fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
zprimitive_irrp a q : p != 0 -> zprimitive p = a *: q -> a = sgz (lead_coef q). Proof. move=> nz_p Dp; have: p = (a * zcontents p) *: q. by rewrite mulrC -scalerA -Dp -zpolyEprim. case/zprimitive_min=> // b <- /eqP. rewrite Dp -{1}[q]scale1r scalerA -subr_eq0 -scalerBl scale_poly_eq0 subr_eq0. have{Dp} /negPf->: q != 0. by apply: contraNneq nz_p; rewrite -zprimitive_eq0 Dp => ->; rewrite scaler0. by case: b a => [[|[|b]] | [|b]] [[|[|a]] | [|a]] //; rewrite mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import div choice fintype tuple prime order", "From mathcomp Require Import ssralg poly ssrnum ssrint matrix", "From mathcomp Require Import polydiv perm zmodp bigop" ]
algebra/intdiv.v
zprimitive_irr
zcontentsMp q : zcontents (p * q) = zcontents p * zcontents q. Proof. have [-> | nz_p] := eqVneq p 0; first by rewrite !(mul0r, zcontents0). have [-> | nz_q] := eqVneq q 0; first by rewrite !(mulr0, zcontents0). rewrite -[zcontents q]mulr1 {1}[p]zpolyEprim {1}[q]zpolyEprim. rewrite -scalerAl -scalerAr !zcontentsZ; congr (_ * (_ * _)). rewrite [zcontents _]intEsg sgz_contents lead_coefM sgzM !sgz_lead_primitive. apply/eqP; rewrite nz_p nz_q !mul1r [_ == _]eqn_leq absz_gt0 zcontents_eq0. rewrite mulf_neq0 ?zprimitive_eq0 // andbT leqNgt. apply/negP=> /pdivP[r r_pr r_dv_d]; pose to_r : int -> 'F_r := intr. have nz_prim_r q1: q1 != 0 -> map_poly to_r (zprimitive q1) != 0. move=> nz_q1; apply: contraTneq (prime_gt1 r_pr) => r_dv_q1. rewrite -leqNgt dvdn_leq // -(dvdzE r true) -nz_q1 -zcontents_primitive. rewrite dvdz_contents; apply/polyOverP=> i /=; rewrite dvdzE /=. have /polyP/(_ i)/eqP := r_dv_q1; rewrite coef_map coef0 /=. rewrite {1}[_`_i]intEsign rmorphM /= rmorph_sign /= mulf_eq0 signr_eq0 /=. by rewrite -val_eqE /= val_Fp_nat. suffices{nz_prim_r} /idPn[]: map_poly to_r (zprimitive p * zprimitive q) == 0. by rewrite rmorphM mulf_neq0 ?nz_prim_r. rewrite [_ * _]zpolyEprim [zcontents _]intEsign mulrC -scalerA map_polyZ /=. by rewrite scale_poly_eq0 -val_eqE /= val_Fp_nat ?(eqnP r_dv_d). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import div choice fintype tuple prime order", "From mathcomp Require Import ssralg poly ssrnum ssrint matrix", "From mathcomp Require Import polydiv perm zmodp bigop" ]
algebra/intdiv.v
zcontentsM
zprimitiveMp q : zprimitive (p * q) = zprimitive p * zprimitive q. Proof. have [pq_0|] := eqVneq (p * q) 0. rewrite pq_0; move/eqP: pq_0; rewrite mulf_eq0. by case/pred2P=> ->; rewrite !zprimitive0 (mul0r, mulr0). rewrite -zcontents_eq0 -polyC_eq0 => /mulfI; apply; rewrite !mul_polyC. by rewrite -zpolyEprim zcontentsM -scalerA scalerAr scalerAl -!zpolyEprim. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import div choice fintype tuple prime order", "From mathcomp Require Import ssralg poly ssrnum ssrint matrix", "From mathcomp Require Import polydiv perm zmodp bigop" ]
algebra/intdiv.v
zprimitiveM
dvdpP_intp q : p %| q -> {r | q = zprimitive p * r}. Proof. case/Pdiv.Idomain.dvdpP/sig2_eqW=> [[c r] /= nz_c Dpr]. exists (zcontents q *: zprimitive r); rewrite -scalerAr. by rewrite -zprimitiveM mulrC -Dpr zprimitiveZ // -zpolyEprim. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import div choice fintype tuple prime order", "From mathcomp Require Import ssralg poly ssrnum ssrint matrix", "From mathcomp Require Import polydiv perm zmodp bigop" ]
algebra/intdiv.v
dvdpP_int
int_Smith_normal_formm n (M : 'M[int]_(m, n)) : {L : 'M[int]_m & L \in unitmx & {R : 'M[int]_n & R \in unitmx & {d : seq int | sorted dvdz d & M = L *m (\matrix_(i, j) (d`_i *+ (i == j :> nat))) *m R}}}. Proof. move: {2}_.+1 (ltnSn (m + n)) => mn. elim: mn => // mn IHmn in m n M *; rewrite ltnS => le_mn. have [[i j] nzMij | no_ij] := pickP (fun k => M k.1 k.2 != 0); last first. do 2![exists 1%:M; first exact: unitmx1]; exists nil => //=. apply/matrixP=> i j; apply/eqP; rewrite mulmx1 mul1mx mxE nth_nil mul0rn. exact: negbFE (no_ij (i, j)). do [case: m i => [[]//|m] i; case: n j => [[]//|n] j /=] in M nzMij le_mn *. wlog Dj: j M nzMij / j = 0; last rewrite {j}Dj in nzMij. case/(_ 0 (xcol j 0 M)); rewrite ?mxE ?tpermR // => L uL [R uR [d dvD dM]]. exists L => //; exists (xcol j 0 R); last exists d => //=. by rewrite xcolE unitmx_mul uR unitmx_perm. by rewrite xcolE !mulmxA -dM xcolE -mulmxA -perm_mxM tperm2 perm_mx1 mulmx1. move Da: (M i 0) nzMij => a nz_a. have [A leA] := ubnP `|a|; elim: A => // A IHa in a leA m n M i Da nz_a le_mn *. wlog [j a'Mij]: m n M i Da le_mn / {j | ~~ (a %| M i j)%Z}; last first. have nz_j: j != 0 by apply: contraNneq a'Mij => ->; rewrite Da. case: n => [[[]//]|n] in j le_mn nz_j M a'Mij Da *. wlog{nz_j} Dj: j M a'Mij Da / j = 1; last rewrite {j}Dj in a'Mij. case/(_ 1 (xcol j 1 M)); rewrite ?mxE ?tpermR ?tpermD //. move=> L uL [R uR [d dvD dM]]; exists L => //. exists (xcol j 1 R); first by rewrite xcolE unitmx_mul uR unitmx_pe ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import div choice fintype tuple prime order", "From mathcomp Require Import ssralg poly ssrnum ssrint matrix", "From mathcomp Require Import polydiv perm zmodp bigop" ]
algebra/intdiv.v
int_Smith_normal_form
itv_bound(T : Type) : Type := BSide of bool & T | BInfty of bool.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_bound
BLeft:= (BSide true).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
BLeft
BRight:= (BSide false).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
BRight
interval(T : Type) := Interval of itv_bound T & itv_bound T.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
interval
pair_of_intervalT (I : interval T) : itv_bound T * itv_bound T := let: Interval b1 b2 := I in (b1, b2).
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
pair_of_interval
itv_bound_can: cancel (fun b : itv_bound T => match b with BSide b x => (b, Some x) | BInfty b => (b, None) end) (fun b => match b with (b, Some x) => BSide b x | (b, None) => BInfty _ b end). Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_bound_can
interval_can: @cancel _ (interval T) (fun '(Interval b1 b2) => (b1, b2)) (fun '(b1, b2) => Interval b1 b2). Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
interval_can
Definition_ (T : eqType) := Equality.copy (itv_bound T) (can_type (@itv_bound_can T)). #[export, hnf] HB.instance Definition _ (T : eqType) := Equality.copy (interval T) (can_type (@interval_can T)). #[export, hnf] HB.instance Definition _ (T : choiceType) := Choice.copy (itv_bound T) (can_type (@itv_bound_can T)). #[export, hnf] HB.instance Definition _ (T : choiceType) := Choice.copy (interval T) (can_type (@interval_can T)). #[export, hnf] HB.instance Definition _ (T : countType) := Countable.copy (itv_bound T) (can_type (@itv_bound_can T)). #[export, hnf] HB.instance Definition _ (T : countType) := Countable.copy (interval T) (can_type (@interval_can T)). #[export, hnf] HB.instance Definition _ (T : finType) := Finite.copy (itv_bound T) (can_type (@itv_bound_can T)). #[export, hnf] HB.instance Definition _ (T : finType) := Finite.copy (interval T) (can_type (@interval_can T)).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
Definition
le_boundb1 b2 := match b1, b2 with | -oo, _ | _, +oo => true | BSide b1 x1, BSide b2 x2 => x1 < x2 ?<= if b2 ==> b1 | _, _ => false end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
le_bound
lt_boundb1 b2 := match b1, b2 with | -oo, +oo | -oo, BSide _ _ | BSide _ _, +oo => true | BSide b1 x1, BSide b2 x2 => x1 < x2 ?<= if b1 && ~~ b2 | _, _ => false end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
lt_bound
lt_bound_defb1 b2 : lt_bound b1 b2 = (b2 != b1) && le_bound b1 b2. Proof. by case: b1 b2 => [[]?|[]][[]?|[]] //=; rewrite lt_def. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
lt_bound_def
le_bound_refl: reflexive le_bound. Proof. by move=> [[]?|[]] /=. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
le_bound_refl
le_bound_anti: antisymmetric le_bound. Proof. by case=> [[]?|[]] [[]?|[]] //=; case: comparableP => // ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
le_bound_anti
le_bound_trans: transitive le_bound. Proof. by case=> [[]?|[]] [[]?|[]] [[]?|[]] lexy leyz //; apply: (lteif_imply _ (lteif_trans lexy leyz)). Qed. HB.instance Definition _ := Order.isPOrder.Build (itv_bound_display disp) (itv_bound T) lt_bound_def le_bound_refl le_bound_anti le_bound_trans.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
le_bound_trans
bound_lexxc1 c2 x : (BSide c1 x <= BSide c2 x) = (c2 ==> c1). Proof. by rewrite /<=%O /= lteifxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_lexx
bound_ltxxc1 c2 x : (BSide c1 x < BSide c2 x) = (c1 && ~~ c2). Proof. by rewrite /<%O /= lteifxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_ltxx
ge_pinftyb : (+oo <= b) = (b == +oo). Proof. by case: b => [|] []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
ge_pinfty
le_ninftyb : (b <= -oo) = (b == -oo). Proof. by case: b => // - []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
le_ninfty
gt_pinftyb : (+oo < b) = false. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
gt_pinfty
lt_ninftyb : (b < -oo) = false. Proof. by case: b => // -[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
lt_ninfty
ltBSidex y (b b' : bool) : BSide b x < BSide b' y = (x < y ?<= if b && ~~ b'). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
ltBSide
leBSidex y (b b' : bool) : BSide b x <= BSide b' y = (x < y ?<= if b' ==> b). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
leBSide
lteBSide:= (ltBSide, leBSide).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
lteBSide
ltBRight_leBLeftb x : b < BRight x = (b <= BLeft x). Proof. by move: b => [[] b|[]]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
ltBRight_leBLeft
leBRight_ltBLeftb x : BRight x <= b = (BLeft x < b). Proof. by move: b => [[] b|[]]. Qed. Let BLeft_ltE x y (b : bool) : BSide b x < BLeft y = (x < y). Proof. by case: b. Qed. Let BRight_leE x y (b : bool) : BSide b x <= BRight y = (x <= y). Proof. by case: b. Qed. Let BRight_BLeft_leE x y : BRight x <= BLeft y = (x < y). Proof. by []. Qed. Let BLeft_BRight_ltE x y : BLeft x < BRight y = (x <= y). Proof. by []. Qed. Let BRight_BSide_ltE x y (b : bool) : BRight x < BSide b y = (x < y). Proof. by case: b. Qed. Let BLeft_BSide_leE x y (b : bool) : BLeft x <= BSide b y = (x <= y). Proof. by case: b. Qed. Let BSide_ltE x y (b : bool) : BSide b x < BSide b y = (x < y). Proof. by case: b. Qed. Let BSide_leE x y (b : bool) : BSide b x <= BSide b y = (x <= y). Proof. by case: b. Qed. Let BInfty_leE a : a <= BInfty T false. Proof. by case: a => [[] a|[]]. Qed. Let BInfty_geE a : BInfty T true <= a. Proof. by case: a => [[] a|[]]. Qed. Let BInfty_le_eqE a : BInfty T false <= a = (a == BInfty T false). Proof. by case: a => [[] a|[]]. Qed. Let BInfty_ge_eqE a : a <= BInfty T true = (a == BInfty T true). Proof. by case: a => [[] a|[]]. Qed. Let BInfty_ltE a : a < BInfty T false = (a != BInfty T false). Proof. by case: a => [[] a|[]]. Qed. Let BInfty_gtE a : BInfty T true < a = (a != BInfty T true). Proof. by case: a => [[] a|[]]. Qed. Let BInfty_ltF a : BInfty T false < a = false. Proof. by case: a => [[] a|[]]. Qed. Let BInfty_gtF a : a < BInfty T true = false. Proof. by case: a => [[] a|[]]. Qed. Let BI ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
leBRight_ltBLeft
bnd_simp:= (BLeft_ltE, BRight_leE, BRight_BLeft_leE, BLeft_BRight_ltE, BRight_BSide_ltE, BLeft_BSide_leE, BSide_ltE, BSide_leE, BInfty_leE, BInfty_geE, BInfty_BInfty_ltE, BInfty_le_eqE, BInfty_ge_eqE, BInfty_ltE, BInfty_gtE, BInfty_ltF, BInfty_gtF, @lexx _ T, @ltxx _ T, @eqxx T).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bnd_simp
comparable_BSide_mins (x y : T) : (x >=< y)%O -> BSide s (Order.min x y) = Order.min (BSide s x) (BSide s y). Proof. by rewrite !minEle bnd_simp => /comparable_leP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
comparable_BSide_min
comparable_BSide_maxs (x y : T) : (x >=< y)%O -> BSide s (Order.max x y) = Order.max (BSide s x) (BSide s y). Proof. by rewrite !maxEle bnd_simp => /comparable_leP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
comparable_BSide_max
subitvi1 i2 := let: Interval b1l b1r := i1 in let: Interval b2l b2r := i2 in (b2l <= b1l) && (b1r <= b2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitv
subitv_refl: reflexive subitv. Proof. by case=> /= ? ?; rewrite !lexx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitv_refl
subitv_anti: antisymmetric subitv. Proof. by case=> [? ?][? ?]; rewrite andbACA => /andP[] /le_anti -> /le_anti ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitv_anti
subitv_trans: transitive subitv. Proof. case=> [yl yr][xl xr][zl zr] /andP [Hl Hr] /andP [Hl' Hr'] /=. by rewrite (le_trans Hl' Hl) (le_trans Hr Hr'). Qed. HB.instance Definition _ := Order.isPOrder.Build (interval_display disp) (interval T) (fun _ _ => erefl) subitv_refl subitv_anti subitv_trans.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitv_trans
pred_of_itvi : pred T := [pred x | `[x, x] <= i].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
pred_of_itv
StructureitvPredType := PredType pred_of_itv.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
Structure
subitvEb1l b1r b2l b2r : (Interval b1l b1r <= Interval b2l b2r) = (b2l <= b1l) && (b1r <= b2r). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitvE
in_itvx i : x \in i = let: Interval l u := i in match l with | BSide b lb => lb < x ?<= if b | BInfty b => b end && match u with | BSide b ub => x < ub ?<= if ~~ b | BInfty b => ~~ b end. Proof. by case: i => [[? ?|[]][|[]]]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
in_itv
itv_boundlrbl br x : (x \in Interval bl br) = (bl <= BLeft x) && (BRight x <= br). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_boundlr
itv_splitIbl br x : x \in Interval bl br = (x \in Interval bl +oo) && (x \in Interval -oo br). Proof. by rewrite !itv_boundlr andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_splitI
subitvPi1 i2 : i1 <= i2 -> {subset i1 <= i2}. Proof. by move=> ? ? /le_trans; exact. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitvP
subset_itv(x y z u : itv_bound T) : x <= y -> z <= u -> {subset Interval y z <= Interval x u}. Proof. by move=> xy zu; apply: subitvP; rewrite subitvE xy zu. Qed. #[deprecated(since="mathcomp 2.4.0", note="Use subset_itv instead.")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv
subset_itv_bound(r s u v : bool) x y : r <= u -> v <= s -> {subset Interval (BSide r x) (BSide s y) <= Interval (BSide u x) (BSide v y)}. Proof. by move: r s u v=> [] [] [] []// *; apply: subset_itv; rewrite bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv_bound
subset_itv_oo_ccx y : {subset `]x, y[ <= `[x, y]}. Proof. by apply: subset_itv; rewrite bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv_oo_cc
subset_itv_oo_ocx y : {subset `]x, y[ <= `]x, y]}. Proof. by apply: subset_itv; rewrite bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv_oo_oc
subset_itv_oo_cox y : {subset `]x, y[ <= `[x, y[}. Proof. by apply: subset_itv; rewrite bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv_oo_co
subset_itv_oc_ccx y : {subset `]x, y] <= `[x, y]}. Proof. by apply: subset_itv; rewrite bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv_oc_cc
subset_itv_co_ccx y : {subset `[x, y[ <= `[x, y]}. Proof. by apply: subset_itv; rewrite bnd_simp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subset_itv_co_cc
itvxxx : `[x, x] =i pred1 x. Proof. by move=> y; rewrite in_itv/= -eq_le eq_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itvxx
itvxxPy x : reflect (y = x) (y \in `[x, x]). Proof. by rewrite itvxx; apply/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itvxxP
subitvPlb1l b2l br : b2l <= b1l -> {subset Interval b1l br <= Interval b2l br}. Proof. by move=> ?; apply: subitvP; rewrite subitvE lexx andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitvPl
subitvPrbl b1r b2r : b1r <= b2r -> {subset Interval bl b1r <= Interval bl b2r}. Proof. by move=> ?; apply: subitvP; rewrite subitvE lexx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
subitvPr
itv_xxx cl cr y : y \in Interval (BSide cl x) (BSide cr x) = cl && ~~ cr && (y == x). Proof. by case: cl cr => [] []; rewrite [LHS]lteif_anti // eq_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_xx
boundl_in_itvc x b : x \in Interval (BSide c x) b = c && (BRight x <= b). Proof. by rewrite itv_boundlr bound_lexx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
boundl_in_itv
boundr_in_itvc x b : x \in Interval b (BSide c x) = ~~ c && (b <= BLeft x). Proof. by rewrite itv_boundlr bound_lexx implybF andbC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
boundr_in_itv
bound_in_itv:= (boundl_in_itv, boundr_in_itv).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_in_itv
lt_in_itvbl br x : x \in Interval bl br -> bl < br. Proof. by case/andP; apply/le_lt_trans. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
lt_in_itv
lteif_in_itvcl cr yl yr x : x \in Interval (BSide cl yl) (BSide cr yr) -> yl < yr ?<= if cl && ~~ cr. Proof. exact: lt_in_itv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
lteif_in_itv
itv_geb1 b2 : ~~ (b1 < b2) -> Interval b1 b2 =i pred0. Proof. by move=> ltb12 y; apply/contraNF: ltb12; apply/lt_in_itv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_ge
itv_decomposei x : Prop := let: Interval l u := i in (match l return Prop with | BSide b lb => lb < x ?<= if b | BInfty b => b end * match u return Prop with | BSide b ub => x < ub ?<= if ~~ b | BInfty b => ~~ b end)%type.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_decompose
itv_dec: forall x i, reflect (itv_decompose i x) (x \in i). Proof. by move=> ? [[? ?|[]][? ?|[]]]; apply: (iffP andP); case. Qed. Arguments itv_dec {x i}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_dec
itv_rewritei x : Type := let: Interval l u := i in (match l with | BLeft a => (a <= x) * (x < a = false) | BRight a => (a <= x) * (a < x) * (x <= a = false) * (x < a = false) | -oo => forall x : T, x == x | +oo => forall b : bool, unkeyed b = false end * match u with | BRight b => (x <= b) * (b < x = false) | BLeft b => (x <= b) * (x < b) * (b <= x = false) * (b < x = false) | +oo => forall x : T, x == x | -oo => forall b : bool, unkeyed b = false end * match l, u with | BLeft a, BRight b => (a <= b) * (b < a = false) * (a \in `[a, b]) * (b \in `[a, b]) | BLeft a, BLeft b => (a <= b) * (a < b) * (b <= a = false) * (b < a = false) * (a \in `[a, b]) * (a \in `[a, b[) * (b \in `[a, b]) * (b \in `]a, b]) | BRight a, BRight b => (a <= b) * (a < b) * (b <= a = false) * (b < a = false) * (a \in `[a, b]) * (a \in `[a, b[) * (b \in `[a, b]) * (b \in `]a, b]) | BRight a, BLeft b => (a <= b) * (a < b) * (b <= a = false) * (b < a = false) * (a \in `[a, b]) * (a \in `[a, b[) * (b \in `[a, b]) * (b \in `]a, b]) | _, _ => forall x : T, x == x end)%type.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_rewrite
itvPx i : x \in i -> itv_rewrite i x. Proof. case: i => [[[]a|[]][[]b|[]]] /andP [] ha hb; rewrite /= ?bound_in_itv; do ![split | apply/negbTE; rewrite (le_gtF, lt_geF)]; by [|apply: ltW | move: (lteif_trans ha hb) => //=; exact: ltW]. Qed. Arguments itvP [x i].
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itvP
itv_splitU1b x : b <= BLeft x -> Interval b (BRight x) =i [predU1 x & Interval b (BLeft x)]. Proof. move=> bx z; rewrite !inE/= !subitvE ?bnd_simp//= lt_neqAle. by case: (eqVneq z x) => [->|]//=; rewrite lexx bx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_splitU1
itv_split1Ub x : BRight x <= b -> Interval (BLeft x) b =i [predU1 x & Interval (BRight x) b]. Proof. move=> bx z; rewrite !inE/= !subitvE ?bnd_simp//= lt_neqAle. by case: (eqVneq z x) => [->|]//=; rewrite lexx bx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_split1U
bound_meetbl br : itv_bound T := match bl, br with | -oo, _ | _, -oo => -oo | +oo, b | b, +oo => b | BSide xb x, BSide yb y => BSide (((x <= y) && xb) || ((y <= x) && yb)) (x `&` y) end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_meet
bound_joinbl br : itv_bound T := match bl, br with | -oo, b | b, -oo => b | +oo, _ | _, +oo => +oo | BSide xb x, BSide yb y => BSide ((~~ (x <= y) || yb) && (~~ (y <= x) || xb)) (x `|` y) end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_join
bound_meetC: commutative bound_meet. Proof. case=> [? ?|[]][? ?|[]] //=; rewrite meetC; congr BSide. by case: lcomparableP; rewrite ?orbF // orbC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_meetC
bound_joinC: commutative bound_join. Proof. case=> [? ?|[]][? ?|[]] //=; rewrite joinC; congr BSide. by case: lcomparableP; rewrite ?andbT // andbC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_joinC
bound_meetA: associative bound_meet. Proof. case=> [? x|[]][? y|[]][? z|[]] //=; rewrite !lexI meetA; congr BSide. by case: (lcomparableP x y) => [|||->]; case: (lcomparableP y z) => [|||->]; case: (lcomparableP x z) => [|||//<-]; case: (lcomparableP x y); rewrite //= ?andbF ?orbF ?lexx ?orbA //; case: (lcomparableP y z). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_meetA
bound_joinA: associative bound_join. Proof. case=> [? x|[]][? y|[]][? z|[]] //=; rewrite !leUx joinA; congr BSide. by case: (lcomparableP x y) => [|||->]; case: (lcomparableP y z) => [|||->]; case: (lcomparableP x z) => [|||//<-]; case: (lcomparableP x y); rewrite //= ?orbT ?andbT ?lexx ?andbA //; case: (lcomparableP y z). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_joinA
bound_meetKUb2 b1 : bound_join b1 (bound_meet b1 b2) = b1. Proof. case: b1 b2 => [? ?|[]][? ?|[]] //=; rewrite ?meetKU ?joinxx ?leIl ?lexI ?lexx ?andbb //=; congr BSide. by case: lcomparableP; rewrite ?orbF /= ?andbb ?orbK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_meetKU
bound_joinKIb2 b1 : bound_meet b1 (bound_join b1 b2) = b1. Proof. case: b1 b2 => [? ?|[]][? ?|[]] //=; rewrite ?joinKI ?meetxx ?leUl ?leUx ?lexx ?orbb //=; congr BSide. by case: lcomparableP; rewrite ?orbF ?orbb ?andKb. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_joinKI
bound_leEmeetb1 b2 : (b1 <= b2) = (bound_meet b1 b2 == b1). Proof. case: b1 b2 => [[]t[][]|[][][]] //=; rewrite ?eqxx// => t'; rewrite [LHS]/<=%O /eq_op ?andbT ?andbF ?orbF/= /eq_op/= /eq_op/=; case: lcomparableP => //=; rewrite ?eqxx//=; [| | |]. - by move/lt_eqF. - move=> ic; apply: esym; apply: contraNF ic. by move=> /eqP/meet_idPl; apply: le_comparable. - by move/lt_eqF. - move=> ic; apply: esym; apply: contraNF ic. by move=> /eqP/meet_idPl; apply: le_comparable. Qed. HB.instance Definition _ := Order.POrder_isLattice.Build (itv_bound_display disp) (itv_bound T) bound_meetC bound_joinC bound_meetA bound_joinA bound_joinKI bound_meetKU bound_leEmeet.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_leEmeet
bound_le0xb : -oo <= b. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_le0x
bound_lex1b : b <= +oo. Proof. by case: b => [|[]]. Qed. HB.instance Definition _ := Order.hasBottom.Build (itv_bound_display disp) (itv_bound T) bound_le0x. HB.instance Definition _ := Order.hasTop.Build (itv_bound_display disp) (itv_bound T) bound_lex1.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
bound_lex1
itv_meeti1 i2 : interval T := let: Interval b1l b1r := i1 in let: Interval b2l b2r := i2 in Interval (b1l `|` b2l) (b1r `&` b2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_meet
itv_joini1 i2 : interval T := let: Interval b1l b1r := i1 in let: Interval b2l b2r := i2 in Interval (b1l `&` b2l) (b1r `|` b2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_join
itv_meetC: commutative itv_meet. Proof. by case=> [? ?][? ?] /=; rewrite meetC joinC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_meetC
itv_joinC: commutative itv_join. Proof. by case=> [? ?][? ?] /=; rewrite meetC joinC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_joinC
itv_meetA: associative itv_meet. Proof. by case=> [? ?][? ?][? ?] /=; rewrite meetA joinA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_meetA
itv_joinA: associative itv_join. Proof. by case=> [? ?][? ?][? ?] /=; rewrite meetA joinA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_joinA
itv_meetKUi2 i1 : itv_join i1 (itv_meet i1 i2) = i1. Proof. by case: i1 i2 => [? ?][? ?] /=; rewrite meetKU joinKI. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_meetKU
itv_joinKIi2 i1 : itv_meet i1 (itv_join i1 i2) = i1. Proof. by case: i1 i2 => [? ?][? ?] /=; rewrite meetKU joinKI. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_joinKI
itv_leEmeeti1 i2 : (i1 <= i2) = (itv_meet i1 i2 == i1). Proof. by case: i1 i2 => [? ?] [? ?]; rewrite /eq_op/=/eq_op/= eq_meetl eq_joinl. Qed. HB.instance Definition _ := Order.POrder_isLattice.Build (interval_display disp) (interval T) itv_meetC itv_joinC itv_meetA itv_joinA itv_joinKI itv_meetKU itv_leEmeet.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_leEmeet
itv_le0xi : Interval +oo -oo <= i. Proof. by case: i => [[|[]]]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_le0x
itv_lex1i : i <= `]-oo, +oo[. Proof. by case: i => [?[|[]]]. Qed. HB.instance Definition _ := Order.hasBottom.Build (interval_display disp) (interval T) itv_le0x. HB.instance Definition _ := Order.hasTop.Build (interval_display disp) (interval T) itv_lex1.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_lex1
in_itvIx i1 i2 : x \in i1 `&` i2 = (x \in i1) && (x \in i2). Proof. exact: lexI. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
in_itvI
BSide_mins (x y : T) : BSide s (Order.min x y) = Order.min (BSide s x) (BSide s y). Proof. exact: comparable_BSide_min. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
BSide_min
BSide_maxs (x y : T) : BSide s (Order.max x y) = Order.max (BSide s x) (BSide s y). Proof. exact: comparable_BSide_max. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
BSide_max
itv_bound_total: total (<=%O : rel (itv_bound T)). Proof. by move=> [[]?|[]][[]?|[]]; rewrite /<=%O //=; case: ltgtP. Qed. HB.instance Definition _ := Order.Lattice_isTotal.Build (itv_bound_display disp) (itv_bound T) itv_bound_total.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_bound_total
itv_meetUl: @left_distributive (interval T) _ Order.meet Order.join. Proof. by move=> [? ?][? ?][? ?]; rewrite /Order.meet /Order.join /= -meetUl -joinIl. Qed. HB.instance Definition _ := Order.Lattice_Meet_isDistrLattice.Build (interval_display disp) (interval T) itv_meetUl.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_meetUl
itv_splitUc a b : a <= c <= b -> forall y, y \in Interval a b = (y \in Interval a c) || (y \in Interval c b). Proof. case/andP => leac lecb y. rewrite !itv_boundlr !(ltNge (BLeft y) _ : (BRight y <= _) = _). case: (leP a) (leP b) (leP c) => leay [] leby [] lecy //=. - by case: leP lecy (le_trans lecb leby). - by case: leP leay (le_trans leac lecy). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_splitU
itv_splitUeqx a b : x \in Interval a b -> forall y, y \in Interval a b = [|| y \in Interval a (BLeft x), y == x | y \in Interval (BRight x) b]. Proof. case/andP => ax xb y; rewrite (@itv_splitU (BLeft x)) ?ax ?ltW //. by congr orb; rewrite (@itv_splitU (BRight x)) ?bound_lexx // itv_xx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_splitUeq
itv_total_meet3Ei1 i2 i3 : i1 `&` i2 `&` i3 \in [:: i1 `&` i2; i1 `&` i3; i2 `&` i3]. Proof. case: i1 i2 i3 => [b1l b1r] [b2l b2r] [b3l b3r]; rewrite !inE /eq_op /=. case: (leP b1l b2l); case: (leP b1l b3l); case: (leP b2l b3l); case: (leP b1r b2r); case: (leP b1r b3r); case: (leP b2r b3r); rewrite ?eqxx ?orbT //= => b23r b13r b12r b23l b13l b12l. - by case: leP b13r (le_trans b12r b23r). - by case: leP b13l (le_trans b12l b23l). - by case: leP b13l (le_trans b12l b23l). - by case: leP b13r (le_trans b12r b23r). - by case: leP b13r (le_trans b12r b23r). - by case: leP b13l (lt_trans b23l b12l). - by case: leP b13r (lt_trans b23r b12r). - by case: leP b13l (lt_trans b23l b12l). - by case: leP b13r (lt_trans b23r b12r). - by case: leP b13r (lt_trans b23r b12r). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_total_meet3E
itv_total_join3Ei1 i2 i3 : i1 `|` i2 `|` i3 \in [:: i1 `|` i2; i1 `|` i3; i2 `|` i3]. Proof. case: i1 i2 i3 => [b1l b1r] [b2l b2r] [b3l b3r]; rewrite !inE /eq_op /=. case: (leP b1l b2l); case: (leP b1l b3l); case: (leP b2l b3l); case: (leP b1r b2r); case: (leP b1r b3r); case: (leP b2r b3r); rewrite ?eqxx ?orbT //= => b23r b13r b12r b23l b13l b12l. - by case: leP b13r (le_trans b12r b23r). - by case: leP b13r (le_trans b12r b23r). - by case: leP b13l (le_trans b12l b23l). - by case: leP b13l (le_trans b12l b23l). - by case: leP b13l (le_trans b12l b23l). - by case: leP b13r (lt_trans b23r b12r). - by case: leP b13l (lt_trans b23l b12l). - by case: leP b13l (lt_trans b23l b12l). - by case: leP b13l (lt_trans b23l b12l). - by case: leP b13r (lt_trans b23r b12r). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
itv_total_join3E
predC_itvla : [predC Interval -oo a] =i Interval a +oo. Proof. case: a => [b x|[]//] y. by rewrite !inE !subitvE/= bnd_simp andbT !lteBSide/= lteifNE negbK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop order ssralg finset fingroup", "From mathcomp Require Import ssrnum" ]
algebra/interval.v
predC_itvl