fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
conjmx0(m n : nat) (V : 'M[F]_(m, n)) : conjmx V 0 = 0. Proof. by rewrite /conjmx mulmx0 mul0mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmx0
conjumx(n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx -> conjmx V f = V *m f *m invmx V. Proof. by move=> uV; rewrite /conjmx pinvmxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjumx
conj1mx(n : nat) (f : 'M[F]_n) : conjmx 1%:M f = f. Proof. by rewrite conjumx ?unitmx1// invmx1 mulmx1 mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conj1mx
conjVmx(n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx -> conjmx (invmx V) f = invmx V *m f *m V. Proof. by move=> Vunit; rewrite conjumx ?invmxK ?unitmx_inv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjVmx
conjmxK(n : nat) (V f : 'M[F]_n) : V \in unitmx -> conjmx (invmx V) (conjmx V f) = f. Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulVmx ?conj1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmxK
conjmxVK(n : nat) (V f : 'M[F]_n) : V \in unitmx -> conjmx V (conjmx (invmx V) f) = f. Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulmxV ?conj1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmxVK
horner_mx_conjm n p (V : 'M[F]_(n.+1, m.+1)) (f : 'M_m.+1) : row_free V -> stablemx V f -> horner_mx (conjmx V f) p = conjmx V (horner_mx f p). Proof. move=> V_free V_stab; rewrite/conjmx; elim/poly_ind: p => [|p c]. by rewrite !rmorph0 mulmx0 mul0mx. rewrite !(rmorphD, rmorphM)/= !(horner_mx_X, horner_mx_C) => ->. rewrite [_ * _]mulmxA [_ *m (V *m _)]mulmxA mulmxKpV ?horner_mx_stable//. apply: (row_free_inj V_free); rewrite [_ *m V]mulmxDl. pose stablemxE := (stablemxD, stablemxM, stablemxC, horner_mx_stable). by rewrite !mulmxKpV -?[V *m _ *m _]mulmxA ?stablemxE// mulmxDr -scalar_mxC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
horner_mx_conj
horner_mx_uconjn p (V : 'M[F]_(n.+1)) (f : 'M_n.+1) : V \is a GRing.unit -> horner_mx (V *m f *m invmx V) p = V *m horner_mx f p *m invmx V. Proof. move=> V_unit; rewrite -!conjumx//. by rewrite horner_mx_conj ?row_free_unit ?stablemx_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
horner_mx_uconj
horner_mx_uconjCn p (V : 'M[F]_(n.+1)) (f : 'M_n.+1) : V \is a GRing.unit -> horner_mx (invmx V *m f *m V) p = invmx V *m horner_mx f p *m V. Proof. move=> V_unit; rewrite -[X in _ *m X](invmxK V). by rewrite horner_mx_uconj ?invmxK ?unitmx_inv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
horner_mx_uconjC
mxminpoly_conjm n (V : 'M[F]_(m.+1, n.+1)) (f : 'M_n.+1) : row_free V -> stablemx V f -> mxminpoly (conjmx V f) %| mxminpoly f. Proof. by move=> *; rewrite mxminpoly_min// horner_mx_conj// mx_root_minpoly conjmx0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxminpoly_conj
mxminpoly_uconjn (V : 'M[F]_(n.+1)) (f : 'M_n.+1) : V \in unitmx -> mxminpoly (conjmx V f) = mxminpoly f. Proof. have simp := (row_free_unit, stablemx_unit, unitmx_inv, unitmx1). move=> Vu; apply/eqP; rewrite -eqp_monic ?mxminpoly_monic// /eqp. apply/andP; split; first by rewrite mxminpoly_conj ?simp. by rewrite -[f in X in X %| _](conjmxK _ Vu) mxminpoly_conj ?simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
mxminpoly_uconj
sub_kermxpoly_conjmxV f p W : stablemx V f -> row_free V -> (W <= kermxpoly (conjmx V f) p)%MS = (W *m V <= kermxpoly f p)%MS. Proof. case: n m => [|n'] [|m'] in V f W * => fV rfV; rewrite ?thinmx0//. by rewrite /row_free mxrank.unlock in rfV. by rewrite mul0mx !sub0mx. apply/sub_kermxP/sub_kermxP; rewrite horner_mx_conj//; last first. by move=> /(congr1 (mulmxr (pinvmx V)))/=; rewrite mul0mx !mulmxA. move=> /(congr1 (mulmxr V))/=; rewrite ![W *m _]mulmxA ?mul0mx mulmxKpV//. by rewrite -mulmxA mulmx_sub// horner_mx_stable//. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
sub_kermxpoly_conjmx
sub_eigenspace_conjmxV f a W : stablemx V f -> row_free V -> (W <= eigenspace (conjmx V f) a)%MS = (W *m V <= eigenspace f a)%MS. Proof. by move=> fV rfV; rewrite !eigenspace_poly sub_kermxpoly_conjmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
sub_eigenspace_conjmx
eigenpoly_conjmxV f : stablemx V f -> row_free V -> {subset eigenpoly (conjmx V f) <= eigenpoly f}. Proof. move=> fV rfV a /eigenpolyP [x]; rewrite sub_kermxpoly_conjmx//. move=> xV_le_fa x_neq0; apply/eigenpolyP. by exists (x *m V); rewrite ?mulmx_free_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenpoly_conjmx
eigenvalue_conjmxV f : stablemx V f -> row_free V -> {subset eigenvalue (conjmx V f) <= eigenvalue f}. Proof. by move=> fV rfV a; rewrite ![_ \in _]eigenvalue_poly; apply: eigenpoly_conjmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
eigenvalue_conjmx
conjmx_eigenvaluea V f : (V <= eigenspace f a)%MS -> row_free V -> conjmx V f = a%:M. Proof. by move=> /eigenspaceP Vfa rfV; rewrite /conjmx Vfa -mul_scalar_mx mulmxKp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
conjmx_eigenvalue
restrictmxV := (conjmx (row_base V)).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
restrictmx
simmx_to_for{F : fieldType} {m n} (P : 'M_(m, n)) A (S : {pred 'M[F]_m}) := S (conjmx P A).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmx_to_for
simmx_forP A B := (A ~_P {in PredOfSimpl.coerce (pred1 B)}).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmx_for
simmx_inS A B := (exists2 P, P \in S & A ~_P B).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmx_in
simmx_in_toS A S' := (exists2 P, P \in S & A ~_P {in S'}).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmx_in_to
all_simmx_inS As S' := (exists2 P, P \in S & all [pred A | A ~_P {in S'}] As).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
all_simmx_in
diagonalizable_forP A := (A ~_P {in is_diag_mx}).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_for
diagonalizable_inS A := (A ~_{in S} {in is_diag_mx}).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_in
diagonalizableA := (diagonalizable_in unitmx A).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable
codiagonalizable_inS As := (all_simmx_in S As is_diag_mx).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
codiagonalizable_in
codiagonalizableAs := (codiagonalizable_in unitmx As).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
codiagonalizable
simmxPpm n {P : 'M[F]_(m, n)} {A B} : stablemx P A -> A ~_P B -> P *m A = B *m P. Proof. by move=> stablemxPA /eqP <-; rewrite mulmxKpV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmxPp
simmxWm n {P : 'M[F]_(m, n)} {A B} : row_free P -> P *m A = B *m P -> A ~_P B. Proof. by rewrite /(_ ~__ _)/= /conjmx => fP ->; rewrite mulmxKp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmxW
simmxP{P A B} : P \in unitmx -> reflect (P *m A = B *m P) (A ~_P B). Proof. move=> p_unit; apply: (iffP idP); first exact/simmxPp/stablemx_unit. by apply: simmxW; rewrite row_free_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmxP
simmxRL{P A B} : P \in unitmx -> reflect (B = P *m A *m invmx P) (A ~_P B). Proof. by move=> ?; apply: (iffP eqP); rewrite conjumx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmxRL
simmxLR{P A B} : P \in unitmx -> reflect (A = conjmx (invmx P) B) (A ~_P B). Proof. by move=> Pu; rewrite conjVmx//; apply: (iffP (simmxRL Pu)) => ->; rewrite !mulmxA ?(mulmxK, mulmxKV, mulVmx, mulmxV, mul1mx, mulmx1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmxLR
simmx_minpoly{n} {P A B : 'M[F]_n.+1} : P \in unitmx -> A ~_P B -> mxminpoly A = mxminpoly B. Proof. by move=> Pu /eqP<-; rewrite mxminpoly_uconj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
simmx_minpoly
diagonalizable_for_row_basem n (P : 'M[F]_(m, n)) (A : 'M_n) : diagonalizable_for (row_base P) A = is_diag_mx (restrictmx P A). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_for_row_base
diagonalizable_forPpm n (P : 'M[F]_(m, n)) A : reflect (forall i j : 'I__, i != j :> nat -> conjmx P A i j = 0) (diagonalizable_for P A). Proof. exact: @is_diag_mxP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_forPp
diagonalizable_forPn (P : 'M[F]_n) A : P \in unitmx -> reflect (forall i j : 'I__, i != j :> nat -> (P *m A *m invmx P) i j = 0) (diagonalizable_for P A). Proof. by move=> Pu; rewrite -conjumx//; exact: is_diag_mxP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_forP
diagonalizable_forPex{m} {n} {P : 'M[F]_(m, n)} {A} : reflect (exists D, A ~_P (diag_mx D)) (diagonalizable_for P A). Proof. by apply: (iffP (diag_mxP _)) => -[D]/eqP; exists D. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_forPex
diagonalizable_forLRn {P : 'M[F]_n} {A} : P \in unitmx -> reflect (exists D, A = conjmx (invmx P) (diag_mx D)) (diagonalizable_for P A). Proof. by move=> Punit; apply: (iffP diagonalizable_forPex) => -[D /(simmxLR Punit)]; exists D. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_forLR
diagonalizable_for_mxminpoly{n} {P A : 'M[F]_n.+1} (rs := undup [seq conjmx P A i i | i <- enum 'I_n.+1]) : P \in unitmx -> diagonalizable_for P A -> mxminpoly A = \prod_(r <- rs) ('X - r%:P). Proof. rewrite /rs => pu /(diagonalizable_forLR pu)[d {A rs}->]. rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag. by rewrite [in X in _ = X](@eq_map _ _ _ (d 0))// => i; rewrite conjmxVK// mxE eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_for_mxminpoly
diagonalizable_for_sum(F : fieldType) (m n : nat) (p_ : 'I_n -> nat) (V_ : forall i, 'M[F]_(p_ i, m)) (A : 'M[F]_m) : mxdirect (\sum_i <<V_ i>>) -> (forall i, stablemx (V_ i) A) -> (forall i, row_free (V_ i)) -> diagonalizable_for (\mxcol_i V_ i) A = [forall i, diagonalizable_for (V_ i) A]. Proof. move=> Vd VA rAV; have aVA : stablemx (\mxcol_i V_ i) A. rewrite (eqmx_stable _ (eqmx_col _)) stablemx_sums//. by move=> i; rewrite (eqmx_stable _ (genmxE _)). apply/diagonalizable_forPex/'forall_diagonalizable_forPex => /= [[D /(simmxPp aVA) +] i|/(_ _)/sigW DoA]. rewrite mxcol_mul -[D]submxrowK diag_mxrow mul_mxdiag_mxcol. move=> /eq_mxcolP/(_ i); set D0 := (submxrow _ _) => VMeq. by exists D0; apply/simmxW. exists (\mxrow_i tag (DoA i)); apply/simmxW. rewrite -row_leq_rank eqmx_col (mxdirectP Vd)/=. by under [leqRHS]eq_bigr do rewrite genmxE (eqP (rAV _)). rewrite mxcol_mul diag_mxrow mul_mxdiag_mxcol; apply: eq_mxcol => i. by case: DoA => /= k /(simmxPp); rewrite VA => /(_ isT) ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_for_sum
codiagonalizable1n (A : 'M[F]_n) : codiagonalizable [:: A] <-> diagonalizable A. Proof. by split=> -[P Punit PA]; exists P; move: PA; rewrite //= andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
codiagonalizable1
codiagonalizablePfulln (As : seq 'M[F]_n) : codiagonalizable As <-> exists m, exists2 P : 'M_(m, n), row_full P & all [pred A | diagonalizable_for P A] As. Proof. split => [[P Punit SPA]|[m [P Pfull SPA]]]. by exists n => //; exists P; rewrite ?row_full_unit. have Qfull := fullrowsub_unit Pfull. exists (rowsub (fullrankfun Pfull) P) => //; apply/allP => A AAs/=. have /allP /(_ _ AAs)/= /diagonalizable_forPex[d /simmxPp] := SPA. rewrite submx_full// => /(_ isT) PA_eq. apply/diagonalizable_forPex; exists (colsub (fullrankfun Pfull) d). apply/simmxP => //; apply/row_matrixP => i. rewrite !row_mul row_diag_mx -scalemxAl -rowE !row_rowsub !mxE. have /(congr1 (row (fullrankfun Pfull i))) := PA_eq. by rewrite !row_mul row_diag_mx -scalemxAl -rowE => ->. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
codiagonalizablePfull
codiagonalizable_onm n (V_ : 'I_n -> 'M[F]_m) (As : seq 'M[F]_m) : (\sum_i V_ i :=: 1%:M)%MS -> mxdirect (\sum_i V_ i) -> (forall i, all (fun A => stablemx (V_ i) A) As) -> (forall i, codiagonalizable (map (restrictmx (V_ i)) As)) -> codiagonalizable As. Proof. move=> V1 Vdirect /(_ _)/allP AV /(_ _) /sig2W/= Pof. pose P_ i := tag (Pof i). have P_unit i : P_ i \in unitmx by rewrite /P_; case: {+}Pof. have P_diag i A : A \in As -> diagonalizable_for (P_ i *m row_base (V_ i)) A. move=> AAs; rewrite /P_; case: {+}Pof => /= P Punit. rewrite all_map => /allP/(_ A AAs); rewrite /= !/(diagonalizable_for _ _). by rewrite conjuMmx ?row_base_free ?stablemx_row_base ?AV. pose P := \mxcol_i (P_ i *m row_base (V_ i)). have P_full i : row_full (P_ i) by rewrite row_full_unit. have PrV i : (P_ i *m row_base (V_ i) :=: V_ i)%MS. exact/(eqmx_trans _ (eq_row_base _))/eqmxMfull. apply/codiagonalizablePfull; eexists _; last exists P; rewrite /=. - rewrite -sub1mx eqmx_col. by under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1. apply/allP => A AAs /=; rewrite diagonalizable_for_sum. - by apply/forallP => i; apply: P_diag. - rewrite mxdirectE/=. under eq_bigr do rewrite (eq_genmx (PrV _)); rewrite -genmx_sums genmxE V1. by under eq_bigr do rewrite genmxE PrV; rewrite -(mxdirectP Vdirect)//= V1. - by move=> i; rewrite (eqmx_stable _ (PrV _)) ?AV. - by move=> i; rewrite /row_free eqmxMfull ?eq_row_base ?row_full_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
codiagonalizable_on
diagonalizable_diag{n} (d : 'rV[F]_n) : diagonalizable (diag_mx d). Proof. exists 1%:M; rewrite ?unitmx1// /(diagonalizable_for _ _). by rewrite conj1mx diag_mx_is_diag. Qed. Hint Resolve diagonalizable_diag : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_diag
diagonalizable_scalar{n} (a : F) : diagonalizable (a%:M : 'M_n). Proof. by rewrite -diag_const_mx. Qed. Hint Resolve diagonalizable_scalar : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_scalar
diagonalizable0{n} : diagonalizable (0 : 'M[F]_n). Proof. by rewrite (_ : 0 = 0%:M)//; apply/matrixP => i j; rewrite !mxE// mul0rn. Qed. Hint Resolve diagonalizable0 : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable0
diagonalizablePeigen{n} {A : 'M[F]_n} : diagonalizable A <-> exists2 rs, uniq rs & (\sum_(r <- rs) eigenspace A r :=: 1%:M)%MS. Proof. split=> [df|[rs urs rsP]]. suff [rs rsP] : exists rs, (\sum_(r <- rs) eigenspace A r :=: 1%:M)%MS. exists (undup rs); rewrite ?undup_uniq//; apply: eqmx_trans rsP. elim: rs => //= r rs IHrs; rewrite big_cons. case: ifPn => in_rs; rewrite ?big_cons; last exact: adds_eqmx. apply/(eqmx_trans IHrs)/eqmx_sym/addsmx_idPr. have rrs : (index r rs < size rs)%N by rewrite index_mem. rewrite (big_nth 0) big_mkord (sumsmx_sup (Ordinal rrs)) ?nth_index//. move: df => [P Punit /(diagonalizable_forLR Punit)[d ->]]. exists [seq d 0 i | i <- enum 'I_n]; rewrite big_image/=. apply: (@eqmx_trans _ _ _ _ _ _ P); apply/eqmxP; rewrite ?sub1mx ?submx1 ?row_full_unit//. rewrite submx_full ?row_full_unit//=. apply/row_subP => i; rewrite rowE (sumsmx_sup i)//. apply/eigenspaceP; rewrite conjVmx// !mulmxA mulmxK//. by rewrite -rowE row_diag_mx scalemxAl. have mxdirect_eigenspaces : mxdirect (\sum_(i < size rs) eigenspace A rs`_i). apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj. by apply: uniqP rsij; rewrite ?inE. rewrite (big_nth 0) big_mkord in rsP; apply/codiagonalizable1. apply/(codiagonalizable_on _ mxdirect_eigenspaces) => // i/=. case: n => [|n] in A {mxdirect_eigenspaces} rsP *. by rewrite thinmx0 sub0mx. by rewrite comm_mx_stable_eigenspace. apply/codiagonalizable1. rewrite (@conjmx_eigenvalue _ _ _ rs`_i); ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizablePeigen
diagonalizablePn' (n := n'.+1) (A : 'M[F]_n) : diagonalizable A <-> exists2 rs, uniq rs & mxminpoly A %| \prod_(x <- rs) ('X - x%:P). Proof. split=> [[P Punit /diagonalizable_forPex[d /(simmxLR Punit)->]]|]. rewrite mxminpoly_uconj ?unitmx_inv// mxminpoly_diag. by eexists; [|by []]; rewrite undup_uniq. move=> + /ltac:(apply/diagonalizablePeigen) => -[rs rsu rsP]; exists rs => //. rewrite (big_nth 0) [X in (X :=: _)%MS](big_nth 0) !big_mkord in rsP *. rewrite (eq_bigr _ (fun _ _ => eigenspace_poly _ _)). apply: (eqmx_trans (eqmx_sym (kermxpoly_prod _ _)) (kermxpoly_min _)) => //. by move=> i j _ _; rewrite coprimep_XsubC root_XsubC nth_uniq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizableP
diagonalizable_conj_diagm n (V : 'M[F]_(m, n)) (d : 'rV[F]_n) : stablemx V (diag_mx d) -> row_free V -> diagonalizable (conjmx V (diag_mx d)). Proof. case: m n => [|m] [|n] in V d * => Vd rdV; rewrite ?thinmx0. - by []. - by []. - by exfalso; move: rdV; rewrite /row_free mxrank.unlock eqxx orbT. apply/diagonalizableP; pose u := undup [seq d 0 i | i <- enum 'I_n.+1]. exists u; first by rewrite undup_uniq. by rewrite (dvdp_trans (mxminpoly_conj (f:=diag_mx d) _ _))// mxminpoly_diag. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
diagonalizable_conj_diag
codiagonalizablePn (As : seq 'M[F]_n) : {in As &, forall A B, comm_mx A B} /\ {in As, forall A, diagonalizable A} <-> codiagonalizable As. Proof. split => [cdAs|[P Punit /allP/= AsD]]/=; last first. split; last by exists P; rewrite // AsD. move=> A B AAs BAs; move=> /(_ _ _)/diagonalizable_forPex/sigW in AsD. have [[dA /simmxLR->//] [dB /simmxLR->//]] := (AsD _ AAs, AsD _ BAs). by rewrite /comm_mx -!conjmxM 1?diag_mxC// inE stablemx_unit ?unitmx_inv. move: cdAs => -[]; move/(rwP (all_comm_mxP _)) => cdAs cdAs'. have [k] := ubnP (size As); elim: k => [|k IHk]//= in n As cdAs cdAs' *. case: As cdAs cdAs' => [|A As]//=; first by exists 1%:M; rewrite ?unitmx1. rewrite ltnS all_comm_mx_cons => /andP[/allP/(_ _ _)/eqP AAsC AsC dAAs] Ask. have /diagonalizablePeigen [rs urs rs1] := dAAs _ (mem_head _ _). rewrite (big_nth 0) big_mkord in rs1. have eAB (i : 'I_(size rs)) B : B \in A :: As -> stablemx (eigenspace A rs`_i) B. case: n => [|n'] in B A As AAsC AsC {dAAs rs1 Ask} * => B_AAs. by rewrite thinmx0 sub0mx. rewrite comm_mx_stable_eigenspace//. by move: B_AAs; rewrite !inE => /predU1P [->//|/AAsC]. apply/(@codiagonalizable_on _ _ _ (_ :: _) rs1) => [|i|i /=]. - apply: mxdirect_sum_eigenspace => i j _ _ rsij; apply/val_inj. by apply: uniqP rsij; rewrite ?inE. - by apply/allP => B B_AAs; rewrite eAB. rewrite (@conjmx_eigenvalue _ _ _ rs`_i) ?eq_row_base ?row_base_free//. set Bs := map _ _; suff [P Punit /= PBs] : codiagonalizable Bs. exists P; rewrite /= ?PBs ?andbT// /(d ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import div fintype tuple finfun bigop fingroup perm", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv" ]
algebra/mxpoly.v
codiagonalizableP
conjmx(m n : nat) (V : 'M_(m, n)) (f : 'M[F]_n) : 'M_m := V *m f *m pinvmx V.
Definition
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmx
restrictmxV := (conjmx (row_base V)).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
restrictmx
stablemx_comp(m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) : stablemx W f -> stablemx V (conjmx W f) -> stablemx (V *m W) f. Proof. by move=> Wf /(submxMr W); rewrite -mulmxA mulmxKpV// mulmxA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
stablemx_comp
stablemx_restrictm n (A : 'M[F]_n) (V : 'M_n) (W : 'M_(m, \rank V)): stablemx V A -> stablemx W (restrictmx V A) = stablemx (W *m row_base V) A. Proof. move=> A_stabV; rewrite mulmxA -[in RHS]mulmxA. rewrite -(submxMfree _ W (row_base_free V)) mulmxKpV //. by rewrite mulmx_sub ?stablemx_row_base. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
stablemx_restrict
conjmxM(m n : nat) (V : 'M[F]_(m, n)) : {in [pred f | stablemx V f] &, {morph conjmx V : f g / f *m g}}. Proof. move=> f g; rewrite !inE => Vf Vg /=. by rewrite /conjmx 2!mulmxA mulmxA mulmxKpV ?stablemx_row_base. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmxM
conjMmx(m n p : nat) (V : 'M[F]_(m, n)) (W : 'M_(n, p)) (f : 'M_p) : row_free (V *m W) -> stablemx W f -> stablemx V (conjmx W f) -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. move=> rfVW Wf VWf; apply: (row_free_inj rfVW); rewrite mulmxKpV ?stablemx_comp//. by rewrite mulmxA mulmxKpV// -[RHS]mulmxA mulmxKpV ?mulmxA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjMmx
conjuMmx(m n : nat) (V : 'M[F]_m) (W : 'M_(m, n)) (f : 'M_n) : V \in unitmx -> row_free W -> stablemx W f -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. move=> Vu rfW Wf; rewrite conjMmx ?stablemx_unit//. by rewrite /row_free mxrankMfree// -/(row_free V) row_free_unit. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjuMmx
conjMumx(m n : nat) (V : 'M[F]_(m, n)) (W f : 'M_n) : W \in unitmx -> row_free V -> stablemx V (conjmx W f) -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. move=> Wu rfW Wf; rewrite conjMmx ?stablemx_unit//. by rewrite /row_free mxrankMfree ?row_free_unit. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjMumx
conjuMumx(n : nat) (V W f : 'M[F]_n) : V \in unitmx -> W \in unitmx -> conjmx (V *m W) f = conjmx V (conjmx W f). Proof. by move=> Vu Wu; rewrite conjuMmx ?stablemx_unit ?row_free_unit. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjuMumx
conjmx_scalar(m n : nat) (V : 'M[F]_(m, n)) (a : F) : row_free V -> conjmx V a%:M = a%:M. Proof. by move=> rfV; rewrite /conjmx scalar_mxC mulmxKp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmx_scalar
conj0mx(m n : nat) f : conjmx (0 : 'M[F]_(m, n)) f = 0. Proof. by rewrite /conjmx !mul0mx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conj0mx
conjmx0(m n : nat) (V : 'M[F]_(m, n)) : conjmx V 0 = 0. Proof. by rewrite /conjmx mulmx0 mul0mx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmx0
conjumx(n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx -> conjmx V f = V *m f *m invmx V. Proof. by move=> uV; rewrite /conjmx pinvmxE. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjumx
conj1mx(n : nat) (f : 'M[F]_n) : conjmx 1%:M f = f. Proof. by rewrite conjumx ?unitmx1// invmx1 mulmx1 mul1mx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conj1mx
conjVmx(n : nat) (V : 'M_n) (f : 'M[F]_n) : V \in unitmx -> conjmx (invmx V) f = invmx V *m f *m V. Proof. by move=> Vunit; rewrite conjumx ?invmxK ?unitmx_inv. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjVmx
conjmxK(n : nat) (V f : 'M[F]_n) : V \in unitmx -> conjmx (invmx V) (conjmx V f) = f. Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulVmx ?conj1mx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmxK
conjmxVK(n : nat) (V f : 'M[F]_n) : V \in unitmx -> conjmx V (conjmx (invmx V) f) = f. Proof. by move=> Vu; rewrite -conjuMumx ?unitmx_inv// mulmxV ?conj1mx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmxVK
horner_mx_conjm n p (B : 'M[F]_(n.+1, m.+1)) (f : 'M_m.+1) : row_free B -> stablemx B f -> horner_mx (conjmx B f) p = conjmx B (horner_mx f p). Proof. move=> B_free B_stab; rewrite/conjmx; elim/poly_ind: p => [|p c]. by rewrite !rmorph0 mulmx0 mul0mx. rewrite !(rmorphD, rmorphM)/= !(horner_mx_X, horner_mx_C) => ->. rewrite [_ * _]mulmxA [_ *m (B *m _)]mulmxA mulmxKpV ?horner_mx_stable//. apply: (row_free_inj B_free); rewrite [_ *m B]mulmxDl. pose stablemxE := (stablemxD, stablemxM, stablemxC, horner_mx_stable). by rewrite !mulmxKpV -?[B *m _ *m _]mulmxA ?stablemxE// mulmxDr -scalar_mxC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
horner_mx_conj
horner_mx_uconjn p (B : 'M[F]_(n.+1)) (f : 'M_n.+1) : B \is a GRing.unit -> horner_mx (B *m f *m invmx B) p = B *m horner_mx f p *m invmx B. Proof. move=> B_unit; rewrite -!conjumx//. by rewrite horner_mx_conj ?row_free_unit ?stablemx_unit. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
horner_mx_uconj
horner_mx_uconjCn p (B : 'M[F]_(n.+1)) (f : 'M_n.+1) : B \is a GRing.unit -> horner_mx (invmx B *m f *m B) p = invmx B *m horner_mx f p *m B. Proof. move=> B_unit; rewrite -[X in _ *m X](invmxK B). by rewrite horner_mx_uconj ?invmxK ?unitmx_inv. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
horner_mx_uconjC
mxminpoly_conjm n (V : 'M[F]_(m.+1, n.+1)) (f : 'M_n.+1) : row_free V -> stablemx V f -> mxminpoly (conjmx V f) %| mxminpoly f. Proof. by move=> *; rewrite mxminpoly_min// horner_mx_conj// mx_root_minpoly conjmx0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
mxminpoly_conj
mxminpoly_uconjn (V : 'M[F]_(n.+1)) (f : 'M_n.+1) : V \in unitmx -> mxminpoly (conjmx V f) = mxminpoly f. Proof. have simp := (row_free_unit, stablemx_unit, unitmx_inv, unitmx1). move=> Vu; apply/eqP; rewrite -eqp_monic ?mxminpoly_monic// /eqp. apply/andP; split; first by rewrite mxminpoly_conj ?simp. by rewrite -[f in X in X %| _](conjmxK _ Vu) mxminpoly_conj ?simp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
mxminpoly_uconj
sub_kermxpoly_conjmxV f p W : stablemx V f -> row_free V -> (W <= kermxpoly (conjmx V f) p)%MS = (W *m V <= kermxpoly f p)%MS. Proof. move: n m => [|n'] [|m']// in V f W *; rewrite ?thinmx0// => fV rfV. - by rewrite /row_free mxrank0 in rfV. - by rewrite mul0mx !sub0mx. - apply/sub_kermxP/sub_kermxP; rewrite horner_mx_conj//; last first. by move=> /(congr1 (mulmxr (pinvmx V)))/=; rewrite mul0mx !mulmxA. move=> /(congr1 (mulmxr V))/=; rewrite ![W *m _]mulmxA ?mul0mx mulmxKpV//. by rewrite -mulmxA mulmx_sub// horner_mx_stable//. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
sub_kermxpoly_conjmx
sub_eigenspace_conjmxV f a W : stablemx V f -> row_free V -> (W <= eigenspace (conjmx V f) a)%MS = (W *m V <= eigenspace f a)%MS. Proof. by move=> fV rfV; rewrite !eigenspace_poly sub_kermxpoly_conjmx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
sub_eigenspace_conjmx
eigenpoly_conjmxV f : stablemx V f -> row_free V -> {subset eigenpoly (conjmx V f) <= eigenpoly f}. Proof. move=> fV rfV a /eigenpolyP [x]; rewrite sub_kermxpoly_conjmx//. move=> xV_le_fa x_neq0; apply/eigenpolyP. by exists (x *m V); rewrite ?mulmx_free_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
eigenpoly_conjmx
eigenvalue_conjmxV f : stablemx V f -> row_free V -> {subset eigenvalue (conjmx V f) <= eigenvalue f}. Proof. by move=> fV rfV a; rewrite ![_ \in _]eigenvalue_poly; apply: eigenpoly_conjmx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
eigenvalue_conjmx
conjmx_eigenvaluea V f : (V <= eigenspace f a)%MS -> row_free V -> conjmx V f = a%:M. Proof. by move=> /eigenspaceP Vfa rfV; rewrite /conjmx Vfa -mul_scalar_mx mulmxKp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
conjmx_eigenvalue
restrictmxV := (conjmx (row_base V)).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
restrictmx
similar_to{F : fieldType} {m n} (P : 'M_(m, n)) A (C : {pred 'M[F]_m}) := C (conjmx P A).
Definition
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_to
similarP A B := (similar_to P A (PredOfSimpl.coerce (pred1 B))).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar
similar_inD A B := (exists2 P, P \in D & similar P A B).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_in
similar_in_toD A C := (exists2 P, P \in D & similar_to P A C).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_in_to
all_similar_toD As C := (exists2 P, P \in D & all [pred A | similar_to P A C] As).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
all_similar_to
similar_diagP A := (similar_to P A is_diag_mx).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_diag
diagonalizable_inD A := (similar_in_to D A is_diag_mx).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
diagonalizable_in
diagonalizableA := (diagonalizable_in unitmx A).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
diagonalizable
codiagonalizable_inD As := (all_similar_to D As is_diag_mx).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
codiagonalizable_in
codiagonalizableAs := (codiagonalizable_in unitmx As).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
codiagonalizable
similar_trigP A := (similar_to P A is_trig_mx).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_trig
trigonalizable_inD A := (similar_in_to D A is_trig_mx).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
trigonalizable_in
trigonalizableA := (trigonalizable_in unitmx A).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
trigonalizable
cotrigonalizable_inD As := (all_similar_to D As is_trig_mx).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
cotrigonalizable_in
cotrigonalizableAs := (cotrigonalizable_in unitmx As).
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
cotrigonalizable
similarPpm n {P : 'M[F]_(m, n)} {A B} : stablemx P A -> similar P A B -> P *m A = B *m P. Proof. by move=> stablemxPA /eqP <-; rewrite mulmxKpV. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similarPp
similarWm n {P : 'M[F]_(m, n)} {A B} : row_free P -> P *m A = B *m P -> similar P A B. Proof. by rewrite /similar_to/= /conjmx => fP ->; rewrite mulmxKp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similarW
similarP{p f g} : p \in unitmx -> reflect (p *m f = g *m p) (similar p f g). Proof. move=> p_unit; apply: (iffP idP); first exact/similarPp/stablemx_unit. by apply: similarW; rewrite row_free_unit. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similarP
similarRL{p f g} : p \in unitmx -> reflect (g = p *m f *m invmx p) (similar p f g). Proof. by move=> ?; apply: (iffP eqP); rewrite conjumx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similarRL
similarLR{p f g} : p \in unitmx -> reflect (f = conjmx (invmx p) g) (similar p f g). Proof. by move=> pu; rewrite conjVmx//; apply: (iffP (similarRL pu)) => ->; rewrite !mulmxA ?(mulmxK, mulmxKV, mulVmx, mulmxV, mul1mx, mulmx1). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similarLR
similar_mxminpoly{n} {p f g : 'M[F]_n.+1} : p \in unitmx -> similar p f g -> mxminpoly f = mxminpoly g. Proof. by move=> pu /eqP<-; rewrite mxminpoly_uconj. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_mxminpoly
similar_diag_row_basem n (P : 'M[F]_(m, n)) (A : 'M_n) : similar_diag (row_base P) A = is_diag_mx (restrictmx P A). Proof. by []. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype finfun bigop fingroup perm order", "From mathcomp Require Import ssralg zmodp matrix mxalgebra poly polydiv mxpoly" ]
algebra/mxred.v
similar_diag_row_base