_mod.
apply: contraLR; rewrite -lt0n -leqNgt => nm_gt0; apply: m_min.
by rewrite nm_gt0 /= expr_mod ?zn1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_order_exists
| |
prim_order_gt0: n > 0. Proof. by case/andP: prim_z. Qed.
Let n_gt0 := prim_order_gt0.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_order_gt0
| |
prim_expr_order: z ^+ n = 1.
Proof.
case/andP: prim_z => _; rewrite -(prednK n_gt0) => /forallP/(_ ord_max).
by rewrite unity_rootE eqxx eqb_id => /eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_expr_order
| |
prim_expr_modi : z ^+ (i %% n) = z ^+ i.
Proof. exact: expr_mod prim_expr_order. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_expr_mod
| |
prim_order_dvdi : (n %| i) = (z ^+ i == 1).
Proof.
move: n_gt0; rewrite -prim_expr_mod /dvdn -(ltn_mod i).
case: {i}(i %% n)%N => [|i] lt_i; first by rewrite !eqxx.
case/andP: prim_z => _ /forallP/(_ (Ordinal (ltnW lt_i)))/eqP.
by rewrite unity_rootE eqn_leq andbC leqNgt lt_i.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_order_dvd
| |
eq_prim_root_expri j : (z ^+ i == z ^+ j) = (i == j %[mod n]).
Proof.
wlog le_ji: i j / j <= i.
move=> IH; case: (leqP j i) => [|/ltnW] /IH //.
by rewrite eq_sym (eq_sym (j %% n)%N).
rewrite -{1}(subnKC le_ji) exprD -prim_expr_mod eqn_mod_dvd //.
rewrite prim_order_dvd; apply/eqP/eqP=> [|->]; last by rewrite mulr1.
move/(congr1 ( *%R (z ^+ (n - j %% n)))); rewrite mulrA -exprD.
by rewrite subnK ?prim_expr_order ?mul1r // ltnW ?ltn_mod.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
eq_prim_root_expr
| |
exp_prim_rootk : (n %/ gcdn k n).-primitive_root (z ^+ k).
Proof.
set d := gcdn k n; have d_gt0: (0 < d)%N by rewrite gcdn_gt0 orbC n_gt0.
have [d_dv_k d_dv_n]: (d %| k /\ d %| n)%N by rewrite dvdn_gcdl dvdn_gcdr.
set q := (n %/ d)%N; rewrite /q.-primitive_root ltn_divRL // n_gt0.
apply/forallP=> i; rewrite unity_rootE -exprM -prim_order_dvd.
rewrite -(divnK d_dv_n) -/q -(divnK d_dv_k) mulnAC dvdn_pmul2r //.
apply/eqP; apply/idP/idP=> [|/eqP->]; last by rewrite dvdn_mull.
rewrite Gauss_dvdr; first by rewrite eqn_leq ltn_ord; apply: dvdn_leq.
by rewrite /coprime gcdnC -(eqn_pmul2r d_gt0) mul1n muln_gcdl !divnK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
exp_prim_root
| |
dvdn_prim_rootm : (m %| n)%N -> m.-primitive_root (z ^+ (n %/ m)).
Proof.
set k := (n %/ m)%N => m_dv_n; rewrite -{1}(mulKn m n_gt0) -divnA // -/k.
by rewrite -{1}(@gcdn_idPl k n _) ?exp_prim_root // -(divnK m_dv_n) dvdn_mulr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
dvdn_prim_root
| |
prim_root_eq0: (z == 0) = (n == 0%N).
Proof.
rewrite gtn_eqF//; apply/eqP => z0; have /esym/eqP := prim_expr_order.
by rewrite z0 expr0n gtn_eqF//= oner_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_eq0
| |
prim_root_exp_coprimen z k :
n.-primitive_root z -> n.-primitive_root (z ^+ k) = coprime k n.
Proof.
move=> prim_z; have n_gt0 := prim_order_gt0 prim_z.
apply/idP/idP=> [prim_zk | co_k_n].
set d := gcdn k n; have dv_d_n: (d %| n)%N := dvdn_gcdr _ _.
rewrite /coprime -/d -(eqn_pmul2r n_gt0) mul1n -{2}(gcdnMl n d).
rewrite -{2}(divnK dv_d_n) (mulnC _ d) -muln_gcdr (gcdn_idPr _) //.
rewrite (prim_order_dvd prim_zk) -exprM -(prim_order_dvd prim_z).
by rewrite muln_divCA_gcd dvdn_mulr.
have zkn_1: z ^+ k ^+ n = 1 by rewrite exprAC (prim_expr_order prim_z) expr1n.
have{zkn_1} [m prim_zk dv_m_n]:= prim_order_exists n_gt0 zkn_1.
suffices /eqP <-: m == n by [].
rewrite eqn_dvd dv_m_n -(@Gauss_dvdr n k m) 1?coprime_sym //=.
by rewrite (prim_order_dvd prim_z) exprM (prim_expr_order prim_zk).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prim_root_exp_coprime
| |
size_opp:= size_polyN (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_opp
| |
map_poly(p : {poly aR}) := \poly_(i < size p) f p`_i.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly
| |
map_polyEp : map_poly p = Poly (map f p).
Proof.
rewrite /map_poly unlock; congr Poly.
apply: (@eq_from_nth _ 0); rewrite size_mkseq ?size_map // => i lt_i_p.
by rewrite [RHS](nth_map 0) ?nth_mkseq.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyE
| |
commr_rmorphu := forall x, GRing.comm u (f x).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
commr_rmorph
| |
horner_morphu of commr_rmorph u := fun p => (map_poly p).[u].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_morph
| |
map_poly0: 0^f = 0.
Proof. by rewrite map_polyE polyseq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly0
| |
eq_map_poly(g : aR -> rR) : f =1 g -> map_poly f =1 map_poly g.
Proof. by move=> eq_fg p; rewrite !map_polyE (eq_map eq_fg). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
eq_map_poly
| |
map_poly_idg (p : {poly iR}) :
{in (p : seq iR), g =1 id} -> map_poly g p = p.
Proof. by move=> g_id; rewrite map_polyE map_id_in ?polyseqK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly_id
| |
coef_map_id0p i : f 0 = 0 -> (p^f)`_i = f p`_i.
Proof.
by move=> f0; rewrite coef_poly; case: ltnP => // le_p_i; rewrite nth_default.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_map_id0
| |
map_Poly_id0s : f 0 = 0 -> (Poly s)^f = Poly (map f s).
Proof.
move=> f0; apply/polyP=> j; rewrite coef_map_id0 ?coef_Poly //.
have [/(nth_map 0 0)->// | le_s_j] := ltnP j (size s).
by rewrite !nth_default ?size_map.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_Poly_id0
| |
map_poly_comp_id0(g : iR -> aR) p :
f 0 = 0 -> map_poly (f \o g) p = (map_poly g p)^f.
Proof. by move=> f0; rewrite map_polyE map_comp -map_Poly_id0 -?map_polyE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly_comp_id0
| |
size_map_poly_id0p : f (lead_coef p) != 0 -> size p^f = size p.
Proof. by move=> nz_fp; apply: size_poly_eq. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_map_poly_id0
| |
map_poly_eq0_id0p : f (lead_coef p) != 0 -> (p^f == 0) = (p == 0).
Proof. by rewrite -!size_poly_eq0 => /size_map_poly_id0->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly_eq0_id0
| |
lead_coef_map_id0p :
f 0 = 0 -> f (lead_coef p) != 0 -> lead_coef p^f = f (lead_coef p).
Proof.
by move=> f0 nz_fp; rewrite lead_coefE coef_map_id0 ?size_map_poly_id0.
Qed.
Hypotheses (inj_f : injective f) (f_0 : f 0 = 0).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_map_id0
| |
size_map_inj_polyp : size p^f = size p.
Proof.
have [-> | nz_p] := eqVneq p 0; first by rewrite map_poly0 !size_poly0.
by rewrite size_map_poly_id0 // -f_0 (inj_eq inj_f) lead_coef_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
size_map_inj_poly
| |
map_inj_poly: injective (map_poly f).
Proof.
move=> p q /polyP eq_pq; apply/polyP=> i; apply: inj_f.
by rewrite -!coef_map_id0 ?eq_pq.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_inj_poly
| |
lead_coef_map_injp : lead_coef p^f = f (lead_coef p).
Proof. by rewrite !lead_coefE size_map_inj_poly coef_map_id0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_map_inj
| |
map_polyK(f : aR -> rR) g :
cancel g f -> f 0 = 0 -> cancel (map_poly g) (map_poly f).
Proof.
by move=> gK f_0 p; rewrite /= -map_poly_comp_id0 ?map_poly_id // => x _ //=.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyK
| |
eq_in_map_poly_id0(f g : aR -> rR) (S : addrClosed aR) :
f 0 = 0 -> g 0 = 0 -> {in S, f =1 g} ->
{in polyOver S, map_poly f =1 map_poly g}.
Proof.
move=> f0 g0 eq_fg p pP; apply/polyP => i.
by rewrite !coef_map_id0// eq_fg// (polyOverP _).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
eq_in_map_poly_id0
| |
eq_in_map_poly(f g : {additive aR -> rR}) (S : addrClosed aR) :
{in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}.
Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
eq_in_map_poly
| |
coef_mapp i : p^f`_i = f p`_i.
Proof. exact: coef_map_id0 (raddf0 f). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
coef_map
| |
map_Polys : (Poly s)^f = Poly (map f s).
Proof. exact: map_Poly_id0 (raddf0 f). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_Poly
| |
map_poly_comp(g : iR -> aR) p :
map_poly (f \o g) p = map_poly f (map_poly g p).
Proof. exact: map_poly_comp_id0 (raddf0 f). Qed.
Fact map_poly_is_nmod_morphism : nmod_morphism (map_poly f).
Proof.
split=> [|p q]; apply/polyP => i; first by rewrite coef_map !coef0 raddf0.
by rewrite !(coef_map, coefD) raddfD.
Qed.
HB.instance Definition _ :=
GRing.isNmodMorphism.Build {poly aR} {poly rR} (map_poly f)
map_poly_is_nmod_morphism.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly_comp
| |
map_polyCa : (a%:P)^f = (f a)%:P.
Proof. by apply/polyP=> i; rewrite !(coef_map, coefC) -!mulrb raddfMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyC
| |
lead_coef_map_eqp :
f (lead_coef p) != 0 -> lead_coef p^f = f (lead_coef p).
Proof. exact: lead_coef_map_id0 (raddf0 f). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
lead_coef_map_eq
| |
map_poly_is_multiplicative:=
(fun g => (g.2, g.1)) map_poly_is_monoid_morphism.
HB.instance Definition _ :=
GRing.isMonoidMorphism.Build {poly aR} {poly rR} (map_poly f)
map_poly_is_monoid_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_poly_is_multiplicative
| |
map_polyZc p : (c *: p)^f = f c *: p^f.
Proof. by apply/polyP=> i; rewrite !(coef_map, coefZ) /= rmorphM. Qed.
HB.instance Definition _ :=
GRing.isScalable.Build aR {poly aR} {poly rR} (f \; *:%R) (map_poly f)
map_polyZ.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyZ
| |
map_polyX: ('X)^f = 'X.
Proof. by apply/polyP=> i; rewrite coef_map !coefX /= rmorph_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyX
| |
map_polyXnn : ('X^n)^f = 'X^n.
Proof. by rewrite rmorphXn /= map_polyX. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyXn
| |
map_polyXaddCx : ('X + x%:P)^f = 'X + (f x)%:P.
Proof. by rewrite raddfD/= map_polyX map_polyC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyXaddC
| |
monic_mapp : p \is monic -> p^f \is monic.
Proof.
move/monicP=> mon_p; rewrite monicE.
by rewrite lead_coef_map_eq mon_p /= rmorph1 ?oner_neq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
monic_map
| |
horner_mapp x : p^f.[f x] = f p.[x].
Proof.
elim/poly_ind: p => [|p c IHp]; first by rewrite !(rmorph0, horner0).
rewrite hornerMXaddC !rmorphD !rmorphM /=.
by rewrite map_polyX map_polyC hornerMXaddC IHp.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_map
| |
map_comm_polyp x : comm_poly p x -> comm_poly p^f (f x).
Proof. by rewrite /comm_poly horner_map -!rmorphM // => ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_comm_poly
| |
map_comm_coefp x : comm_coef p x -> comm_coef p^f (f x).
Proof. by move=> cpx i; rewrite coef_map -!rmorphM ?cpx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_comm_coef
| |
rmorph_rootp x : root p x -> root p^f (f x).
Proof. by move/eqP=> px0; rewrite rootE horner_map px0 rmorph0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
rmorph_root
| |
horner_morphCa : horner_morph cfu a%:P = f a.
Proof. by rewrite /horner_morph map_polyC hornerC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_morphC
| |
horner_morphX: horner_morph cfu 'X = u.
Proof. by rewrite /horner_morph map_polyX hornerX. Qed.
Fact horner_is_semilinear : semilinear_for (f \; *%R) (horner_morph cfu).
Proof.
split=> [c p|p q]; rewrite /horner_morph; first by rewrite linearZ hornerZ.
by rewrite linearD hornerD.
Qed.
Fact horner_is_monoid_morphism : monoid_morphism (horner_morph cfu).
Proof.
split=> [|p q]; first by rewrite /horner_morph rmorph1 hornerC.
rewrite /horner_morph rmorphM /= hornerM_comm //.
by apply: comm_coef_poly => i; rewrite coef_map cfu.
Qed.
#[deprecated(since="mathcomp 2.5.0",
note="use `horner_is_monoid_morphism` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_morphX
| |
horner_is_multiplicative:=
(fun g => (g.2, g.1)) horner_is_monoid_morphism.
HB.instance Definition _ :=
GRing.isSemilinear.Build aR {poly aR} rR _ (horner_morph cfu)
horner_is_semilinear.
HB.instance Definition _ :=
GRing.isMonoidMorphism.Build {poly aR} rR (horner_morph cfu)
horner_is_monoid_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_is_multiplicative
| |
deriv_mapp : p^f^`() = (p^`())^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_deriv) //= rmorphMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
deriv_map
| |
derivn_mapp n : p^f^`(n) = (p^`(n))^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_derivn) //= rmorphMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
derivn_map
| |
nderivn_mapp n : p^f^`N(n) = (p^`N(n))^f.
Proof. by apply/polyP => i; rewrite !(coef_map, coef_nderivn) //= rmorphMn. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
nderivn_map
| |
map_polyXsubCx : ('X - x%:P)^f = 'X - (f x)%:P.
Proof. by rewrite raddfB/= map_polyX map_polyC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_polyXsubC
| |
map_prod_XsubCI (rI : seq I) P F :
(\prod_(i <- rI | P i) ('X - (F i)%:P))^f =
\prod_(i <- rI | P i) ('X - (f (F i))%:P).
Proof.
by rewrite rmorph_prod//; apply/eq_bigr => x /=; rewrite map_polyXsubC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
map_prod_XsubC
| |
prod_map_poly(ar : seq aR) P :
\prod_(x <- map f ar | P x) ('X - x%:P) =
(\prod_(x <- ar | P (f x)) ('X - x%:P))^f.
Proof. by rewrite big_map map_prod_XsubC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
prod_map_poly
| |
rmorph_unity_rootn z : n.-unity_root z -> n.-unity_root (f z).
Proof.
move/(rmorph_root f); rewrite rootE rmorphB hornerD hornerN.
by rewrite /= map_polyXn rmorph1 hornerC hornerXn subr_eq0 unity_rootE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
rmorph_unity_root
| |
in_alg_comm: commr_rmorph (in_alg A) a.
Proof. move=> r /=; by rewrite /GRing.comm comm_alg. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
in_alg_comm
| |
horner_alg:= horner_morph in_alg_comm.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_alg
| |
horner_algCc : horner_alg c%:P = c%:A.
Proof. exact: horner_morphC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_algC
| |
horner_algX: horner_alg 'X = a.
Proof. exact: horner_morphX. Qed.
HB.instance Definition _ := GRing.LRMorphism.on horner_alg.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
horner_algX
| |
poly_alg_initial: pf =1 horner_alg (pf 'X).
Proof.
apply: poly_ind => [|p a IHp]; first by rewrite !rmorph0.
rewrite !rmorphD !rmorphM /= -{}IHp horner_algC ?horner_algX.
by rewrite -alg_polyC rmorph_alg.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop finset tuple div ssralg",
"From mathcomp Require Import countalg binomial"
] |
algebra/poly.v
|
poly_alg_initial
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.