fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
normT: 'N([set: gT]) = [set: gT]. Proof. by apply/eqP; rewrite -subTset normG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normT
normsGA G : A \subset G -> A \subset 'N(G). Proof. by move=> sAG; apply: subset_trans (normG G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsG
normCA B : A \subset 'N(B) -> commute A B. Proof. move/subsetP=> nBA; apply/setP=> u. apply/mulsgP/mulsgP=> [[x y Ax By] | [y x By Ax]] -> {u}. by exists (y ^ x^-1) x; rewrite -?conjgCV // memJ_norm // groupV nBA. by exists x (y ^ x); rewrite -?conjgC // memJ_norm // nBA. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normC
norm_joinElG H : G \subset 'N(H) -> G <*> H = G * H. Proof. by move/normC/comm_joingE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm_joinEl
norm_joinErG H : H \subset 'N(G) -> G <*> H = G * H. Proof. by move/normC=> cHG; apply: comm_joingE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm_joinEr
norm_rlcosetG x : x \in 'N(G) -> G :* x = x *: G. Proof. by rewrite -sub1set => /normC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm_rlcoset
rcoset_mulG x y : x \in 'N(G) -> (G :* x) * (G :* y) = G :* (x * y). Proof. move/norm_rlcoset=> GxxG. by rewrite mulgA -(mulgA _ _ G) -GxxG mulgA mulGid -mulgA mulg_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_mul
normJA x : 'N(A :^ x) = 'N(A) :^ x. Proof. by apply/setP=> y; rewrite mem_conjg !inE -conjsgM conjgCV conjsgM conjSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normJ
norm_conj_normx A B : x \in 'N(A) -> (A \subset 'N(B :^ x)) = (A \subset 'N(B)). Proof. by move=> Nx; rewrite normJ -sub_conjgV (normP _) ?groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm_conj_norm
norm_genA : 'N(A) \subset 'N(<<A>>). Proof. by apply/normsP=> x Nx; rewrite -genJ (normP Nx). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm_gen
class_normx G : G \subset 'N(x ^: G). Proof. by apply/normsP=> y; apply: classGidr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_norm
class_normalx G : x \in G -> x ^: G <| G. Proof. by move=> Gx; rewrite /normal class_norm class_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_normal
class_sub_normG A x : G \subset 'N(A) -> (x ^: G \subset A) = (x \in A). Proof. move=> nAG; apply/subsetP/idP=> [-> // | Ax xy]; first exact: class_refl. by case/imsetP=> y Gy ->; rewrite memJ_norm ?(subsetP nAG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_sub_norm
class_support_normA G : G \subset 'N(class_support A G). Proof. by apply/normsP; apply: class_supportGidr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_support_norm
class_support_sub_normA B G : A \subset G -> B \subset 'N(G) -> class_support A B \subset G. Proof. move=> sAG nGB; rewrite class_supportEr. by apply/bigcupsP=> x Bx; rewrite -(normsP nGB x Bx) conjSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_support_sub_norm
norms_gen: A \subset 'N(<<B>>). Proof. exact: subset_trans nBA (norm_gen B). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_gen
norms_norm: A \subset 'N('N(B)). Proof. by apply/normsP=> x Ax; rewrite -normJ (normsP nBA). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_norm
normsI: A \subset 'N(B :&: C). Proof. by apply/normsP=> x Ax; rewrite conjIg !(normsP _ x Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsI
normsU: A \subset 'N(B :|: C). Proof. by apply/normsP=> x Ax; rewrite conjUg !(normsP _ x Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsU
normsIs: B \subset 'N(D) -> A :&: B \subset 'N(C :&: D). Proof. move/normsP=> nDB; apply/normsP=> x; case/setIP=> Ax Bx. by rewrite conjIg (normsP nCA) ?nDB. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsIs
normsD: A \subset 'N(B :\: C). Proof. by apply/normsP=> x Ax; rewrite conjDg !(normsP _ x Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsD
normsM: A \subset 'N(B * C). Proof. by apply/normsP=> x Ax; rewrite conjsMg !(normsP _ x Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsM
normsY: A \subset 'N(B <*> C). Proof. by apply/normsP=> x Ax; rewrite -genJ conjUg !(normsP _ x Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsY
normsR: A \subset 'N([~: B, C]). Proof. by apply/normsP=> x Ax; rewrite conjsRg !(normsP _ x Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsR
norms_class_support: A \subset 'N(class_support B C). Proof. apply/subsetP=> x Ax; rewrite inE sub_conjg class_supportEr. apply/bigcupsP=> y Cy; rewrite -sub_conjg -conjsgM conjgC conjsgM. by rewrite (normsP nBA) // bigcup_sup ?memJ_norm ?(subsetP nCA). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_class_support
normsIGA B G : A \subset 'N(B) -> A :&: G \subset 'N(B :&: G). Proof. by move/normsIs->; rewrite ?normG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsIG
normsGIA B G : A \subset 'N(B) -> G :&: A \subset 'N(G :&: B). Proof. by move=> nBA; rewrite !(setIC G) normsIG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsGI
norms_bigcapI r (P : pred I) A (B_ : I -> {set gT}) : A \subset \bigcap_(i <- r | P i) 'N(B_ i) -> A \subset 'N(\bigcap_(i <- r | P i) B_ i). Proof. elim/big_rec2: _ => [|i B N _ IH /subsetIP[nBiA /IH]]; last exact: normsI. by rewrite normT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_bigcap
norms_bigcupI r (P : pred I) A (B_ : I -> {set gT}) : A \subset \bigcap_(i <- r | P i) 'N(B_ i) -> A \subset 'N(\bigcup_(i <- r | P i) B_ i). Proof. move=> nBA; rewrite -normCs setC_bigcup norms_bigcap //. by rewrite (eq_bigr _ (fun _ _ => normCs _)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_bigcup
normsD1A B : A \subset 'N(B) -> A \subset 'N(B^#). Proof. by move/normsD->; rewrite ?norms1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normsD1
normD1A : 'N(A^#) = 'N(A). Proof. apply/eqP; rewrite eqEsubset normsD1 //. rewrite -{2}(setID A 1) setIC normsU //; apply/normsP=> x _; apply/setP=> y. by rewrite conjIg conjs1g !inE mem_conjg; case: eqP => // ->; rewrite conj1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normD1
normalPA B : reflect (A \subset B /\ {in B, normalised A}) (A <| B). Proof. by apply: (iffP andP)=> [] [sAB]; move/normsP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalP
normal_subA B : A <| B -> A \subset B. Proof. by case/andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normal_sub
normal_normA B : A <| B -> B \subset 'N(A). Proof. by case/andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normal_norm
normalSG H K : K \subset H -> H \subset G -> K <| G -> K <| H. Proof. by move=> sKH sHG /andP[_ nKG]; rewrite /(K <| _) sKH (subset_trans sHG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalS
normal1G : 1 <| G. Proof. by rewrite /normal sub1set group1 norms1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normal1
normal_reflG : G <| G. Proof. by rewrite /(G <| _) normG subxx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normal_refl
normalGG : G <| 'N(G). Proof. by rewrite /(G <| _) normG subxx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalG
normalSGG H : H \subset G -> H <| 'N_G(H). Proof. by move=> sHG; rewrite /normal subsetI sHG normG subsetIr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalSG
normalJA B x : (A :^ x <| B :^ x) = (A <| B). Proof. by rewrite /normal normJ !conjSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalJ
normalMG A B : A <| G -> B <| G -> A * B <| G. Proof. by case/andP=> sAG nAG /andP[sBG nBG]; rewrite /normal mul_subG ?normsM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalM
normalYG A B : A <| G -> B <| G -> A <*> B <| G. Proof. by case/andP=> sAG ? /andP[sBG ?]; rewrite /normal join_subG sAG sBG ?normsY. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalY
normalYlG H : (H <| H <*> G) = (G \subset 'N(H)). Proof. by rewrite /normal joing_subl join_subG normG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalYl
normalYrG H : (H <| G <*> H) = (G \subset 'N(H)). Proof. by rewrite joingC normalYl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalYr
normalIG A B : A <| G -> B <| G -> A :&: B <| G. Proof. by case/andP=> sAG nAG /andP[_ nBG]; rewrite /normal subIset ?sAG // normsI. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalI
norm_normalIG A : G \subset 'N(A) -> G :&: A <| G. Proof. by move=> nAG; rewrite /normal subsetIl normsI ?normG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norm_normalI
normalGIG H A : H \subset G -> A <| G -> H :&: A <| H. Proof. by move=> sHG /andP[_ nAG]; apply: norm_normalI (subset_trans sHG nAG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalGI
normal_subnormG H : (H <| 'N_G(H)) = (H \subset G). Proof. by rewrite /normal subsetIr subsetI normG !andbT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normal_subnorm
normalD1A G : (A^# <| G) = (A <| G). Proof. by rewrite /normal normD1 subDset (setUidPr (sub1G G)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
normalD1
gcore_subA G : gcore A G \subset A. Proof. by rewrite (bigcap_min 1) ?conjsg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gcore_sub
gcore_normA G : G \subset 'N(gcore A G). Proof. apply/subsetP=> x Gx; rewrite inE; apply/bigcapsP=> y Gy. by rewrite sub_conjg -conjsgM bigcap_inf ?groupM ?groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gcore_norm
gcore_normalA G : A \subset G -> gcore A G <| G. Proof. by move=> sAG; rewrite /normal gcore_norm (subset_trans (gcore_sub A G)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gcore_normal
gcore_maxA B G : B \subset A -> G \subset 'N(B) -> B \subset gcore A G. Proof. move=> sBA nBG; apply/bigcapsP=> y Gy. by rewrite -sub_conjgV (normsP nBG) ?groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gcore_max
sub_gcoreA B G : G \subset 'N(B) -> (B \subset gcore A G) = (B \subset A). Proof. move=> nBG; apply/idP/idP=> [sBAG | sBA]; last exact: gcore_max. exact: subset_trans (gcore_sub A G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sub_gcore
rcoset_index2G H x : H \subset G -> #|G : H| = 2 -> x \in G :\: H -> H :* x = G :\: H. Proof. move=> sHG indexHG => /setDP[Gx notHx]; apply/eqP. rewrite eqEcard -(leq_add2l #|G :&: H|) cardsID -(LagrangeI G H) indexHG muln2. rewrite (setIidPr sHG) card_rcoset addnn leqnn andbT. apply/subsetP=> _ /rcosetP[y Hy ->]; apply/setDP. by rewrite !groupMl // (subsetP sHG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_index2
index2_normalG H : H \subset G -> #|G : H| = 2 -> H <| G. Proof. move=> sHG indexHG; rewrite /normal sHG; apply/subsetP=> x Gx. case Hx: (x \in H); first by rewrite inE conjGid. rewrite inE conjsgE mulgA -sub_rcosetV -invg_rcoset. by rewrite !(rcoset_index2 sHG) ?inE ?groupV ?Hx // invDg !invGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
index2_normal
cent1Px y : reflect (commute x y) (x \in 'C[y]). Proof. rewrite [x \in _]inE conjg_set1 sub1set !inE (sameP eqP conjg_fixP)commg1_sym. exact: commgP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent1P
cent1idx : x \in 'C[x]. Proof. exact/cent1P. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent1id
cent1Ex y : (x \in 'C[y]) = (x * y == y * x). Proof. by rewrite (sameP (cent1P x y) eqP). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent1E
cent1Cx y : (x \in 'C[y]) = (y \in 'C[x]). Proof. by rewrite !cent1E eq_sym. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent1C
centraliser_groupA : {group _} := Eval hnf in [group of 'C(A)].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centraliser_group
cent_set1x : 'C([set x]) = 'C[x]. Proof. by apply: big_pred1 => y /=; rewrite !inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_set1
cent1Jx y : 'C[x ^ y] = 'C[x] :^ y. Proof. by rewrite -conjg_set1 normJ. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent1J
centPA x : reflect (centralises x A) (x \in 'C(A)). Proof. by apply: (iffP bigcapP) => cxA y /cxA/cent1P. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centP
centsPA B : reflect {in A, centralised B} (A \subset 'C(B)). Proof. by apply: (iffP subsetP) => cAB x /cAB/centP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centsP
centsCA B : (A \subset 'C(B)) = (B \subset 'C(A)). Proof. by apply/centsP/centsP=> cAB x ? y ?; rewrite /commute -cAB. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centsC
cents1A : A \subset 'C(1). Proof. by rewrite centsC sub1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cents1
cent1T: 'C(1) = setT :> {set gT}. Proof. by apply/eqP; rewrite -subTset cents1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent1T
cent11T: 'C[1] = setT :> {set gT}. Proof. by rewrite -cent_set1 cent1T. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent11T
cent_subA : 'C(A) \subset 'N(A). Proof. apply/subsetP=> x /centP cAx; rewrite inE. by apply/subsetP=> _ /imsetP[y Ay ->]; rewrite /conjg -cAx ?mulKg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_sub
cents_normA B : A \subset 'C(B) -> A \subset 'N(B). Proof. by move=> cAB; apply: subset_trans (cent_sub B). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cents_norm
centCA B : A \subset 'C(B) -> commute A B. Proof. by move=> cAB; apply: normC (cents_norm cAB). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centC
cent_joinElG H : G \subset 'C(H) -> G <*> H = G * H. Proof. by move=> cGH; apply: norm_joinEl (cents_norm cGH). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_joinEl
cent_joinErG H : H \subset 'C(G) -> G <*> H = G * H. Proof. by move=> cGH; apply: norm_joinEr (cents_norm cGH). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_joinEr
centJA x : 'C(A :^ x) = 'C(A) :^ x. Proof. apply/setP=> y; rewrite mem_conjg; apply/centP/centP=> cAy z Az. apply: (conjg_inj x). by rewrite conjMg [in RHS]conjMg conjgKV cAy ?memJ_conjg. by apply: (conjg_inj x^-1); rewrite 2!conjMg cAy -?mem_conjg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centJ
cent_normA : 'N(A) \subset 'N('C(A)). Proof. by apply/normsP=> x nCx; rewrite -centJ (normP nCx). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_norm
norms_centA B : A \subset 'N(B) -> A \subset 'N('C(B)). Proof. by move=> nBA; apply: subset_trans nBA (cent_norm B). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
norms_cent
cent_normalA : 'C(A) <| 'N(A). Proof. by rewrite /(_ <| _) cent_sub cent_norm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_normal
centSA B : B \subset A -> 'C(A) \subset 'C(B). Proof. by move=> sAB; rewrite centsC (subset_trans sAB) 1?centsC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centS
centsSA B C : A \subset B -> C \subset 'C(B) -> C \subset 'C(A). Proof. by move=> sAB cCB; apply: subset_trans cCB (centS sAB). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centsS
centSSA B C D : A \subset C -> B \subset D -> C \subset 'C(D) -> A \subset 'C(B). Proof. by move=> sAC sBD cCD; apply: subset_trans (centsS sBD cCD). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centSS
centIA B : 'C(A) <*> 'C(B) \subset 'C(A :&: B). Proof. by rewrite gen_subG subUset !centS ?(subsetIl, subsetIr). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centI
centUA B : 'C(A :|: B) = 'C(A) :&: 'C(B). Proof. apply/eqP; rewrite eqEsubset subsetI 2?centS ?(subsetUl, subsetUr) //=. by rewrite centsC subUset -centsC subsetIl -centsC subsetIr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centU
cent_genA : 'C(<<A>>) = 'C(A). Proof. by apply/setP=> x; rewrite -!sub1set centsC gen_subG centsC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_gen
cent_cyclex : 'C(<[x]>) = 'C[x]. Proof. by rewrite cent_gen cent_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_cycle
sub_cent1A x : (A \subset 'C[x]) = (x \in 'C(A)). Proof. by rewrite -cent_cycle centsC cycle_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sub_cent1
cents_cyclex y : commute x y -> <[x]> \subset 'C(<[y]>). Proof. by move=> cxy; rewrite cent_cycle cycle_subG; apply/cent1P. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cents_cycle
cycle_abelianx : abelian <[x]>. Proof. exact: cents_cycle. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle_abelian
centYA B : 'C(A <*> B) = 'C(A) :&: 'C(B). Proof. by rewrite cent_gen centU. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centY
centMG H : 'C(G * H) = 'C(G) :&: 'C(H). Proof. by rewrite -cent_gen genM_join centY. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
centM
cent_classPx G : reflect (x ^: G = [set x]) (x \in 'C(G)). Proof. apply: (iffP (centP _ _)) => [Cx | Cx1 y Gy]. apply/eqP; rewrite eqEsubset sub1set class_refl andbT. by apply/subsetP=> _ /imsetP[y Gy ->]; rewrite !inE conjgE Cx ?mulKg. by apply/commgP/conjg_fixP/set1P; rewrite -Cx1; apply/imsetP; exists y. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cent_classP
commG1PA B : reflect ([~: A, B] = 1) (A \subset 'C(B)). Proof. apply: (iffP (centsP A B)) => [cAB | cAB1 x Ax y By]. apply/trivgP; rewrite gen_subG; apply/subsetP=> _ /imset2P[x y Ax Ay ->]. by rewrite inE; apply/commgP; apply: cAB. by apply/commgP; rewrite -in_set1 -[[set 1]]cAB1 mem_commg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commG1P
abelianEA : abelian A = (A \subset 'C(A)). Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelianE
abelian1: abelian [1 gT]. Proof. exact: sub1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelian1
abelianSA B : A \subset B -> abelian B -> abelian A. Proof. by move=> sAB; apply: centSS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelianS
abelianJA x : abelian (A :^ x) = abelian A. Proof. by rewrite /abelian centJ conjSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelianJ
abelian_genA : abelian <<A>> = abelian A. Proof. by rewrite /abelian cent_gen gen_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelian_gen
abelianYA B : abelian (A <*> B) = [&& abelian A, abelian B & B \subset 'C(A)]. Proof. rewrite /abelian join_subG /= centY !subsetI -!andbA; congr (_ && _). by rewrite centsC andbA andbb andbC. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelianY
abelianMG H : abelian (G * H) = [&& abelian G, abelian H & H \subset 'C(G)]. Proof. by rewrite -abelian_gen genM_join abelianY. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
abelianM
sub_abelian_cent: C \subset A -> A \subset 'C(C). Proof. by move=> sCA; rewrite centsC (subset_trans sCA). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sub_abelian_cent