fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mul_cardGG H : (#|G| * #|H| = #|G * H|%g * #|G :&: H|)%N. Proof. by rewrite -LagrangeMr -(LagrangeI G H) -mulnA mulnC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mul_cardG
dvdn_cardMgG H : #|G * H| %| #|G| * #|H|. Proof. by rewrite mul_cardG dvdn_mulr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
dvdn_cardMg
cardMg_divnG H : #|G * H| = (#|G| * #|H|) %/ #|G :&: H|. Proof. by rewrite mul_cardG mulnK ?cardG_gt0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cardMg_divn
cardIg_divnG H : #|G :&: H| = (#|G| * #|H|) %/ #|G * H|. Proof. by rewrite mul_cardG mulKn // (cardD1 (1 * 1)) mem_mulg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cardIg_divn
TI_cardMgG H : G :&: H = 1 -> #|G * H| = (#|G| * #|H|)%N. Proof. by move=> tiGH; rewrite mul_cardG tiGH cards1 muln1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
TI_cardMg
cardMg_TIG H : #|G| * #|H| <= #|G * H| -> G :&: H = 1. Proof. move=> leGH; apply: card_le1_trivg. rewrite -(@leq_pmul2l #|G * H|); first by rewrite -mul_cardG muln1. by apply: leq_trans leGH; rewrite muln_gt0 !cardG_gt0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cardMg_TI
coprime_TIgG H : coprime #|G| #|H| -> G :&: H = 1. Proof. move=> coGH; apply/eqP; rewrite trivg_card1 -dvdn1 -{}(eqnP coGH). by rewrite dvdn_gcd /= {2}setIC !cardSg ?subsetIl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
coprime_TIg
prime_TIgG H : prime #|G| -> ~~ (G \subset H) -> G :&: H = 1. Proof. case/primeP=> _ /(_ _ (cardSg (subsetIl G H))). rewrite (sameP setIidPl eqP) eqEcard subsetIl => /pred2P[/card1_trivg|] //= ->. by case/negP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
prime_TIg
prime_meetGG H : prime #|G| -> G :&: H != 1 -> G \subset H. Proof. by move=> prG; apply: contraR; move/prime_TIg->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
prime_meetG
coprime_cardMgG H : coprime #|G| #|H| -> #|G * H| = (#|G| * #|H|)%N. Proof. by move=> coGH; rewrite TI_cardMg ?coprime_TIg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
coprime_cardMg
coprime_index_mulGG H K : H \subset G -> K \subset G -> coprime #|G : H| #|G : K| -> H * K = G. Proof. move=> sHG sKG co_iG_HK; apply/eqP; rewrite eqEcard mul_subG //=. rewrite -(@leq_pmul2r #|H :&: K|) ?cardG_gt0 // -mul_cardG. rewrite -(Lagrange sHG) -(LagrangeI K H) mulnAC setIC -mulnA. rewrite !leq_pmul2l ?cardG_gt0 // dvdn_leq // -(Gauss_dvdr _ co_iG_HK). by rewrite -(indexgI K) Lagrange_index ?indexgS ?subsetIl ?subsetIr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
coprime_index_mulG
subset_genA : A \subset <<A>>. Proof. rewrite [@generated]unlock; exact/bigcapsP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subset_gen
sub_genA B : A \subset B -> A \subset <<B>>. Proof. by move/subset_trans=> -> //; apply: subset_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sub_gen
mem_genx A : x \in A -> x \in <<A>>. Proof. exact: subsetP (subset_gen A) x. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_gen
generatedPx A : reflect (forall G, A \subset G -> x \in G) (x \in <<A>>). Proof. rewrite [@generated]unlock; exact: bigcapP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
generatedP
gen_subGA G : (<<A>> \subset G) = (A \subset G). Proof. apply/idP/idP=> [|sAG]; first exact: subset_trans (subset_gen A). by apply/subsetP=> x /generatedP; apply. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gen_subG
genGidG : <<G>> = G. Proof. by apply/eqP; rewrite eqEsubset gen_subG subset_gen andbT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genGid
genGidGG : <<G>>%G = G. Proof. by apply: val_inj; apply: genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genGidG
gen_set_idA : group_set A -> <<A>> = A. Proof. by move=> gA; apply: (genGid (group gA)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gen_set_id
genSA B : A \subset B -> <<A>> \subset <<B>>. Proof. by move=> sAB; rewrite gen_subG sub_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genS
gen0: <<set0>> = 1 :> {set gT}. Proof. by apply/eqP; rewrite eqEsubset sub1G gen_subG sub0set. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gen0
gen_expgsA : {n | <<A>> = (1 |: A) ^+ n}. Proof. set B := (1 |: A); pose N := #|gT|. have BsubG n : B ^+ n \subset <<A>>. by elim: n => [|n IHn]; rewrite ?expgS ?mul_subG ?subUset ?sub1G ?subset_gen. have B_1 n : 1 \in B ^+ n. by elim: n => [|n IHn]; rewrite ?set11 // expgS mulUg mul1g inE IHn. case: (pickP (fun i : 'I_N => B ^+ i.+1 \subset B ^+ i)) => [n fixBn | no_fix]. exists n; apply/eqP; rewrite eqEsubset BsubG andbT. rewrite -[B ^+ n]gen_set_id ?genS ?subsetUr //. by apply: subset_trans fixBn; rewrite expgS mulUg subsetU ?mulg_subl ?orbT. rewrite /group_set B_1 /=. elim: {2}(n : nat) => [|m IHm]; first by rewrite mulg1. by apply: subset_trans fixBn; rewrite !expgSr mulgA mulSg. suffices: N < #|B ^+ N| by rewrite ltnNge max_card. have [] := ubnPgeq N; elim=> [|n IHn] lt_nN; first by rewrite cards1. apply: leq_ltn_trans (IHn (ltnW lt_nN)) (proper_card _). by rewrite /proper (no_fix (Ordinal lt_nN)) expgS mulUg mul1g subsetUl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gen_expgs
gen_prodgPA x : reflect (exists n, exists2 c, forall i : 'I_n, c i \in A & x = \prod_i c i) (x \in <<A>>). Proof. apply: (iffP idP) => [|[n [c Ac ->]]]; last first. by apply: group_prod => i _; rewrite mem_gen ?Ac. have [n ->] := gen_expgs A; rewrite /natexp Monoid.iteropE /=. rewrite -[n]card_ord -big_const => /prodsgP[/= c Ac def_x]. have{Ac def_x} ->: x = \prod_(i | c i \in A) c i. rewrite big_mkcond {x}def_x; apply: eq_bigr => i _. by case/setU1P: (Ac i isT) => -> //; rewrite if_same. have [e <- [_ /= mem_e] _] := big_enumP [preim c of A]. pose t := in_tuple e; rewrite -[e]/(val t) big_tuple. by exists (size e), (c \o tnth t) => // i; rewrite -mem_e mem_tnth. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gen_prodgP
genDA B : A \subset <<A :\: B>> -> <<A :\: B>> = <<A>>. Proof. by move=> sAB; apply/eqP; rewrite eqEsubset genS (subsetDl, gen_subG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genD
genVA : <<A^-1>> = <<A>>. Proof. apply/eqP; rewrite eqEsubset !gen_subG -!(invSg _ <<_>>) invgK. by rewrite !invGid !subset_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genV
genJA z : <<A :^z>> = <<A>> :^ z. Proof. by apply/eqP; rewrite eqEsubset sub_conjg !gen_subG conjSg -?sub_conjg !sub_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genJ
conjYgA B z : (A <*> B) :^z = A :^ z <*> B :^ z. Proof. by rewrite -genJ conjUg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjYg
genD1A x : x \in <<A :\ x>> -> <<A :\ x>> = <<A>>. Proof. move=> gA'x; apply/eqP; rewrite eqEsubset genS; last by rewrite subsetDl. rewrite gen_subG; apply/subsetP=> y Ay. by case: (y =P x) => [-> //|]; move/eqP=> nyx; rewrite mem_gen // !inE nyx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genD1
genD1idA : <<A^#>> = <<A>>. Proof. by rewrite genD1 ?group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genD1id
joingT:= (@joing gT) (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joingT
joinGT:= (@joinG gT) (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joinGT
joingEA B : A <*> B = <<A :|: B>>. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joingE
joinGEG H : (G * H)%G = (G <*> H)%G. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joinGE
joingC: commutative joingT. Proof. by move=> A B; rewrite /joing setUC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joingC
joing_idrA B : A <*> <<B>> = A <*> B. Proof. apply/eqP; rewrite eqEsubset gen_subG subUset gen_subG /=. by rewrite -subUset subset_gen genS // setUS // subset_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_idr
joing_idlA B : <<A>> <*> B = A <*> B. Proof. by rewrite -!(joingC B) joing_idr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_idl
joing_sublA B : A \subset A <*> B. Proof. by rewrite sub_gen ?subsetUl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_subl
joing_subrA B : B \subset A <*> B. Proof. by rewrite sub_gen ?subsetUr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_subr
join_subGA B G : (A <*> B \subset G) = (A \subset G) && (B \subset G). Proof. by rewrite gen_subG subUset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
join_subG
joing_idPlG A : reflect (G <*> A = G) (A \subset G). Proof. apply: (iffP idP) => [sHG | <-]; last by rewrite joing_subr. by rewrite joingE (setUidPl sHG) genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_idPl
joing_idPrA G : reflect (A <*> G = G) (A \subset G). Proof. by rewrite joingC; apply: joing_idPl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_idPr
joing_subPA B G : reflect (A \subset G /\ B \subset G) (A <*> B \subset G). Proof. by rewrite join_subG; apply: andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_subP
joing_subA B C : A <*> B = C -> A \subset C /\ B \subset C. Proof. by move <-; apply/joing_subP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_sub
genDUA B C : A \subset C -> <<C :\: A>> = <<B>> -> <<A :|: B>> = <<C>>. Proof. move=> sAC; rewrite -joingE -joing_idr => <- {B}; rewrite joing_idr. by congr <<_>>; rewrite setDE setUIr setUCr setIT; apply/setUidPr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genDU
joingA: associative joingT. Proof. by move=> A B C; rewrite joing_idl joing_idr /joing setUA. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joingA
joing1GG : 1 <*> G = G. Proof. by rewrite -gen0 joing_idl /joing set0U genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing1G
joingG1G : G <*> 1 = G. Proof. by rewrite joingC joing1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joingG1
genM_joinG H : <<G * H>> = G <*> H. Proof. apply/eqP; rewrite eqEsubset gen_subG /= -{1}[G <*> H]mulGid. rewrite genS; last by rewrite subUset mulG_subl mulG_subr. by rewrite mulgSS ?(sub_gen, subsetUl, subsetUr). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
genM_join
mulG_subGG H K : (G * H \subset K) = (G \subset K) && (H \subset K). Proof. by rewrite -gen_subG genM_join join_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulG_subG
mulGsubPK H G : reflect (K \subset G /\ H \subset G) (K * H \subset G). Proof. by rewrite mulG_subG; apply: andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGsubP
mulG_subK H A : K * H = A -> K \subset A /\ H \subset A. Proof. by move <-; rewrite mulG_subl mulG_subr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulG_sub
trivMgG H : (G * H == 1) = (G :==: 1) && (H :==: 1). Proof. by rewrite !eqEsubset -{2}[1]mulGid mulgSS ?sub1G // !andbT mulG_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
trivMg
comm_joingEG H : commute G H -> G <*> H = G * H. Proof. by move/comm_group_setP=> gGH; rewrite -genM_join; apply: (genGid (group gGH)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
comm_joingE
joinGC: commutative joinGT. Proof. by move=> G H; apply: val_inj; apply: joingC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joinGC
joinGA: associative joinGT. Proof. by move=> G H K; apply: val_inj; apply: joingA. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joinGA
join1G: left_id 1%G joinGT. Proof. by move=> G; apply: val_inj; apply: joing1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
join1G
joinG1: right_id 1%G joinGT. Proof. by move=> G; apply: val_inj; apply: joingG1. Qed. HB.instance Definition _ := Monoid.isComLaw.Build {group gT} 1%G joinGT joinGA joinGC join1G.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joinG1
bigprodGEgenI r (P : pred I) (F : I -> {set gT}) : (\prod_(i <- r | P i) <<F i>>)%G :=: << \bigcup_(i <- r | P i) F i >>. Proof. elim/big_rec2: _ => /= [|i A _ _ ->]; first by rewrite gen0. by rewrite joing_idl joing_idr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
bigprodGEgen
bigprodGEI r (P : pred I) (F : I -> {group gT}) : (\prod_(i <- r | P i) F i)%G :=: << \bigcup_(i <- r | P i) F i >>. Proof. rewrite -bigprodGEgen /=; apply: congr_group. by apply: eq_bigr => i _; rewrite genGidG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
bigprodGE
mem_commgA B x y : x \in A -> y \in B -> [~ x, y] \in [~: A, B]. Proof. by move=> Ax By; rewrite mem_gen ?imset2_f. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_commg
commSgA B C : A \subset B -> [~: A, C] \subset [~: B, C]. Proof. by move=> sAC; rewrite genS ?imset2S. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commSg
commgSA B C : B \subset C -> [~: A, B] \subset [~: A, C]. Proof. by move=> sBC; rewrite genS ?imset2S. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commgS
commgSSA B C D : A \subset B -> C \subset D -> [~: A, C] \subset [~: B, D]. Proof. by move=> sAB sCD; rewrite genS ?imset2S. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commgSS
der1_subGG : [~: G, G] \subset G. Proof. by rewrite gen_subG; apply/subsetP=> _ /imset2P[x y Gx Gy ->]; apply: groupR. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
der1_subG
comm_subGA B G : A \subset G -> B \subset G -> [~: A, B] \subset G. Proof. by move=> sAG sBG; apply: subset_trans (der1_subG G); apply: commgSS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
comm_subG
commGCA B : [~: A, B] = [~: B, A]. Proof. rewrite -[[~: A, B]]genV; congr <<_>>; apply/setP=> z; rewrite inE. by apply/imset2P/imset2P=> [] [x y Ax Ay]; last rewrite -{1}(invgK z); rewrite -invg_comm => /invg_inj->; exists y x. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commGC
conjsRgA B x : [~: A, B] :^ x = [~: A :^ x, B :^ x]. Proof. wlog suffices: A B x / [~: A, B] :^ x \subset [~: A :^ x, B :^ x]. move=> subJ; apply/eqP; rewrite eqEsubset subJ /= -sub_conjgV. by rewrite -{2}(conjsgK x A) -{2}(conjsgK x B). rewrite -genJ gen_subG; apply/subsetP=> _ /imsetP[_ /imset2P[y z Ay Bz ->] ->]. by rewrite conjRg mem_commg ?memJ_conjg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjsRg
cycle1: <[1]> = [1 gT]. Proof. exact: genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle1
order1: #[1 : gT] = 1%N. Proof. by rewrite /order cycle1 cards1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
order1
cycle_idx : x \in <[x]>. Proof. by rewrite mem_gen // set11. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle_id
mem_cyclex i : x ^+ i \in <[x]>. Proof. by rewrite groupX // cycle_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_cycle
cycle_subGx G : (<[x]> \subset G) = (x \in G). Proof. by rewrite gen_subG sub1set. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle_subG
cycle_eq1x : (<[x]> == 1) = (x == 1). Proof. by rewrite eqEsubset sub1G andbT cycle_subG inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle_eq1
orderEx : #[x] = #|<[x]>|. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
orderE
order_eq1x : (#[x] == 1%N) = (x == 1). Proof. by rewrite -trivg_card1 cycle_eq1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
order_eq1
order_gt1x : (#[x] > 1) = (x != 1). Proof. by rewrite ltnNge -trivg_card_le1 cycle_eq1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
order_gt1
cycle_trajectx : <[x]> =i traject (mul x) 1 #[x]. Proof. set t := _ 1; apply: fsym; apply/subset_cardP; last first. by apply/subsetP=> _ /trajectP[i _ ->]; rewrite -iteropE mem_cycle. rewrite (card_uniqP _) ?size_traject //; case def_n: #[_] => // [n]. rewrite looping_uniq; apply: contraL (card_size (t n)) => /loopingP t_xi. rewrite -ltnNge size_traject -def_n ?subset_leq_card //. rewrite -(eq_subset_r (in_set _)) {}/t; set G := finset _. rewrite -[x]mulg1 -[G]gen_set_id ?genS ?sub1set ?inE ?(t_xi 1%N)//. apply/group_setP; split=> [|y z]; rewrite !inE ?(t_xi 0) //. by do 2!case/trajectP=> ? _ ->; rewrite -!iteropE -expgD [x ^+ _]iteropE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle_traject
cycle2gx : #[x] = 2 -> <[x]> = [set 1; x]. Proof. by move=> ox; apply/setP=> y; rewrite cycle_traject ox !inE mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle2g
cyclePminx y : y \in <[x]> -> {i | i < #[x] & y = x ^+ i}. Proof. rewrite cycle_traject; set tx := traject _ _ #[x] => tx_y; pose i := index y tx. have lt_i_x : i < #[x] by rewrite -index_mem size_traject in tx_y. by exists i; rewrite // [x ^+ i]iteropE /= -(nth_traject _ lt_i_x) nth_index. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cyclePmin
cyclePx y : reflect (exists i, y = x ^+ i) (y \in <[x]>). Proof. by apply: (iffP idP) => [/cyclePmin[i _]|[i ->]]; [exists i | apply: mem_cycle]. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycleP
expg_orderx : x ^+ #[x] = 1. Proof. have: uniq (traject (mul x) 1 #[x]). by apply/card_uniqP; rewrite size_traject -(eq_card (cycle_traject x)). case/cyclePmin: (mem_cycle x #[x]) => [] [//|i] ltix. rewrite -(subnKC ltix) addSnnS /= expgD; move: (_ - _) => j x_j1. case/andP=> /trajectP[]; exists j; first exact: leq_addl. by apply: (mulgI (x ^+ i.+1)); rewrite -iterSr iterS -iteropE -expgS mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
expg_order
expg_modp k x : x ^+ p = 1 -> x ^+ (k %% p) = x ^+ k. Proof. move=> xp. by rewrite {2}(divn_eq k p) expgD mulnC expgM xp expg1n mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
expg_mod
expg_mod_orderx i : x ^+ (i %% #[x]) = x ^+ i. Proof. by rewrite expg_mod // expg_order. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
expg_mod_order
invg_expgx : x^-1 = x ^+ #[x].-1. Proof. by apply/eqP; rewrite eq_invg_mul -expgS prednK ?expg_order. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
invg_expg
invg2idx : #[x] = 2 -> x^-1 = x. Proof. by move=> ox; rewrite invg_expg ox. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
invg2id
cycleXx i : <[x ^+ i]> \subset <[x]>. Proof. by rewrite cycle_subG; apply: mem_cycle. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycleX
cycleVx : <[x^-1]> = <[x]>. Proof. by apply/eqP; rewrite eq_sym eqEsubset !cycle_subG groupV -groupV !cycle_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycleV
orderVx : #[x^-1] = #[x]. Proof. by rewrite /order cycleV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
orderV
cycleJx y : <[x ^ y]> = <[x]> :^ y. Proof. by rewrite -genJ conjg_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycleJ
orderJx y : #[x ^ y] = #[x]. Proof. by rewrite /order cycleJ cardJg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
orderJ
normPx A : reflect (A :^ x = A) (x \in 'N(A)). Proof. suffices ->: (x \in 'N(A)) = (A :^ x == A) by apply: eqP. by rewrite eqEcard cardJg leqnn andbT inE. Qed. Arguments normP {x A}.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normP
group_set_normaliserA : group_set 'N(A). Proof. apply/group_setP; split=> [|x y Nx Ny]; rewrite inE ?conjsg1 //. by rewrite conjsgM !(normP _). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_set_normaliser
normaliser_groupA := group (group_set_normaliser A).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normaliser_group
normsPA B : reflect {in A, normalised B} (A \subset 'N(B)). Proof. apply: (iffP subsetP) => nBA x Ax; last by rewrite inE nBA //. by apply/normP; apply: nBA. Qed. Arguments normsP {A B}.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsP
memJ_normx y A : x \in 'N(A) -> (y ^ x \in A) = (y \in A). Proof. by move=> Nx; rewrite -{1}(normP Nx) memJ_conjg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
memJ_norm
norms_cyclex y : (<[y]> \subset 'N(<[x]>)) = (x ^ y \in <[x]>). Proof. by rewrite cycle_subG inE -cycleJ cycle_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_cycle
norm1: 'N(1) = setT :> {set gT}. Proof. by apply/setP=> x; rewrite !inE conjs1g subxx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm1
norms1A : A \subset 'N(1). Proof. by rewrite norm1 subsetT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms1
normCsA : 'N(~: A) = 'N(A). Proof. by apply/setP=> x; rewrite -groupV !inE conjCg setCS sub_conjg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normCs
normGG : G \subset 'N(G). Proof. by apply/normsP; apply: conjGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normG