fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
mem_rcosetsA x : (G :* x \in rcosets G A) = (x \in G * A).
Proof.
apply/rcosetsP/mulsgP=> [[a Aa /rcoset_eqP/rcosetP[g]] | ]; first by exists g a.
by case=> g a Gg Aa ->{x}; exists a; rewrite // rcosetM rcoset_id.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mem_rcosets
| |
mem_lcosetsA x : (x *: G \in lcosets G A) = (x \in A * G).
Proof.
rewrite -[LHS]memV_invg invg_lcoset invg_lcosets.
by rewrite -[RHS]memV_invg invMg invGid mem_rcosets.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mem_lcosets
| |
group_setJA x : group_set (A :^ x) = group_set A.
Proof. by rewrite /group_set mem_conjg conj1g -conjsMg conjSg. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_setJ
| |
group_set_conjGx : group_set (G :^ x).
Proof. by rewrite group_setJ groupP. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_set_conjG
| |
conjG_groupx := group (group_set_conjG x).
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
conjG_group
| |
conjGid: {in G, normalised G}.
Proof. by move=> x Gx; apply/setP=> y; rewrite mem_conjg groupJr ?groupV. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
conjGid
| |
conj_subGx A : x \in G -> A \subset G -> A :^ x \subset G.
Proof. by move=> Gx sAG; rewrite -(conjGid Gx) conjSg. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
conj_subG
| |
class1G: 1 ^: G = 1. Proof. exact: class1g group1. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class1G
| |
classes1: [1] \in classes G. Proof. by rewrite -class1G mem_classes. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
classes1
| |
classGidlx y : y \in G -> (x ^ y) ^: G = x ^: G.
Proof. by move=> Gy; rewrite -class_lcoset lcoset_id. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
classGidl
| |
classGidrx : {in G, normalised (x ^: G)}.
Proof. by move=> y Gy /=; rewrite -class_rcoset rcoset_id. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
classGidr
| |
class_reflx : x \in x ^: G.
Proof. by apply/imsetP; exists 1; rewrite ?conjg1. Qed.
#[local] Hint Resolve class_refl : core.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_refl
| |
class_eqPx y : reflect (x ^: G = y ^: G) (x \in y ^: G).
Proof.
by apply: (iffP idP) => [/imsetP[z Gz ->] | <-]; rewrite ?class_refl ?classGidl.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_eqP
| |
class_symx y : (x \in y ^: G) = (y \in x ^: G).
Proof. by apply/idP/idP=> /class_eqP->. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_sym
| |
class_translx y z : x \in y ^: G -> (x \in z ^: G) = (y \in z ^: G).
Proof. by rewrite -!(class_sym z) => /class_eqP->. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_transl
| |
class_transx y z : x \in y ^: G -> y \in z ^: G -> x \in z ^: G.
Proof. by move/class_transl->. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_trans
| |
repr_classx : {y | y \in G & repr (x ^: G) = x ^ y}.
Proof.
set z := repr _; have: #|[set y in G | z == x ^ y]| > 0.
have: z \in x ^: G by apply: (mem_repr x).
by case/imsetP=> y Gy ->; rewrite (cardD1 y) inE Gy eqxx.
by move/card_mem_repr; move: (repr _) => y /setIdP[Gy /eqP]; exists y.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
repr_class
| |
classG_eq1x : (x ^: G == 1) = (x == 1).
Proof.
apply/eqP/eqP=> [xG1 | ->]; last exact: class1G.
by have:= class_refl x; rewrite xG1 => /set1P.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
classG_eq1
| |
class_subGx A : x \in G -> A \subset G -> x ^: A \subset G.
Proof.
move=> Gx sAG; apply/subsetP=> _ /imsetP[y Ay ->].
by rewrite groupJ // (subsetP sAG).
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_subG
| |
repr_classesPxG :
reflect (repr xG \in G /\ xG = repr xG ^: G) (xG \in classes G).
Proof.
apply: (iffP imsetP) => [[x Gx ->] | []]; last by exists (repr xG).
by have [y Gy ->] := repr_class x; rewrite classGidl ?groupJ.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
repr_classesP
| |
mem_repr_classesxG : xG \in classes G -> repr xG \in xG.
Proof. by case/repr_classesP=> _ {2}->; apply: class_refl. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mem_repr_classes
| |
classes_gt0: 0 < #|classes G|.
Proof. by rewrite (cardsD1 1) classes1. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
classes_gt0
| |
classes_gt1: (#|classes G| > 1) = (G :!=: 1).
Proof.
rewrite (cardsD1 1) classes1 ltnS lt0n cards_eq0.
apply/set0Pn/trivgPn=> [[xG /setD1P[nt_xG]] | [x Gx ntx]].
by case/imsetP=> x Gx def_xG; rewrite def_xG classG_eq1 in nt_xG; exists x.
by exists (x ^: G); rewrite !inE classG_eq1 ntx; apply: imset_f.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
classes_gt1
| |
mem_class_supportA x : x \in A -> x \in class_support A G.
Proof. by move=> Ax; rewrite -[x]conjg1 memJ_class_support. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mem_class_support
| |
class_supportGidlA x :
x \in G -> class_support (A :^ x) G = class_support A G.
Proof.
by move=> Gx; rewrite -class_support_set1r -class_supportM lcoset_id.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_supportGidl
| |
class_supportGidrA : {in G, normalised (class_support A G)}.
Proof.
by move=> x Gx /=; rewrite -class_support_set1r -class_supportM rcoset_id.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_supportGidr
| |
class_support_subGA : A \subset G -> class_support A G \subset G.
Proof.
by move=> sAG; rewrite class_supportEr; apply/bigcupsP=> x Gx; apply: conj_subG.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_support_subG
| |
sub_class_supportA : A \subset class_support A G.
Proof. by rewrite class_supportEr (bigcup_max 1) ?conjsg1. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
sub_class_support
| |
class_support_id: class_support G G = G.
Proof.
by apply/eqP; rewrite eqEsubset sub_class_support class_support_subG.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_support_id
| |
class_supportD1A : (class_support A G)^# = cover (A^# :^: G).
Proof.
rewrite cover_imset class_supportEr setDE big_distrl /=.
by apply: eq_bigr => x _; rewrite -setDE conjD1g.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
class_supportD1
| |
subg_of: predArgType := Subg x & x \in G.
|
Inductive
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_of
| |
sgvalu := let: Subg x _ := u in x.
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
sgval
| |
subg_of_Sub:= Eval hnf in [isSub for sgval].
HB.instance Definition _ := subg_of_Sub.
#[hnf] HB.instance Definition _ := [Finite of subg_of by <:].
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_of_Sub
| |
subgPu : sgval u \in G.
Proof. exact: valP. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subgP
| |
subg_inj: injective sgval.
Proof. exact: val_inj. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_inj
| |
congr_subgu v : u = v -> sgval u = sgval v.
Proof. exact: congr1. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
congr_subg
| |
subg_one:= Subg group1.
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_one
| |
subg_invu := Subg (groupVr (subgP u)).
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_inv
| |
subg_mulu v := Subg (groupM (subgP u) (subgP v)).
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_mul
| |
subg_oneP: left_id subg_one subg_mul.
Proof. by move=> u; apply: val_inj; apply: mul1g. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_oneP
| |
subg_invP: left_inverse subg_one subg_inv subg_mul.
Proof. by move=> u; apply: val_inj; apply: mulVg. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_invP
| |
subg_mulP: associative subg_mul.
Proof. by move=> u v w; apply: val_inj; apply: mulgA. Qed.
HB.instance Definition _ := Finite_isGroup.Build subg_of
subg_mulP subg_oneP subg_invP.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_mulP
| |
sgvalM: {in setT &, {morph sgval : x y / x * y}}. Proof. by []. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
sgvalM
| |
valgM: {in setT &, {morph val : x y / (x : subg_of) * y >-> x * y}}.
Proof. by []. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
valgM
| |
subg: gT -> subg_of := insubd (1 : subg_of).
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg
| |
subgKx : x \in G -> val (subg x) = x.
Proof. by move=> Gx; rewrite insubdK. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subgK
| |
sgvalK: cancel sgval subg.
Proof. by case=> x Gx; apply: val_inj; apply: subgK. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
sgvalK
| |
subg_defaultx : (x \in G) = false -> val (subg x) = 1.
Proof. by move=> Gx; rewrite val_insubd Gx. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subg_default
| |
subgM: {in G &, {morph subg : x y / x * y}}.
Proof. by move=> x y Gx Gy; apply: val_inj; rewrite /= !subgK ?groupM. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subgM
| |
groupD1_injG H : G^# = H^# -> G :=: H.
Proof. by move/(congr1 (setU 1)); rewrite !setD1K. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
groupD1_inj
| |
invMGG H : (G * H)^-1 = H * G.
Proof. by rewrite invMg !invGid. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
invMG
| |
mulSGidG H : H \subset G -> H * G = G.
Proof. exact: mulSgGid (group1 H). Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mulSGid
| |
mulGSidG H : H \subset G -> G * H = G.
Proof. exact: mulGSgid (group1 H). Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mulGSid
| |
mulGidPlG H : reflect (G * H = G) (H \subset G).
Proof. by apply: (iffP idP) => [|<-]; [apply: mulGSid | apply: mulG_subr]. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mulGidPl
| |
mulGidPrG H : reflect (G * H = H) (G \subset H).
Proof. by apply: (iffP idP) => [|<-]; [apply: mulSGid | apply: mulG_subl]. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
mulGidPr
| |
comm_group_setPG H : reflect (commute G H) (group_set (G * H)).
Proof.
rewrite /group_set (subsetP (mulG_subl _ _)) ?group1 // andbC.
have <-: #|G * H| <= #|H * G| by rewrite -invMG card_invg.
by rewrite -mulgA mulGS mulgA mulSG -eqEcard eq_sym; apply: eqP.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
comm_group_setP
| |
card_lcosetsG H : #|lcosets H G| = #|G : H|.
Proof. by rewrite -card_invg invg_lcosets !invGid. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
card_lcosets
| |
group_modlA B G : A \subset G -> A * (B :&: G) = A * B :&: G.
Proof.
move=> sAG; apply/eqP; rewrite eqEsubset subsetI mulgS ?subsetIl //.
rewrite -{2}mulGid mulgSS ?subsetIr //.
apply/subsetP => _ /setIP[/mulsgP[a b Aa Bb ->] Gab].
by rewrite mem_mulg // inE Bb -(groupMl _ (subsetP sAG _ Aa)).
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_modl
| |
group_modrA B G : B \subset G -> (G :&: A) * B = G :&: A * B.
Proof.
move=> sBG; apply: invg_inj; rewrite !(invMg, invIg) invGid !(setIC G).
by rewrite group_modl // -invGid invSg.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_modr
| |
group_setIG H : group_set (G :&: H).
Proof.
apply/group_setP; split=> [|x y]; rewrite !inE ?group1 //.
by case/andP=> Gx Hx; rewrite !groupMl.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_setI
| |
setI_groupG H := group (group_setI G H).
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
setI_group
| |
group_set_bigcap: group_set (\bigcap_(i | P i) F i).
Proof.
by elim/big_rec: _ => [|i G _ gG]; rewrite -1?(insubdK 1%G gG) groupP.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_set_bigcap
| |
bigcap_group:= group group_set_bigcap.
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
bigcap_group
| |
group_set_generated(A : {set gT}) : group_set <<A>>.
Proof. by rewrite unlock group_set_bigcap. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
group_set_generated
| |
generated_groupA := group (group_set_generated A).
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
generated_group
| |
gcore_groupG A : {group _} := Eval hnf in [group of gcore G A].
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
gcore_group
| |
commutator_groupA B : {group _} := Eval hnf in [group of [~: A, B]].
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
commutator_group
| |
joing_groupA B : {group _} := Eval hnf in [group of A <*> B].
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
joing_group
| |
cycle_groupx : {group _} := Eval hnf in [group of <[x]>].
|
Canonical
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
cycle_group
| |
joinGG H := joing_group G H.
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
joinG
| |
subgroupsA := [set G : {group gT} | G \subset A].
|
Definition
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
subgroups
| |
order_gt0(x : gT) : 0 < #[x].
Proof. exact: cardG_gt0. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
order_gt0
| |
LagrangeIG H : (#|G :&: H| * #|G : H|)%N = #|G|.
Proof.
rewrite -[#|G|]sum1_card (partition_big_imset (rcoset H)) /=.
rewrite mulnC -sum_nat_const; apply: eq_bigr => _ /rcosetsP[x Gx ->].
rewrite -(card_rcoset _ x) -sum1_card; apply: eq_bigl => y.
by rewrite rcosetE (sameP eqP rcoset_eqP) group_modr ?sub1set // !inE.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
LagrangeI
| |
divgIG H : #|G| %/ #|G :&: H| = #|G : H|.
Proof. by rewrite -(LagrangeI G H) mulKn ?cardG_gt0. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
divgI
| |
divg_indexG H : #|G| %/ #|G : H| = #|G :&: H|.
Proof. by rewrite -(LagrangeI G H) mulnK. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
divg_index
| |
dvdn_indexgG H : #|G : H| %| #|G|.
Proof. by rewrite -(LagrangeI G H) dvdn_mull. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
dvdn_indexg
| |
LagrangeG H : H \subset G -> (#|H| * #|G : H|)%N = #|G|.
Proof. by move/setIidPr=> sHG; rewrite -{1}sHG LagrangeI. Qed.
|
Theorem
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
Lagrange
| |
cardSgG H : H \subset G -> #|H| %| #|G|.
Proof. by move/Lagrange <-; rewrite dvdn_mulr. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
cardSg
| |
lognSgp G H : G \subset H -> logn p #|G| <= logn p #|H|.
Proof. by move=> sGH; rewrite dvdn_leq_log ?cardSg. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
lognSg
| |
piSgG H : G \subset H -> {subset \pi(gval G) <= \pi(gval H)}.
Proof.
move=> sGH p; rewrite !mem_primes !cardG_gt0 => /and3P[-> _ pG].
exact: dvdn_trans (cardSg sGH).
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
piSg
| |
divgSG H : H \subset G -> #|G| %/ #|H| = #|G : H|.
Proof. by move/Lagrange <-; rewrite mulKn. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
divgS
| |
divg_indexSG H : H \subset G -> #|G| %/ #|G : H| = #|H|.
Proof. by move/Lagrange <-; rewrite mulnK. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
divg_indexS
| |
coprimeSgG H p : H \subset G -> coprime #|G| p -> coprime #|H| p.
Proof. by move=> sHG; apply: coprime_dvdl (cardSg sHG). Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
coprimeSg
| |
coprimegSG H p : H \subset G -> coprime p #|G| -> coprime p #|H|.
Proof. by move=> sHG; apply: coprime_dvdr (cardSg sHG). Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
coprimegS
| |
indexJgG H x : #|G :^ x : H :^ x| = #|G : H|.
Proof. by rewrite -!divgI -conjIg !cardJg. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexJg
| |
indexggG : #|G : G| = 1%N.
Proof. by rewrite -divgS // divnn cardG_gt0. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexgg
| |
rcosets_idG : rcosets G G = [set G : {set gT}].
Proof.
apply/esym/eqP; rewrite eqEcard sub1set [#|_|]indexgg cards1 andbT.
by apply/rcosetsP; exists 1; rewrite ?mulg1.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
rcosets_id
| |
Lagrange_indexG H K :
H \subset G -> K \subset H -> (#|G : H| * #|H : K|)%N = #|G : K|.
Proof.
move=> sHG sKH; apply/eqP; rewrite mulnC -(eqn_pmul2l (cardG_gt0 K)).
by rewrite mulnA !Lagrange // (subset_trans sKH).
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
Lagrange_index
| |
indexgIG H : #|G : G :&: H| = #|G : H|.
Proof. by rewrite -[RHS]divgI divgS ?subsetIl. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexgI
| |
indexgSG H K : H \subset K -> #|G : K| %| #|G : H|.
Proof.
move=> sHK; rewrite -(@dvdn_pmul2l #|G :&: K|) ?cardG_gt0 // LagrangeI.
by rewrite -(Lagrange (setIS G sHK)) mulnAC LagrangeI dvdn_mulr.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexgS
| |
indexSgG H K : H \subset K -> K \subset G -> #|K : H| %| #|G : H|.
Proof.
move=> sHK sKG; rewrite -(@dvdn_pmul2l #|H|) ?cardG_gt0 //.
by rewrite !Lagrange ?(cardSg, subset_trans sHK).
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexSg
| |
indexg_eq1G H : (#|G : H| == 1%N) = (G \subset H).
Proof.
rewrite eqn_leq -(leq_pmul2l (cardG_gt0 (G :&: H))) LagrangeI muln1.
by rewrite indexg_gt0 andbT (sameP setIidPl eqP) eqEcard subsetIl.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexg_eq1
| |
indexg_gt1G H : (#|G : H| > 1) = ~~ (G \subset H).
Proof. by rewrite -indexg_eq1 eqn_leq indexg_gt0 andbT -ltnNge. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexg_gt1
| |
index1gG H : H \subset G -> #|G : H| = 1%N -> H :=: G.
Proof. by move=> sHG iHG; apply/eqP; rewrite eqEsubset sHG -indexg_eq1 iHG. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
index1g
| |
indexg1G : #|G : 1| = #|G|.
Proof. by rewrite -divgS ?sub1G // cards1 divn1. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexg1
| |
indexMgG A : #|G * A : G| = #|A : G|.
Proof.
apply/eq_card/setP/eqP; rewrite eqEsubset andbC imsetS ?mulG_subr //.
by apply/subsetP=> _ /rcosetsP[x GAx ->]; rewrite mem_rcosets.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
indexMg
| |
rcosets_partition_mulG H : partition (rcosets H G) (H * G).
Proof.
set HG := H * G; have sGHG: {subset G <= HG} by apply/subsetP/mulG_subr.
have defHx x: x \in HG -> [set y in HG | rcoset H x == rcoset H y] = H :* x.
move=> HGx; apply/setP=> y; rewrite inE !rcosetE (sameP eqP rcoset_eqP).
by rewrite rcoset_sym; apply/andb_idl/subsetP; rewrite mulGS sub1set.
have:= preim_partitionP (rcoset H) HG; congr (partition _ _); apply/setP=> Hx.
apply/imsetP/idP=> [[x HGx ->] | ]; first by rewrite defHx // mem_rcosets.
by case/rcosetsP=> x /sGHG-HGx ->; exists x; rewrite ?defHx.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
rcosets_partition_mul
| |
rcosets_partitionG H : H \subset G -> partition (rcosets H G) G.
Proof. by move=> sHG; have:= rcosets_partition_mul G H; rewrite mulSGid. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
rcosets_partition
| |
LagrangeMlG H : (#|G| * #|H : G|)%N = #|G * H|.
Proof.
rewrite mulnC -(card_uniform_partition _ (rcosets_partition_mul H G)) //.
by move=> _ /rcosetsP[x Hx ->]; rewrite card_rcoset.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
LagrangeMl
| |
LagrangeMrG H : (#|G : H| * #|H|)%N = #|G * H|.
Proof. by rewrite mulnC LagrangeMl -card_invg invMg !invGid. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice",
"From mathcomp Require Import fintype div path tuple bigop prime finset",
"From mathcomp Require Export monoid"
] |
fingroup/fingroup.v
|
LagrangeMr
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.