fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
col_idn j (V : 'cV_n) : col j V = V. Proof. by apply/colP=> i; rewrite mxE [j]ord1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_id
row_eqm1 m2 n i1 i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : row i1 A1 = row i2 A2 -> A1 i1 =1 A2 i2. Proof. by move/rowP=> eqA12 j; have /[!mxE] := eqA12 j. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_eq
col_eqm n1 n2 j1 j2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : col j1 A1 = col j2 A2 -> A1^~ j1 =1 A2^~ j2. Proof. by move/colP=> eqA12 i; have /[!mxE] := eqA12 i. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_eq
row'_eqm n i0 (A B : 'M_(m, n)) : row' i0 A = row' i0 B -> {in predC1 i0, A =2 B}. Proof. move=> /matrixP eqAB' i /[!inE]/[1!eq_sym]/unlift_some[i' -> _] j. by have /[!mxE] := eqAB' i' j. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'_eq
col'_eqm n j0 (A B : 'M_(m, n)) : col' j0 A = col' j0 B -> forall i, {in predC1 j0, A i =1 B i}. Proof. move=> /matrixP eqAB' i j /[!inE]/[1!eq_sym]/unlift_some[j' -> _]. by have /[!mxE] := eqAB' i j'. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'_eq
tr_rowm n i0 (A : 'M_(m, n)) : (row i0 A)^T = col i0 A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_row
tr_row'm n i0 (A : 'M_(m, n)) : (row' i0 A)^T = col' i0 A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_row'
tr_colm n j0 (A : 'M_(m, n)) : (col j0 A)^T = row j0 A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_col
tr_col'm n j0 (A : 'M_(m, n)) : (col' j0 A)^T = row' j0 A^T. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_col'
mxsub_compm1 m2 m3 n1 n2 n3 (f : 'I_m2 -> 'I_m1) (f' : 'I_m3 -> 'I_m2) (g : 'I_n2 -> 'I_n1) (g' : 'I_n3 -> 'I_n2) (A : 'M_(m1, n1)) : mxsub (f \o f') (g \o g') A = mxsub f' g' (mxsub f g A). Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_comp
rowsub_compm1 m2 m3 n (f : 'I_m2 -> 'I_m1) (f' : 'I_m3 -> 'I_m2) (A : 'M_(m1, n)) : rowsub (f \o f') A = rowsub f' (rowsub f A). Proof. exact: mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowsub_comp
colsub_compm n n2 n3 (g : 'I_n2 -> 'I_n) (g' : 'I_n3 -> 'I_n2) (A : 'M_(m, n)) : colsub (g \o g') A = colsub g' (colsub g A). Proof. exact: mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colsub_comp
mxsubrcm1 m2 n n2 f g (A : 'M_(m1, n)) : mxsub f g A = rowsub f (colsub g A) :> 'M_(m2, n2). Proof. exact: mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsubrc
mxsubcrm1 m2 n n2 f g (A : 'M_(m1, n)) : mxsub f g A = colsub g (rowsub f A) :> 'M_(m2, n2). Proof. exact: mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsubcr
rowsub_castm1 m2 n (eq_m : m1 = m2) (A : 'M_(m2, n)) : rowsub (cast_ord eq_m) A = castmx (esym eq_m, erefl) A. Proof. by case: _ / eq_m in A *; apply: (mxsub_eq_id (cast_ord_id _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowsub_cast
colsub_castm n1 n2 (eq_n : n1 = n2) (A : 'M_(m, n2)) : colsub (cast_ord eq_n) A = castmx (erefl, esym eq_n) A. Proof. by case: _ / eq_n in A *; apply: (mxsub_eq_id _ (cast_ord_id _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colsub_cast
mxsub_castm1 m2 n1 n2 (eq_m : m1 = m2) (eq_n : n1 = n2) A : mxsub (cast_ord eq_m) (cast_ord eq_n) A = castmx (esym eq_m, esym eq_n) A. Proof. by rewrite mxsubrc rowsub_cast colsub_cast castmx_comp/= etrans_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mxsub_cast
castmxEsubm1 m2 n1 n2 (eq_mn : (m1 = m2) * (n1 = n2)) A : castmx eq_mn A = mxsub (cast_ord (esym eq_mn.1)) (cast_ord (esym eq_mn.2)) A. Proof. by rewrite mxsub_cast !esymK; case: eq_mn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
castmxEsub
trmx_mxsubm1 m2 n1 n2 f g (A : 'M_(m1, n1)) : (mxsub f g A)^T = mxsub g f A^T :> 'M_(n2, m2). Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_mxsub
row_mxsubm1 m2 n1 n2 (f : 'I_m2 -> 'I_m1) (g : 'I_n2 -> 'I_n1) (A : 'M_(m1, n1)) i : row i (mxsub f g A) = row (f i) (colsub g A). Proof. by rewrite !rowEsub -!mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxsub
col_mxsubm1 m2 n1 n2 (f : 'I_m2 -> 'I_m1) (g : 'I_n2 -> 'I_n1) (A : 'M_(m1, n1)) i : col i (mxsub f g A) = col (g i) (rowsub f A). Proof. by rewrite !colEsub -!mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxsub
row_rowsubm1 m2 n (f : 'I_m2 -> 'I_m1) (A : 'M_(m1, n)) i : row i (rowsub f A) = row (f i) A. Proof. by rewrite row_mxsub mxsub_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_rowsub
col_colsubm n1 n2 (g : 'I_n2 -> 'I_n1) (A : 'M_(m, n1)) i : col i (colsub g A) = col (g i) A. Proof. by rewrite col_mxsub mxsub_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_colsub
split_mxE:= apply/matrixP=> i j; do ![rewrite mxE | case: split => ?].
Ltac
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
split_mxE
row_mx(A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : 'M[R]_(m, n1 + n2) := \matrix[row_mx_key]_(i, j) match split j with inl j1 => A1 i j1 | inr j2 => A2 i j2 end. Fact col_mx_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mx
col_mx(A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : 'M[R]_(m1 + m2, n) := \matrix[col_mx_key]_(i, j) match split i with inl i1 => A1 i1 j | inr i2 => A2 i2 j end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mx
lsubmx(A : 'M[R]_(m, n1 + n2)) := \matrix[lsubmx_key]_(i, j) A i (lshift n2 j). Fact rsubmx_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lsubmx
rsubmx(A : 'M[R]_(m, n1 + n2)) := \matrix[rsubmx_key]_(i, j) A i (rshift n1 j). Fact usubmx_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rsubmx
usubmx(A : 'M[R]_(m1 + m2, n)) := \matrix[usubmx_key]_(i, j) A (lshift m2 i) j. Fact dsubmx_key : unit. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
usubmx
dsubmx(A : 'M[R]_(m1 + m2, n)) := \matrix[dsubmx_key]_(i, j) A (rshift m1 i) j.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
dsubmx
row_mxElA1 A2 i j : row_mx A1 A2 i (lshift n2 j) = A1 i j. Proof. by rewrite mxE (unsplitK (inl _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxEl
row_mxKlA1 A2 : lsubmx (row_mx A1 A2) = A1. Proof. by apply/matrixP=> i j; rewrite mxE row_mxEl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxKl
row_mxErA1 A2 i j : row_mx A1 A2 i (rshift n1 j) = A2 i j. Proof. by rewrite mxE (unsplitK (inr _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxEr
row_mxKrA1 A2 : rsubmx (row_mx A1 A2) = A2. Proof. by apply/matrixP=> i j; rewrite mxE row_mxEr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxKr
hsubmxKA : row_mx (lsubmx A) (rsubmx A) = A. Proof. by apply/matrixP=> i j /[!mxE]; case: split_ordP => k -> /[!mxE]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
hsubmxK
col_mxEuA1 A2 i j : col_mx A1 A2 (lshift m2 i) j = A1 i j. Proof. by rewrite mxE (unsplitK (inl _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxEu
col_mxKuA1 A2 : usubmx (col_mx A1 A2) = A1. Proof. by apply/matrixP=> i j; rewrite mxE col_mxEu. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxKu
col_mxEdA1 A2 i j : col_mx A1 A2 (rshift m1 i) j = A2 i j. Proof. by rewrite mxE (unsplitK (inr _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxEd
col_mxKdA1 A2 : dsubmx (col_mx A1 A2) = A2. Proof. by apply/matrixP=> i j; rewrite mxE col_mxEd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxKd
lsubmxEsub: lsubmx = colsub (lshift _). Proof. by rewrite /lsubmx /mxsub !unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lsubmxEsub
rsubmxEsub: rsubmx = colsub (@rshift _ _). Proof. by rewrite /rsubmx /mxsub !unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rsubmxEsub
usubmxEsub: usubmx = rowsub (lshift _). Proof. by rewrite /usubmx /mxsub !unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
usubmxEsub
dsubmxEsub: dsubmx = rowsub (@rshift _ _). Proof. by rewrite /dsubmx /mxsub !unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
dsubmxEsub
eq_row_mxA1 A2 B1 B2 : row_mx A1 A2 = row_mx B1 B2 -> A1 = B1 /\ A2 = B2. Proof. move=> eqAB; move: (congr1 lsubmx eqAB) (congr1 rsubmx eqAB). by rewrite !(row_mxKl, row_mxKr). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_row_mx
eq_col_mxA1 A2 B1 B2 : col_mx A1 A2 = col_mx B1 B2 -> A1 = B1 /\ A2 = B2. Proof. move=> eqAB; move: (congr1 usubmx eqAB) (congr1 dsubmx eqAB). by rewrite !(col_mxKu, col_mxKd). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_col_mx
lsubmx_const(r : R) : lsubmx (const_mx r : 'M_(m, n1 + n2)) = const_mx r. Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
lsubmx_const
rsubmx_const(r : R) : rsubmx (const_mx r : 'M_(m, n1 + n2)) = const_mx r. Proof. by apply/matrixP => i j; rewrite !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rsubmx_const
row_mx_consta : row_mx (const_mx a) (const_mx a) = const_mx a. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mx_const
col_mx_consta : col_mx (const_mx a) (const_mx a) = const_mx a. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mx_const
row_usubmxA i : row i (usubmx A) = row (lshift m2 i) A. Proof. by apply/rowP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_usubmx
row_dsubmxA i : row i (dsubmx A) = row (rshift m1 i) A. Proof. by apply/rowP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_dsubmx
col_lsubmxA i : col i (lsubmx A) = col (lshift n2 i) A. Proof. by apply/colP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_lsubmx
col_rsubmxA i : col i (rsubmx A) = col (rshift n1 i) A. Proof. by apply/colP=> j; rewrite !mxE; congr (A _ _); apply/val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_rsubmx
row_thin_mxm n (A : 'M_(m,0)) (B : 'M_(m,n)) : row_mx A B = B. Proof. apply/matrixP=> i j; rewrite mxE; case: splitP=> [|k H]; first by case. by congr fun_of_matrix; exact: val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_thin_mx
col_flat_mxm n (A : 'M_(0,n)) (B : 'M_(m,n)) : col_mx A B = B. Proof. apply/matrixP=> i j; rewrite mxE; case: splitP => [|k H]; first by case. by congr fun_of_matrix; exact: val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_flat_mx
trmx_lsubm n1 n2 (A : 'M_(m, n1 + n2)) : (lsubmx A)^T = usubmx A^T. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_lsub
trmx_rsubm n1 n2 (A : 'M_(m, n1 + n2)) : (rsubmx A)^T = dsubmx A^T. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_rsub
tr_row_mxm n1 n2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : (row_mx A1 A2)^T = col_mx A1^T A2^T. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_row_mx
tr_col_mxm1 m2 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : (col_mx A1 A2)^T = row_mx A1^T A2^T. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
tr_col_mx
trmx_usubm1 m2 n (A : 'M_(m1 + m2, n)) : (usubmx A)^T = lsubmx A^T. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_usub
trmx_dsubm1 m2 n (A : 'M_(m1 + m2, n)) : (dsubmx A)^T = rsubmx A^T. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
trmx_dsub
vsubmxKm1 m2 n (A : 'M_(m1 + m2, n)) : col_mx (usubmx A) (dsubmx A) = A. Proof. by apply: trmx_inj; rewrite tr_col_mx trmx_usub trmx_dsub hsubmxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
vsubmxK
cast_row_mxm m' n1 n2 (eq_m : m = m') A1 A2 : castmx (eq_m, erefl _) (row_mx A1 A2) = row_mx (castmx (eq_m, erefl n1) A1) (castmx (eq_m, erefl n2) A2). Proof. by case: m' / eq_m. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cast_row_mx
cast_col_mxm1 m2 n n' (eq_n : n = n') A1 A2 : castmx (erefl _, eq_n) (col_mx A1 A2) = col_mx (castmx (erefl m1, eq_n) A1) (castmx (erefl m2, eq_n) A2). Proof. by case: n' / eq_n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
cast_col_mx
row_mxAm n1 n2 n3 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) (A3 : 'M_(m, n3)) : let cast := (erefl m, esym (addnA n1 n2 n3)) in row_mx A1 (row_mx A2 A3) = castmx cast (row_mx (row_mx A1 A2) A3). Proof. apply: (canRL (castmxKV _ _)); apply/matrixP=> i j. rewrite castmxE !mxE cast_ord_id; case: splitP => j1 /= def_j. have: (j < n1 + n2) && (j < n1) by rewrite def_j lshift_subproof /=. by move: def_j; do 2![case: splitP => // ? ->; rewrite ?mxE] => /ord_inj->. case: splitP def_j => j2 ->{j} def_j /[!mxE]. have: ~~ (j2 < n1) by rewrite -leqNgt def_j leq_addr. have: j1 < n2 by rewrite -(ltn_add2l n1) -def_j. by move: def_j; do 2![case: splitP => // ? ->] => /addnI/val_inj->. have: ~~ (j1 < n2) by rewrite -leqNgt -(leq_add2l n1) -def_j leq_addr. by case: splitP def_j => // ? ->; rewrite addnA => /addnI/val_inj->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxA
row_mxAx:= row_mxA.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_mxAx
col_mxAm1 m2 m3 n (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) (A3 : 'M_(m3, n)) : let cast := (esym (addnA m1 m2 m3), erefl n) in col_mx A1 (col_mx A2 A3) = castmx cast (col_mx (col_mx A1 A2) A3). Proof. by apply: trmx_inj; rewrite trmx_cast !tr_col_mx -row_mxA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxA
col_mxAx:= col_mxA.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_mxAx
row_row_mxm n1 n2 i0 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : row i0 (row_mx A1 A2) = row_mx (row i0 A1) (row i0 A2). Proof. by apply/matrixP=> i j /[!mxE]; case: (split j) => j' /[1!mxE]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row_row_mx
col_col_mxm1 m2 n j0 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : col j0 (col_mx A1 A2) = col_mx (col j0 A1) (col j0 A2). Proof. by apply: trmx_inj; rewrite !(tr_col, tr_col_mx, row_row_mx). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col_col_mx
row'_row_mxm n1 n2 i0 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : row' i0 (row_mx A1 A2) = row_mx (row' i0 A1) (row' i0 A2). Proof. by apply/matrixP=> i j /[!mxE]; case: (split j) => j' /[1!mxE]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'_row_mx
col'_col_mxm1 m2 n j0 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : col' j0 (col_mx A1 A2) = col_mx (col' j0 A1) (col' j0 A2). Proof. by apply: trmx_inj; rewrite !(tr_col', tr_col_mx, row'_row_mx). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'_col_mx
colKlm n1 n2 j1 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : col (lshift n2 j1) (row_mx A1 A2) = col j1 A1. Proof. by apply/matrixP=> i j; rewrite !(row_mxEl, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colKl
colKrm n1 n2 j2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : col (rshift n1 j2) (row_mx A1 A2) = col j2 A2. Proof. by apply/matrixP=> i j; rewrite !(row_mxEr, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
colKr
rowKum1 m2 n i1 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : row (lshift m2 i1) (col_mx A1 A2) = row i1 A1. Proof. by apply/matrixP=> i j; rewrite !(col_mxEu, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowKu
rowKdm1 m2 n i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : row (rshift m1 i2) (col_mx A1 A2) = row i2 A2. Proof. by apply/matrixP=> i j; rewrite !(col_mxEd, mxE). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
rowKd
col'Klm n1 n2 j1 (A1 : 'M_(m, n1.+1)) (A2 : 'M_(m, n2)) : col' (lshift n2 j1) (row_mx A1 A2) = row_mx (col' j1 A1) A2. Proof. apply/matrixP=> i /= j; symmetry; rewrite 2!mxE; case: split_ordP => j' ->. by rewrite mxE -(row_mxEl _ A2); congr (row_mx _ _ _); apply: ord_inj. rewrite -(row_mxEr A1); congr (row_mx _ _ _); apply: ord_inj => /=. by rewrite /bump -ltnS -addSn ltn_addr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'Kl
row'Kum1 m2 n i1 (A1 : 'M_(m1.+1, n)) (A2 : 'M_(m2, n)) : row' (lshift m2 i1) (@col_mx m1.+1 m2 n A1 A2) = col_mx (row' i1 A1) A2. Proof. by apply: trmx_inj; rewrite tr_col_mx !(@tr_row' _.+1) (@tr_col_mx _.+1) col'Kl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'Ku
mx'_castm n : 'I_n -> (m + n.-1)%N = (m + n).-1. Proof. by case=> j /ltn_predK <-; rewrite addnS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
mx'_cast
col'Krm n1 n2 j2 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) : col' (rshift n1 j2) (@row_mx m n1 n2 A1 A2) = castmx (erefl m, mx'_cast n1 j2) (row_mx A1 (col' j2 A2)). Proof. apply/matrixP=> i j; symmetry; rewrite castmxE mxE cast_ord_id. case: splitP => j' /= def_j. rewrite mxE -(row_mxEl _ A2); congr (row_mx _ _ _); apply: ord_inj. by rewrite /= def_j /bump leqNgt ltn_addr. rewrite 2!mxE -(row_mxEr A1); congr (row_mx _ _ _ _); apply: ord_inj. by rewrite /= def_j /bump leq_add2l addnCA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
col'Kr
row'Kdm1 m2 n i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)) : row' (rshift m1 i2) (col_mx A1 A2) = castmx (mx'_cast m1 i2, erefl n) (col_mx A1 (row' i2 A2)). Proof. by apply: trmx_inj; rewrite trmx_cast !(tr_row', tr_col_mx) col'Kr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
row'Kd
block_mxAul Aur Adl Adr : 'M_(m1 + m2, n1 + n2) := col_mx (row_mx Aul Aur) (row_mx Adl Adr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mx
eq_block_mxAul Aur Adl Adr Bul Bur Bdl Bdr : block_mx Aul Aur Adl Adr = block_mx Bul Bur Bdl Bdr -> [/\ Aul = Bul, Aur = Bur, Adl = Bdl & Adr = Bdr]. Proof. by case/eq_col_mx; do 2!case/eq_row_mx=> -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
eq_block_mx
block_mx_consta : block_mx (const_mx a) (const_mx a) (const_mx a) (const_mx a) = const_mx a. Proof. by split_mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mx_const
ulsubmx:= lsubmx (usubmx A).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
ulsubmx
ursubmx:= rsubmx (usubmx A).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
ursubmx
dlsubmx:= lsubmx (dsubmx A).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
dlsubmx
drsubmx:= rsubmx (dsubmx A).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
drsubmx
submxK: block_mx ulsubmx ursubmx dlsubmx drsubmx = A. Proof. by rewrite /block_mx !hsubmxK vsubmxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
submxK
ulsubmxEsub: ulsubmx = mxsub (lshift _) (lshift _) A. Proof. by rewrite /ulsubmx lsubmxEsub usubmxEsub -mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
ulsubmxEsub
dlsubmxEsub: dlsubmx = mxsub (@rshift _ _) (lshift _) A. Proof. by rewrite /dlsubmx lsubmxEsub dsubmxEsub -mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
dlsubmxEsub
ursubmxEsub: ursubmx = mxsub (lshift _) (@rshift _ _) A. Proof. by rewrite /ursubmx rsubmxEsub usubmxEsub -mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
ursubmxEsub
drsubmxEsub: drsubmx = mxsub (@rshift _ _) (@rshift _ _) A. Proof. by rewrite /drsubmx rsubmxEsub dsubmxEsub -mxsub_comp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
drsubmxEsub
block_mxEuli j : A (lshift m2 i) (lshift n2 j) = Aul i j. Proof. by rewrite col_mxEu row_mxEl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxEul
block_mxKul: ulsubmx A = Aul. Proof. by rewrite /ulsubmx col_mxKu row_mxKl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxKul
block_mxEuri j : A (lshift m2 i) (rshift n1 j) = Aur i j. Proof. by rewrite col_mxEu row_mxEr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxEur
block_mxKur: ursubmx A = Aur. Proof. by rewrite /ursubmx col_mxKu row_mxKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxKur
block_mxEdli j : A (rshift m1 i) (lshift n2 j) = Adl i j. Proof. by rewrite col_mxEd row_mxEl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxEdl
block_mxKdl: dlsubmx A = Adl. Proof. by rewrite /dlsubmx col_mxKd row_mxKl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxKdl
block_mxEdri j : A (rshift m1 i) (rshift n1 j) = Adr i j. Proof. by rewrite col_mxEd row_mxEr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun finset fingroup perm order div", "From mathcomp Require Import prime binomial ssralg countalg finalg zmodp bigop" ]
algebra/matrix.v
block_mxEdr