fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
cmp0x : unify_itv i (Itv.Real `]-oo, +oo[) -> 0 >=< x%:num. Proof. by case: i x => [//| i' [x /=/andP[]]]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
cmp0
neq0x : unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i -> x%:num != 0 :> R. Proof. case: i x => [//| [l u] [x /= Px]]; apply: contra => /eqP x0 /=. move: Px; rewrite x0 => /and3P[_ /= l0 u0]; apply/andP; split. - by case: l l0 => [[] l /= |//]; rewrite !bnd_simp ?lerz0 ?ltrz0. - by case: u u0 => [[] u /= |//]; rewrite !bnd_simp ?ler0z ?ltr0z. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
neq0
eq0Fx : unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i -> x%:num == 0 :> R = false. Proof. by move=> u; apply/negbTE/neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
eq0F
lt1x : unify_itv i (Itv.Real `]-oo, 1%Z[) -> x%:num < 1 :> R. Proof. by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
lt1
ge1Fx : unify_itv i (Itv.Real `]-oo, 1%Z[) -> 1 <= x%:num :> R = false. Proof. case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=. by rewrite in_itv/= => /lt_geF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
ge1F
le1x : unify_itv i (Itv.Real `]-oo, 1%Z]) -> x%:num <= 1 :> R. Proof. by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
le1
gt1Fx : unify_itv i (Itv.Real `]-oo, 1%Z]) -> 1 < x%:num :> R = false. Proof. case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=. by rewrite in_itv/= => /le_gtF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
gt1F
widen_itv_subproofx i' : Itv.sub i i' -> num_spec i' x%:num. Proof. by case: x => x /= /[swap] /num_spec_sub; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
widen_itv_subproof
widen_itvx i' (uni : unify_itv i i') := Itv.mk (widen_itv_subproof x uni).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
widen_itv
widen_itvEx (uni : unify_itv i i) : @widen_itv x i uni = x. Proof. exact/val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
widen_itvE
posEx (uni : unify_itv i (Itv.Real `]0%Z, +oo[)) : (widen_itv x%:num%:itv uni)%:num = x%:num. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
posE
nngEx (uni : unify_itv i (Itv.Real `[0%Z, +oo[)) : (widen_itv x%:num%:itv uni)%:num = x%:num. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nngE
num_spec_zero: num_spec (Itv.Real `[0, 0]) (0 : R). Proof. by apply/andP; split; [exact: real0 | rewrite /= in_itv/= lexx]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_zero
zero_inum:= Itv.mk num_spec_zero.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
zero_inum
num_spec_one: num_spec (Itv.Real `[1, 1]) (1 : R). Proof. by apply/andP; split; [exact: real1 | rewrite /= in_itv/= lexx]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_one
one_inum:= Itv.mk num_spec_one.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
one_inum
opp_boundr(x : R) b : (BRight (- x)%R <= num_itv_bound R (opp_bound b))%O = (num_itv_bound R b <= BLeft x)%O. Proof. by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz ?lerN2 // ltrN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
opp_boundr
opp_boundl(x : R) b : (num_itv_bound R (opp_bound b) <= BLeft (- x)%R)%O = (BRight x <= num_itv_bound R b)%O. Proof. by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz ?lerN2 // ltrN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
opp_boundl
num_spec_opp(i : Itv.t) (x : num_def R i) (r := Itv.real1 opp i) : num_spec r (- x%:num). Proof. apply: Itv.spec_real1 (Itv.P x). case: x => x /= _ [l u] /and3P[xr lx xu]. rewrite /Itv.num_sem/= realN xr/=; apply/andP. by rewrite opp_boundl opp_boundr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_opp
opp_inum(i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_opp x).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
opp_inum
num_itv_add_boundl(x1 x2 : R) b1 b2 : (num_itv_bound R b1 <= BLeft x1)%O -> (num_itv_bound R b2 <= BLeft x2)%O -> (num_itv_bound R (add_boundl b1 b2) <= BLeft (x1 + x2)%R)%O. Proof. case: b1 b2 => [bb1 b1 |//] [bb2 b2 |//]. case: bb1; case: bb2; rewrite /= !bnd_simp mulrzDr. - exact: lerD. - exact: ler_ltD. - exact: ltr_leD. - exact: ltrD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_add_boundl
num_itv_add_boundr(x1 x2 : R) b1 b2 : (BRight x1 <= num_itv_bound R b1)%O -> (BRight x2 <= num_itv_bound R b2)%O -> (BRight (x1 + x2)%R <= num_itv_bound R (add_boundr b1 b2))%O. Proof. case: b1 b2 => [bb1 b1 |//] [bb2 b2 |//]. case: bb1; case: bb2; rewrite /= !bnd_simp mulrzDr. - exact: ltrD. - exact: ltr_leD. - exact: ler_ltD. - exact: lerD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_add_boundr
num_spec_add(xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) (r := Itv.real2 add xi yi) : num_spec r (x%:num + y%:num). Proof. apply: Itv.spec_real2 (Itv.P x) (Itv.P y). case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=. move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]]. rewrite /Itv.num_sem realD//=; apply/andP. by rewrite num_itv_add_boundl ?num_itv_add_boundr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_add
add_inum(xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) := Itv.mk (num_spec_add x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
add_inum
sign_spec(l u : itv_bound int) (x : R) : signi -> Set := | ISignEqZero : l = BLeft 0 -> u = BRight 0 -> x = 0 -> sign_spec l u x (Known EqZero) | ISignNonNeg : (BLeft 0%:Z <= l)%O -> (BRight 0%:Z < u)%O -> 0 <= x -> sign_spec l u x (Known NonNeg) | ISignNonPos : (l < BLeft 0%:Z)%O -> (u <= BRight 0%:Z)%O -> x <= 0 -> sign_spec l u x (Known NonPos) | ISignBoth : (l < BLeft 0%:Z)%O -> (BRight 0%:Z < u)%O -> x \in Num.real -> sign_spec l u x Unknown.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
sign_spec
signP(l u : itv_bound int) (x : R) : (num_itv_bound R l <= BLeft x)%O -> (BRight x <= num_itv_bound R u)%O -> x \in Num.real -> sign_spec l u x (sign (Interval l u)). Proof. move=> + + xr; rewrite /sign/sign_boundl/sign_boundr. have [lneg|lpos|->] := ltgtP l; have [uneg|upos|->] := ltgtP u => lx xu. - apply: ISignNonPos => //; first exact: ltW. have:= le_trans xu (eqbRL (le_num_itv_bound _ _) (ltW uneg)). by rewrite bnd_simp. - exact: ISignBoth. - exact: ISignNonPos. - have:= @ltxx _ _ (num_itv_bound R l). rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//. by rewrite le_num_itv_bound (le_trans (ltW uneg)). - apply: ISignNonNeg => //; first exact: ltW. have:= le_trans (eqbRL (le_num_itv_bound _ _) (ltW lpos)) lx. by rewrite bnd_simp. - have:= @ltxx _ _ (num_itv_bound R l). rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//. by rewrite le_num_itv_bound ?leBRight_ltBLeft. - have:= @ltxx _ _ (num_itv_bound R (BLeft 0%Z)). rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//. by rewrite le_num_itv_bound -?ltBRight_leBLeft. - exact: ISignNonNeg. - apply: ISignEqZero => //. by apply/le_anti/andP; move: lx xu; rewrite !bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
signP
num_itv_mul_boundlb1 b2 (x1 x2 : R) : (BLeft 0%:Z <= b1 -> BLeft 0%:Z <= b2 -> num_itv_bound R b1 <= BLeft x1 -> num_itv_bound R b2 <= BLeft x2 -> num_itv_bound R (mul_boundl b1 b2) <= BLeft (x1 * x2))%O. Proof. move: b1 b2 => [[] b1 | []//] [[] b2 | []//] /=; rewrite 4!bnd_simp. - set bl := match b1 with 0%Z => _ | _ => _ end. have -> : bl = BLeft (b1 * b2). rewrite {}/bl; move: b1 b2 => [[|p1]|p1] [[|p2]|p2]; congr BLeft. by rewrite mulr0. by rewrite bnd_simp intrM -2!(ler0z R); apply: ler_pM. - case: b1 => [[|b1] | b1]; rewrite !bnd_simp// => b1p b2p sx1 sx2. + by rewrite mulr_ge0 ?(le_trans _ (ltW sx2)) ?ler0z. + rewrite intrM (@lt_le_trans _ _ (b1.+1%:~R * x2)) ?ltr_pM2l//. by rewrite ler_pM2r// (le_lt_trans _ sx2) ?ler0z. - case: b2 => [[|b2] | b2]; rewrite !bnd_simp// => b1p b2p sx1 sx2. + by rewrite mulr_ge0 ?(le_trans _ (ltW sx1)) ?ler0z. + rewrite intrM (@le_lt_trans _ _ (b1%:~R * x2)) ?ler_wpM2l ?ler0z//. by rewrite ltr_pM2r ?(lt_le_trans _ sx2). - by rewrite -2!(ler0z R) bnd_simp intrM; apply: ltr_pM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_mul_boundl
num_itv_mul_boundrb1 b2 (x1 x2 : R) : (0 <= x1 -> 0 <= x2 -> BRight x1 <= num_itv_bound R b1 -> BRight x2 <= num_itv_bound R b2 -> BRight (x1 * x2) <= num_itv_bound R (mul_boundr b1 b2))%O. Proof. case: b1 b2 => [b1b b1 | []] [b2b b2 | []] //= x1p x2p; last first. - case: b2b b2 => -[[|//] | //] _ x20. + have:= @ltxx _ (itv_bound R) (BLeft 0%:~R). by rewrite (lt_le_trans _ x20). + have -> : x2 = 0 by apply/le_anti/andP. by rewrite mulr0. - case: b1b b1 => -[[|//] |//] x10 _. + have:= @ltxx _ (itv_bound R) (BLeft 0%Z%:~R). by rewrite (lt_le_trans _ x10). + by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r]. case: b1b b2b => -[]; rewrite -[intRing.mulz]/GRing.mul. - case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b. + by have:= @ltxx _ R 0; rewrite (le_lt_trans x1p x1b). + case: b2 x2b => [[| b2] | b2] => x2b; rewrite bnd_simp. * by have:= @ltxx _ R 0; rewrite (le_lt_trans x2p x2b). * by rewrite intrM ltr_pM. * have:= @ltxx _ R 0; rewrite (le_lt_trans x2p)//. by rewrite (lt_le_trans x2b) ?lerz0. + have:= @ltxx _ R 0; rewrite (le_lt_trans x1p)//. by rewrite (lt_le_trans x1b) ?lerz0. - case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b. + by have:= @ltxx _ R 0; rewrite (le_lt_trans x1p x1b). + case: b2 x2b => [[| b2] | b2] x2b; rewrite bnd_simp. * exact: mulr_ge0_le0. * by rewrite intrM (le_lt_trans (ler_wpM2l x1p x2b)) ?ltr_pM2r. * have:= @ltxx _ _ x2. by rewrite (le_lt_trans x2b) ?(lt_le_trans _ x2p) ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_mul_boundr
BRight_le_mul_boundrb1 b2 (x1 x2 : R) : (0 <= x1 -> x2 \in Num.real -> BRight 0%Z <= b2 -> BRight x1 <= num_itv_bound R b1 -> BRight x2 <= num_itv_bound R b2 -> BRight (x1 * x2) <= num_itv_bound R (mul_boundr b1 b2))%O. Proof. move=> x1ge0 x2r b2ge0 lex1b1 lex2b2. have /orP[x2ge0 | x2le0] := x2r; first exact: num_itv_mul_boundr. have lem0 : (BRight (x1 * x2) <= BRight 0%R)%O. by rewrite bnd_simp mulr_ge0_le0 // ltW. apply: le_trans lem0 _. rewrite -(mulr0z 1) BRight_le_num_itv_bound. apply: mul_boundr_gt0 => //. by rewrite -(@BRight_le_num_itv_bound R) (le_trans _ lex1b1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
BRight_le_mul_boundr
comparable_num_itv_bound(x y : itv_bound int) : (num_itv_bound R x >=< num_itv_bound R y)%O. Proof. by case: x y => [[] x | []] [[] y | []]//; apply/orP; rewrite !bnd_simp ?ler_int ?ltr_int; case: leP => xy; apply/orP => //; rewrite ltW ?orbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
comparable_num_itv_bound
num_itv_bound_min(x y : itv_bound int) : num_itv_bound R (Order.min x y) = Order.min (num_itv_bound R x) (num_itv_bound R y). Proof. have [lexy | ltyx] := leP x y; [by rewrite !minEle le_num_itv_bound lexy|]. rewrite minElt -if_neg -comparable_leNgt ?le_num_itv_bound ?ltW//. exact: comparable_num_itv_bound. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_bound_min
num_itv_bound_max(x y : itv_bound int) : num_itv_bound R (Order.max x y) = Order.max (num_itv_bound R x) (num_itv_bound R y). Proof. have [lexy | ltyx] := leP x y; [by rewrite !maxEle le_num_itv_bound lexy|]. rewrite maxElt -if_neg -comparable_leNgt ?le_num_itv_bound ?ltW//. exact: comparable_num_itv_bound. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_bound_max
num_spec_mul(xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) (r := Itv.real2 mul xi yi) : num_spec r (x%:num * y%:num). Proof. rewrite {}/r; case: xi yi x y => [//| [xl xu]] [//| [yl yu]]. case=> [x /=/and3P[xr /= xlx xxu]] [y /=/and3P[yr /= yly yyu]]. rewrite -/(sign (Interval xl xu)) -/(sign (Interval yl yu)). have ns000 : @Itv.num_sem R `[0, 0] 0 by apply/and3P. have xyr : x * y \in Num.real by exact: realM. case: (signP xlx xxu xr) => xlb xub xs. - by rewrite xs mul0r; case: (signP yly yyu yr). - case: (signP yly yyu yr) => ylb yub ys. + by rewrite ys mulr0. + apply/and3P; split=> //=. * exact: num_itv_mul_boundl xlx yly. * exact: num_itv_mul_boundr xxu yyu. + apply/and3P; split=> //=; rewrite -[x * y]opprK -mulrN. * by rewrite opp_boundl num_itv_mul_boundr ?oppr_ge0// opp_boundr. * by rewrite opp_boundr num_itv_mul_boundl ?opp_boundl// opp_bound_ge0. + apply/and3P; split=> //=. * rewrite -[x * y]opprK -mulrN opp_boundl. by rewrite BRight_le_mul_boundr ?realN ?opp_boundr// opp_bound_gt0 ltW. * by rewrite BRight_le_mul_boundr// ltW. - case: (signP yly yyu yr) => ylb yub ys. + by rewrite ys mulr0. + apply/and3P; split=> //=; rewrite -[x * y]opprK -mulNr. * rewrite opp_boundl. by rewrite num_itv_mul_boundr ?oppr_ge0 ?opp_boundr. * by rewrite opp_boundr num_itv_mul_boundl ?opp_boundl// opp_bound_ge0. + apply/and3P; split=> //=; rewrite -mulrNN. * by rewrite num_itv_mul_boundl ?opp_bound_ge0 ?opp_boundl. * by re ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_mul
mul_inum(xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) := Itv.mk (num_spec_mul x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
mul_inum
num_spec_min(xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) (r := Itv.real2 min xi yi) : num_spec r (Order.min x%:num y%:num). Proof. apply: Itv.spec_real2 (Itv.P x) (Itv.P y). case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=. move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]]. apply/and3P; split; rewrite ?min_real//= num_itv_bound_min real_BSide_min//. - apply: (comparable_le_min2 (comparable_num_itv_bound _ _)) => //. exact: real_comparable. - apply: (comparable_le_min2 _ (comparable_num_itv_bound _ _)) => //. exact: real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_min
num_spec_max(xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) (r := Itv.real2 max xi yi) : num_spec r (Order.max x%:num y%:num). Proof. apply: Itv.spec_real2 (Itv.P x) (Itv.P y). case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=. move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]]. apply/and3P; split; rewrite ?max_real//= num_itv_bound_max real_BSide_max//. - apply: (comparable_le_max2 (comparable_num_itv_bound _ _)) => //. exact: real_comparable. - apply: (comparable_le_max2 _ (comparable_num_itv_bound _ _)) => //. exact: real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_max
min_max_typd := MinMaxTyp { min_max_sort : porderType d; #[canonical=no] min_max_sem : interval int -> min_max_sort -> bool; #[canonical=no] min_max_minP : forall (xi yi : Itv.t) (x : Itv.def min_max_sem xi) (y : Itv.def min_max_sem yi), let: r := Itv.real2 min xi yi in Itv.spec min_max_sem r (Order.min x%:num y%:num); #[canonical=no] min_max_maxP : forall (xi yi : Itv.t) (x : Itv.def min_max_sem xi) (y : Itv.def min_max_sem yi), let: r := Itv.real2 max xi yi in Itv.spec min_max_sem r (Order.max x%:num y%:num); }.
Record
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
min_max_typ
min_typ_inumd (t : min_max_typ d) (xi yi : Itv.t) (x : Itv.def (@min_max_sem d t) xi) (y : Itv.def (@min_max_sem d t) yi) (r := Itv.real2 min xi yi) := Itv.mk (min_max_minP x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
min_typ_inum
max_typ_inumd (t : min_max_typ d) (xi yi : Itv.t) (x : Itv.def (@min_max_sem d t) xi) (y : Itv.def (@min_max_sem d t) yi) (r := Itv.real2 min xi yi) := Itv.mk (min_max_maxP x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
max_typ_inum
num_min_max_typ:= MinMaxTyp num_spec_min num_spec_max.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_min_max_typ
nat_num_spec(i : Itv.t) (n : nat) : nat_spec i n = num_spec i (n%:R : R). Proof. case: i => [//| [l u]]; rewrite /= /Itv.num_sem realn/=; congr (_ && _). - by case: l => [[] l |//]; rewrite !bnd_simp ?pmulrn ?ler_int ?ltr_int. - by case: u => [[] u |//]; rewrite !bnd_simp ?pmulrn ?ler_int ?ltr_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_num_spec
natmul_itv(i1 i2 : Itv.t) : Itv.t := match i1, i2 with | Itv.Top, _ => Itv.Top | _, Itv.Top => Itv.Real `]-oo, +oo[ | Itv.Real i1, Itv.Real i2 => Itv.Real (mul i1 i2) end. Arguments natmul_itv /.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
natmul_itv
num_spec_natmul(xi ni : Itv.t) (x : num_def R xi) (n : nat_def ni) (r := natmul_itv xi ni) : num_spec r (x%:num *+ n%:num). Proof. rewrite {}/r; case: xi x ni n => [//| xi] x [| ni] n. by apply/and3P; case: n%:num => [|?]; rewrite ?mulr0n ?realrMn. have Pn : num_spec (Itv.Real ni) (n%:num%:R : R). by case: n => /= n; rewrite [Itv.nat_sem ni n](nat_num_spec (Itv.Real ni)). rewrite -mulr_natr -[n%:num%:R]/((Itv.Def Pn)%:num). by rewrite (@num_spec_mul (Itv.Real xi) (Itv.Real ni)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_natmul
natmul_inum(xi ni : Itv.t) (x : num_def R xi) (n : nat_def ni) := Itv.mk (num_spec_natmul x n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
natmul_inum
num_spec_int(i : Itv.t) (n : int) : num_spec i n = num_spec i (n%:~R : R). Proof. case: i => [//| [l u]]; rewrite /= /Itv.num_sem num_real realz/=. congr (andb _ _). - by case: l => [[] l |//]; rewrite !bnd_simp intz ?ler_int ?ltr_int. - by case: u => [[] u |//]; rewrite !bnd_simp intz ?ler_int ?ltr_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_int
num_spec_intmul(xi ii : Itv.t) (x : num_def R xi) (i : num_def int ii) (r := natmul_itv xi ii) : num_spec r (x%:num *~ i%:num). Proof. rewrite {}/r; case: xi x ii i => [//| xi] x [| ii] i. by apply/and3P; case: i%:inum => [[|n] | n]; rewrite ?mulr0z ?realN ?realrMn. have Pi : num_spec (Itv.Real ii) (i%:num%:~R : R). by case: i => /= i; rewrite [Itv.num_sem ii i](num_spec_int (Itv.Real ii)). rewrite -mulrzr -[i%:num%:~R]/((Itv.Def Pi)%:num). by rewrite (@num_spec_mul (Itv.Real xi) (Itv.Real ii)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_intmul
intmul_inum(xi ni : Itv.t) (x : num_def R xi) (n : num_def int ni) := Itv.mk (num_spec_intmul x n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
intmul_inum
num_itv_bound_keep_pos(op : R -> R) (x : R) b : {homo op : x / 0 <= x} -> {homo op : x / 0 < x} -> (num_itv_bound R b <= BLeft x)%O -> (num_itv_bound R (keep_pos_bound b) <= BLeft (op x))%O. Proof. case: b => [[] [] [| b] // | []//] hle hlt; rewrite !bnd_simp. - exact: hle. - by move=> blex; apply: le_lt_trans (hlt _ _) => //; apply: lt_le_trans blex. - exact: hlt. - by move=> bltx; apply: le_lt_trans (hlt _ _) => //; apply: le_lt_trans bltx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_bound_keep_pos
num_itv_bound_keep_neg(op : R -> R) (x : R) b : {homo op : x / x <= 0} -> {homo op : x / x < 0} -> (BRight x <= num_itv_bound R b)%O -> (BRight (op x) <= num_itv_bound R (keep_neg_bound b))%O. Proof. case: b => [[] [[|//] | b] | []//] hge hgt; rewrite !bnd_simp. - exact: hgt. - by move=> xltb; apply: hgt; apply: lt_le_trans xltb _; rewrite lerz0. - exact: hge. - by move=> xleb; apply: hgt; apply: le_lt_trans xleb _; rewrite ltrz0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_bound_keep_neg
num_spec_inv(i : Itv.t) (x : num_def R i) (r := Itv.real1 inv i) : num_spec r (x%:num^-1). Proof. apply: Itv.spec_real1 (Itv.P x). case: x => x /= _ [l u] /and3P[xr /= lx xu]. rewrite /Itv.num_sem/= realV xr/=; apply/andP; split. - apply: num_itv_bound_keep_pos lx. + by move=> ?; rewrite invr_ge0. + by move=> ?; rewrite invr_gt0. - apply: num_itv_bound_keep_neg xu. + by move=> ?; rewrite invr_le0. + by move=> ?; rewrite invr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_inv
inv_inum(i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_inv x).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
inv_inum
num_itv_bound_exprn_le1(x : R) n l u : (num_itv_bound R l <= BLeft x)%O -> (BRight x <= num_itv_bound R u)%O -> (BRight (x ^+ n) <= num_itv_bound R (exprn_le1_bound l u))%O. Proof. case: u => [bu [[//|[|//]] |//] | []//]. rewrite /exprn_le1_bound; case: (leP _ l) => [lge1 /= |//] lx xu. rewrite bnd_simp; case: n => [| n]; rewrite ?expr0//. have xN1 : -1 <= x. case: l lge1 lx => [[] l | []//]; rewrite !bnd_simp -(@ler_int R). - exact: le_trans. - by move=> + /ltW; apply: le_trans. have x1 : x <= 1 by case: bu xu; rewrite bnd_simp// => /ltW. have xr : x \is Num.real by exact: ler1_real. case: (real_ge0P xr) => x0; first by rewrite expr_le1. rewrite -[x]opprK exprNn; apply: le_trans (ler_piMl _ _) _. - by rewrite exprn_ge0 ?oppr_ge0 1?ltW. - suff: -1 <= (-1) ^+ n.+1 :> R /\ (-1) ^+ n.+1 <= 1 :> R => [[]//|]. elim: n => [|n [IHn1 IHn2]]; rewrite ?expr1// ![_ ^+ n.+2]exprS !mulN1r. by rewrite lerNl opprK lerNl. - by rewrite expr_le1 ?oppr_ge0 1?lerNl// ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_itv_bound_exprn_le1
num_spec_exprn(i : Itv.t) (x : num_def R i) n (r := Itv.real1 exprn i) : num_spec r (x%:num ^+ n). Proof. apply: (@Itv.spec_real1 _ _ (fun x => x^+n) _ _ _ _ (Itv.P x)). case: x => x /= _ [l u] /and3P[xr /= lx xu]. rewrite /Itv.num_sem realX//=; apply/andP; split. - apply: (@num_itv_bound_keep_pos (fun x => x^+n)) lx. + exact: exprn_ge0. + exact: exprn_gt0. - exact: num_itv_bound_exprn_le1 lx xu. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_exprn
exprn_inum(i : Itv.t) (x : num_def R i) n := Itv.mk (num_spec_exprn x n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
exprn_inum
num_spec_exprz(xi ki : Itv.t) (x : num_def R xi) (k : num_def int ki) (r := Itv.real2 exprz xi ki) : num_spec r (x%:num ^ k%:num). Proof. rewrite {}/r; case: ki k => [|[lk uk]] k; first by case: xi x. case: xi x => [//|xi x]; rewrite /Itv.real2. have P : Itv.num_sem (let 'Interval l _ := xi in Interval (keep_pos_bound l) +oo) (x%:num ^ k%:num). case: xi x => lx ux x; apply/and3P; split=> [||//]. have xr : x%:num \is Num.real by case: x => x /=/andP[]. by case: k%:num => n; rewrite ?realV realX. apply: (@num_itv_bound_keep_pos (fun x => x ^ k%:num)); [exact: exprz_ge0 | exact: exprz_gt0 |]. by case: x => x /=/and3P[]. case: lk k P => [slk [lk | lk] | slk] k P; [|exact: P..]. case: k P => -[k | k] /= => [_ _|]; rewrite -/(exprn xi); last first. by move=> /and3P[_ /=]; case: slk; rewrite bnd_simp -pmulrn natz. exact: (@num_spec_exprn (Itv.Real xi)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_exprz
exprz_inum(xi ki : Itv.t) (x : num_def R xi) (k : num_def int ki) := Itv.mk (num_spec_exprz x k).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
exprz_inum
num_spec_norm{V : normedZmodType R} (x : V) : num_spec (Itv.Real `[0, +oo[) `|x|. Proof. by apply/and3P; split; rewrite //= ?normr_real ?bnd_simp ?normr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_norm
norm_inum{V : normedZmodType R} (x : V) := Itv.mk (num_spec_norm x).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
norm_inum
sqrt_itv(i : Itv.t) : Itv.t := match i with | Itv.Top => Itv.Real `[0%Z, +oo[ | Itv.Real (Interval l u) => match l with | BSide b 0%Z => Itv.Real (Interval (BSide b 0%Z) +oo) | BSide b (Posz (S _)) => Itv.Real `]0%Z, +oo[ | _ => Itv.Real `[0, +oo[ end end. Arguments sqrt_itv /.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
sqrt_itv
num_spec_sqrt(i : Itv.t) (x : num_def R i) (r := sqrt_itv i) : num_spec r (Num.sqrt x%:num). Proof. have: Itv.num_sem `[0%Z, +oo[ (Num.sqrt x%:num). by apply/and3P; rewrite /= num_real !bnd_simp sqrtr_ge0. rewrite {}/r; case: i x => [//| [[bl [l |//] |//] u]] [x /= +] _. case: bl l => -[| l] /and3P[xr /= bx _]; apply/and3P; split=> //=; move: bx; rewrite !bnd_simp ?sqrtr_ge0// sqrtr_gt0; [exact: lt_le_trans | exact: le_lt_trans..]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_sqrt
sqrt_inum(i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_sqrt x).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
sqrt_inum
sqrtC_itv(i : Itv.t) : Itv.t := match i with | Itv.Top => Itv.Top | Itv.Real (Interval l u) => match l with | BSide b (Posz _) => Itv.Real (Interval (BSide b 0%Z) +oo) | _ => Itv.Top end end. Arguments sqrtC_itv /.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
sqrtC_itv
num_spec_sqrtC(i : Itv.t) (x : num_def R i) (r := sqrtC_itv i) : num_spec r (sqrtC x%:num). Proof. rewrite {}/r; case: i x => [//| [l u] [x /=/and3P[xr /= lx xu]]]. case: l lx => [bl [l |//] |[]//] lx; apply/and3P; split=> //=. by apply: sqrtC_real; case: bl lx => /[!bnd_simp] [|/ltW]; apply: le_trans. case: bl lx => /[!bnd_simp] lx. - by rewrite sqrtC_ge0; apply: le_trans lx. - by rewrite sqrtC_gt0; apply: le_lt_trans lx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_sqrtC
sqrtC_inum(i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_sqrtC x).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
sqrtC_inum
nat_spec_zero: nat_spec (Itv.Real `[0, 0]%Z) 0. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_zero
zeron_inum:= Itv.mk nat_spec_zero.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
zeron_inum
nat_spec_add(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) (r := Itv.real2 add xi yi) : nat_spec r (x%:num + y%:num). Proof. have Px : num_spec xi (x%:num%:R : int). by case: x => /= x; rewrite (@nat_num_spec int). have Py : num_spec yi (y%:num%:R : int). by case: y => /= y; rewrite (@nat_num_spec int). rewrite (@nat_num_spec int) natrD. rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num). exact: num_spec_add. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_add
addn_inum(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) := Itv.mk (nat_spec_add x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
addn_inum
nat_spec_succ(i : Itv.t) (n : nat_def i) (r := Itv.real2 add i (Itv.Real `[1, 1]%Z)) : nat_spec r (S n%:num). Proof. pose i1 := Itv.Real `[1, 1]%Z; have P1 : nat_spec i1 1 by []. by rewrite -addn1 -[1%N]/((Itv.Def P1)%:num); apply: nat_spec_add. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_succ
succn_inum(i : Itv.t) (n : nat_def i) := Itv.mk (nat_spec_succ n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
succn_inum
nat_spec_double(i : Itv.t) (n : nat_def i) (r := Itv.real2 add i i) : nat_spec r (n%:num.*2). Proof. by rewrite -addnn nat_spec_add. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_double
double_inum(i : Itv.t) (x : nat_def i) := Itv.mk (nat_spec_double x).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
double_inum
nat_spec_mul(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) (r := Itv.real2 mul xi yi) : nat_spec r (x%:num * y%:num). Proof. have Px : num_spec xi (x%:num%:R : int). by case: x => /= x; rewrite (@nat_num_spec int). have Py : num_spec yi (y%:num%:R : int). by case: y => /= y; rewrite (@nat_num_spec int). rewrite (@nat_num_spec int) natrM. rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num). exact: num_spec_mul. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_mul
muln_inum(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) := Itv.mk (nat_spec_mul x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
muln_inum
nat_spec_exp(i : Itv.t) (x : nat_def i) n (r := Itv.real1 exprn i) : nat_spec r (x%:num ^ n). Proof. have Px : num_spec i (x%:num%:R : int). by case: x => /= x; rewrite (@nat_num_spec int). rewrite (@nat_num_spec int) natrX -[x%:num%:R]/((Itv.Def Px)%:num). exact: num_spec_exprn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_exp
expn_inum(i : Itv.t) (x : nat_def i) n := Itv.mk (nat_spec_exp x n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
expn_inum
nat_spec_min(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) (r := Itv.real2 min xi yi) : nat_spec r (minn x%:num y%:num). Proof. have Px : num_spec xi (x%:num%:R : int). by case: x => /= x; rewrite (@nat_num_spec int). have Py : num_spec yi (y%:num%:R : int). by case: y => /= y; rewrite (@nat_num_spec int). rewrite (@nat_num_spec int) -minEnat natr_min. rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num). exact: num_spec_min. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_min
minn_inum(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) := Itv.mk (nat_spec_min x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
minn_inum
nat_spec_max(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) (r := Itv.real2 max xi yi) : nat_spec r (maxn x%:num y%:num). Proof. have Px : num_spec xi (x%:num%:R : int). by case: x => /= x; rewrite (@nat_num_spec int). have Py : num_spec yi (y%:num%:R : int). by case: y => /= y; rewrite (@nat_num_spec int). rewrite (@nat_num_spec int) -maxEnat natr_max. rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num). exact: num_spec_max. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_max
maxn_inum(xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) := Itv.mk (nat_spec_max x y).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
maxn_inum
nat_min_max_typ:= MinMaxTyp nat_spec_min nat_spec_max.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_min_max_typ
nat_spec_factorial(n : nat) : nat_spec (Itv.Real `[1%Z, +oo[) n`!. Proof. by apply/andP; rewrite bnd_simp lez_nat fact_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
nat_spec_factorial
factorial_inumn := Itv.mk (nat_spec_factorial n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
factorial_inum
num_spec_Poszn : num_spec (Itv.Real `[0, +oo[) (Posz n). Proof. by apply/and3P; rewrite /= num_real !bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_Posz
Posz_inumn := Itv.mk (num_spec_Posz n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
Posz_inum
num_spec_Negzn : num_spec (Itv.Real `]-oo, (-1)]) (Negz n). Proof. by apply/and3P; rewrite /= num_real !bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_spec_Negz
Negz_inumn := Itv.mk (num_spec_Negz n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
Negz_inum
num_eq: {mono num : x y / x == y}. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_eq
num_le: {mono num : x y / (x <= y)%O}. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_le
num_lt: {mono num : x y / (x < y)%O}. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_lt
num_min: {morph num : x y / Order.min x y}. Proof. by move=> x y; rewrite !minEle num_le -fun_if. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_min
num_max: {morph num : x y / Order.max x y}. Proof. by move=> x y; rewrite !maxEle num_le -fun_if. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_max
num_abs_eq0(a : R) : (`|a|%:nng == 0%:nng) = (a == 0). Proof. by rewrite -normr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_abs_eq0
num_le_maxa x y : a <= Num.max x%:num y%:num = (a <= x%:num) || (a <= y%:num). Proof. by rewrite -comparable_le_max// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_le_max
num_ge_maxa x y : Num.max x%:num y%:num <= a = (x%:num <= a) && (y%:num <= a). Proof. by rewrite -comparable_ge_max// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_ge_max
num_le_mina x y : a <= Num.min x%:num y%:num = (a <= x%:num) && (a <= y%:num). Proof. by rewrite -comparable_le_min// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_le_min
num_ge_mina x y : Num.min x%:num y%:num <= a = (x%:num <= a) || (y%:num <= a). Proof. by rewrite -comparable_ge_min// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_ge_min
num_lt_maxa x y : a < Num.max x%:num y%:num = (a < x%:num) || (a < y%:num). Proof. by rewrite -comparable_lt_max// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_lt_max
num_gt_maxa x y : Num.max x%:num y%:num < a = (x%:num < a) && (y%:num < a). Proof. by rewrite -comparable_gt_max// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_gt_max
num_lt_mina x y : a < Num.min x%:num y%:num = (a < x%:num) && (a < y%:num). Proof. by rewrite -comparable_lt_min// real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice", "From mathcomp Require Import order ssralg ssrnum ssrint interval" ]
algebra/interval_inference.v
num_lt_min