fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mem_rcosetsA x : (G :* x \in rcosets G A) = (x \in G * A). Proof. apply/rcosetsP/mulsgP=> [[a Aa /rcoset_eqP/rcosetP[g]] | ]; first by exists g a. by case=> g a Gg Aa ->{x}; exists a; rewrite // rcosetM rcoset_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_rcosets
mem_lcosetsA x : (x *: G \in lcosets G A) = (x \in A * G). Proof. rewrite -[LHS]memV_invg invg_lcoset invg_lcosets. by rewrite -[RHS]memV_invg invMg invGid mem_rcosets. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_lcosets
group_setJA x : group_set (A :^ x) = group_set A. Proof. by rewrite /group_set mem_conjg conj1g -conjsMg conjSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_setJ
group_set_conjGx : group_set (G :^ x). Proof. by rewrite group_setJ groupP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_set_conjG
conjG_groupx := group (group_set_conjG x).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjG_group
conjGid: {in G, normalised G}. Proof. by move=> x Gx; apply/setP=> y; rewrite mem_conjg groupJr ?groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjGid
conj_subGx A : x \in G -> A \subset G -> A :^ x \subset G. Proof. by move=> Gx sAG; rewrite -(conjGid Gx) conjSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conj_subG
class1G: 1 ^: G = 1. Proof. exact: class1g group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class1G
classes1: [1] \in classes G. Proof. by rewrite -class1G mem_classes. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classes1
classGidlx y : y \in G -> (x ^ y) ^: G = x ^: G. Proof. by move=> Gy; rewrite -class_lcoset lcoset_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classGidl
classGidrx : {in G, normalised (x ^: G)}. Proof. by move=> y Gy /=; rewrite -class_rcoset rcoset_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classGidr
class_reflx : x \in x ^: G. Proof. by apply/imsetP; exists 1; rewrite ?conjg1. Qed. #[local] Hint Resolve class_refl : core.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_refl
class_eqPx y : reflect (x ^: G = y ^: G) (x \in y ^: G). Proof. by apply: (iffP idP) => [/imsetP[z Gz ->] | <-]; rewrite ?class_refl ?classGidl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_eqP
class_symx y : (x \in y ^: G) = (y \in x ^: G). Proof. by apply/idP/idP=> /class_eqP->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_sym
class_translx y z : x \in y ^: G -> (x \in z ^: G) = (y \in z ^: G). Proof. by rewrite -!(class_sym z) => /class_eqP->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_transl
class_transx y z : x \in y ^: G -> y \in z ^: G -> x \in z ^: G. Proof. by move/class_transl->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_trans
repr_classx : {y | y \in G & repr (x ^: G) = x ^ y}. Proof. set z := repr _; have: #|[set y in G | z == x ^ y]| > 0. have: z \in x ^: G by apply: (mem_repr x). by case/imsetP=> y Gy ->; rewrite (cardD1 y) inE Gy eqxx. by move/card_mem_repr; move: (repr _) => y /setIdP[Gy /eqP]; exists y. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
repr_class
classG_eq1x : (x ^: G == 1) = (x == 1). Proof. apply/eqP/eqP=> [xG1 | ->]; last exact: class1G. by have:= class_refl x; rewrite xG1 => /set1P. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classG_eq1
class_subGx A : x \in G -> A \subset G -> x ^: A \subset G. Proof. move=> Gx sAG; apply/subsetP=> _ /imsetP[y Ay ->]. by rewrite groupJ // (subsetP sAG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_subG
repr_classesPxG : reflect (repr xG \in G /\ xG = repr xG ^: G) (xG \in classes G). Proof. apply: (iffP imsetP) => [[x Gx ->] | []]; last by exists (repr xG). by have [y Gy ->] := repr_class x; rewrite classGidl ?groupJ. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
repr_classesP
mem_repr_classesxG : xG \in classes G -> repr xG \in xG. Proof. by case/repr_classesP=> _ {2}->; apply: class_refl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_repr_classes
classes_gt0: 0 < #|classes G|. Proof. by rewrite (cardsD1 1) classes1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classes_gt0
classes_gt1: (#|classes G| > 1) = (G :!=: 1). Proof. rewrite (cardsD1 1) classes1 ltnS lt0n cards_eq0. apply/set0Pn/trivgPn=> [[xG /setD1P[nt_xG]] | [x Gx ntx]]. by case/imsetP=> x Gx def_xG; rewrite def_xG classG_eq1 in nt_xG; exists x. by exists (x ^: G); rewrite !inE classG_eq1 ntx; apply: imset_f. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classes_gt1
mem_class_supportA x : x \in A -> x \in class_support A G. Proof. by move=> Ax; rewrite -[x]conjg1 memJ_class_support. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_class_support
class_supportGidlA x : x \in G -> class_support (A :^ x) G = class_support A G. Proof. by move=> Gx; rewrite -class_support_set1r -class_supportM lcoset_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_supportGidl
class_supportGidrA : {in G, normalised (class_support A G)}. Proof. by move=> x Gx /=; rewrite -class_support_set1r -class_supportM rcoset_id. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_supportGidr
class_support_subGA : A \subset G -> class_support A G \subset G. Proof. by move=> sAG; rewrite class_supportEr; apply/bigcupsP=> x Gx; apply: conj_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_support_subG
sub_class_supportA : A \subset class_support A G. Proof. by rewrite class_supportEr (bigcup_max 1) ?conjsg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sub_class_support
class_support_id: class_support G G = G. Proof. by apply/eqP; rewrite eqEsubset sub_class_support class_support_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_support_id
class_supportD1A : (class_support A G)^# = cover (A^# :^: G). Proof. rewrite cover_imset class_supportEr setDE big_distrl /=. by apply: eq_bigr => x _; rewrite -setDE conjD1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_supportD1
subg_of: predArgType := Subg x & x \in G.
Inductive
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_of
sgvalu := let: Subg x _ := u in x.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sgval
subg_of_Sub:= Eval hnf in [isSub for sgval]. HB.instance Definition _ := subg_of_Sub. #[hnf] HB.instance Definition _ := [Finite of subg_of by <:].
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_of_Sub
subgPu : sgval u \in G. Proof. exact: valP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subgP
subg_inj: injective sgval. Proof. exact: val_inj. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_inj
congr_subgu v : u = v -> sgval u = sgval v. Proof. exact: congr1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
congr_subg
subg_one:= Subg group1.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_one
subg_invu := Subg (groupVr (subgP u)).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_inv
subg_mulu v := Subg (groupM (subgP u) (subgP v)).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_mul
subg_oneP: left_id subg_one subg_mul. Proof. by move=> u; apply: val_inj; apply: mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_oneP
subg_invP: left_inverse subg_one subg_inv subg_mul. Proof. by move=> u; apply: val_inj; apply: mulVg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_invP
subg_mulP: associative subg_mul. Proof. by move=> u v w; apply: val_inj; apply: mulgA. Qed. HB.instance Definition _ := Finite_isGroup.Build subg_of subg_mulP subg_oneP subg_invP.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_mulP
sgvalM: {in setT &, {morph sgval : x y / x * y}}. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sgvalM
valgM: {in setT &, {morph val : x y / (x : subg_of) * y >-> x * y}}. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
valgM
subg: gT -> subg_of := insubd (1 : subg_of).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg
subgKx : x \in G -> val (subg x) = x. Proof. by move=> Gx; rewrite insubdK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subgK
sgvalK: cancel sgval subg. Proof. by case=> x Gx; apply: val_inj; apply: subgK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sgvalK
subg_defaultx : (x \in G) = false -> val (subg x) = 1. Proof. by move=> Gx; rewrite val_insubd Gx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subg_default
subgM: {in G &, {morph subg : x y / x * y}}. Proof. by move=> x y Gx Gy; apply: val_inj; rewrite /= !subgK ?groupM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subgM
groupD1_injG H : G^# = H^# -> G :=: H. Proof. by move/(congr1 (setU 1)); rewrite !setD1K. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupD1_inj
invMGG H : (G * H)^-1 = H * G. Proof. by rewrite invMg !invGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
invMG
mulSGidG H : H \subset G -> H * G = G. Proof. exact: mulSgGid (group1 H). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulSGid
mulGSidG H : H \subset G -> G * H = G. Proof. exact: mulGSgid (group1 H). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGSid
mulGidPlG H : reflect (G * H = G) (H \subset G). Proof. by apply: (iffP idP) => [|<-]; [apply: mulGSid | apply: mulG_subr]. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGidPl
mulGidPrG H : reflect (G * H = H) (G \subset H). Proof. by apply: (iffP idP) => [|<-]; [apply: mulSGid | apply: mulG_subl]. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGidPr
comm_group_setPG H : reflect (commute G H) (group_set (G * H)). Proof. rewrite /group_set (subsetP (mulG_subl _ _)) ?group1 // andbC. have <-: #|G * H| <= #|H * G| by rewrite -invMG card_invg. by rewrite -mulgA mulGS mulgA mulSG -eqEcard eq_sym; apply: eqP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
comm_group_setP
card_lcosetsG H : #|lcosets H G| = #|G : H|. Proof. by rewrite -card_invg invg_lcosets !invGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
card_lcosets
group_modlA B G : A \subset G -> A * (B :&: G) = A * B :&: G. Proof. move=> sAG; apply/eqP; rewrite eqEsubset subsetI mulgS ?subsetIl //. rewrite -{2}mulGid mulgSS ?subsetIr //. apply/subsetP => _ /setIP[/mulsgP[a b Aa Bb ->] Gab]. by rewrite mem_mulg // inE Bb -(groupMl _ (subsetP sAG _ Aa)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_modl
group_modrA B G : B \subset G -> (G :&: A) * B = G :&: A * B. Proof. move=> sBG; apply: invg_inj; rewrite !(invMg, invIg) invGid !(setIC G). by rewrite group_modl // -invGid invSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_modr
group_setIG H : group_set (G :&: H). Proof. apply/group_setP; split=> [|x y]; rewrite !inE ?group1 //. by case/andP=> Gx Hx; rewrite !groupMl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_setI
setI_groupG H := group (group_setI G H).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
setI_group
group_set_bigcap: group_set (\bigcap_(i | P i) F i). Proof. by elim/big_rec: _ => [|i G _ gG]; rewrite -1?(insubdK 1%G gG) groupP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_set_bigcap
bigcap_group:= group group_set_bigcap.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
bigcap_group
group_set_generated(A : {set gT}) : group_set <<A>>. Proof. by rewrite unlock group_set_bigcap. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_set_generated
generated_groupA := group (group_set_generated A).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
generated_group
gcore_groupG A : {group _} := Eval hnf in [group of gcore G A].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gcore_group
commutator_groupA B : {group _} := Eval hnf in [group of [~: A, B]].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commutator_group
joing_groupA B : {group _} := Eval hnf in [group of A <*> B].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing_group
cycle_groupx : {group _} := Eval hnf in [group of <[x]>].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle_group
joinGG H := joing_group G H.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joinG
subgroupsA := [set G : {group gT} | G \subset A].
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subgroups
order_gt0(x : gT) : 0 < #[x]. Proof. exact: cardG_gt0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
order_gt0
LagrangeIG H : (#|G :&: H| * #|G : H|)%N = #|G|. Proof. rewrite -[#|G|]sum1_card (partition_big_imset (rcoset H)) /=. rewrite mulnC -sum_nat_const; apply: eq_bigr => _ /rcosetsP[x Gx ->]. rewrite -(card_rcoset _ x) -sum1_card; apply: eq_bigl => y. by rewrite rcosetE (sameP eqP rcoset_eqP) group_modr ?sub1set // !inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
LagrangeI
divgIG H : #|G| %/ #|G :&: H| = #|G : H|. Proof. by rewrite -(LagrangeI G H) mulKn ?cardG_gt0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
divgI
divg_indexG H : #|G| %/ #|G : H| = #|G :&: H|. Proof. by rewrite -(LagrangeI G H) mulnK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
divg_index
dvdn_indexgG H : #|G : H| %| #|G|. Proof. by rewrite -(LagrangeI G H) dvdn_mull. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
dvdn_indexg
LagrangeG H : H \subset G -> (#|H| * #|G : H|)%N = #|G|. Proof. by move/setIidPr=> sHG; rewrite -{1}sHG LagrangeI. Qed.
Theorem
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
Lagrange
cardSgG H : H \subset G -> #|H| %| #|G|. Proof. by move/Lagrange <-; rewrite dvdn_mulr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cardSg
lognSgp G H : G \subset H -> logn p #|G| <= logn p #|H|. Proof. by move=> sGH; rewrite dvdn_leq_log ?cardSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lognSg
piSgG H : G \subset H -> {subset \pi(gval G) <= \pi(gval H)}. Proof. move=> sGH p; rewrite !mem_primes !cardG_gt0 => /and3P[-> _ pG]. exact: dvdn_trans (cardSg sGH). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
piSg
divgSG H : H \subset G -> #|G| %/ #|H| = #|G : H|. Proof. by move/Lagrange <-; rewrite mulKn. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
divgS
divg_indexSG H : H \subset G -> #|G| %/ #|G : H| = #|H|. Proof. by move/Lagrange <-; rewrite mulnK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
divg_indexS
coprimeSgG H p : H \subset G -> coprime #|G| p -> coprime #|H| p. Proof. by move=> sHG; apply: coprime_dvdl (cardSg sHG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
coprimeSg
coprimegSG H p : H \subset G -> coprime p #|G| -> coprime p #|H|. Proof. by move=> sHG; apply: coprime_dvdr (cardSg sHG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
coprimegS
indexJgG H x : #|G :^ x : H :^ x| = #|G : H|. Proof. by rewrite -!divgI -conjIg !cardJg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexJg
indexggG : #|G : G| = 1%N. Proof. by rewrite -divgS // divnn cardG_gt0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexgg
rcosets_idG : rcosets G G = [set G : {set gT}]. Proof. apply/esym/eqP; rewrite eqEcard sub1set [#|_|]indexgg cards1 andbT. by apply/rcosetsP; exists 1; rewrite ?mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcosets_id
Lagrange_indexG H K : H \subset G -> K \subset H -> (#|G : H| * #|H : K|)%N = #|G : K|. Proof. move=> sHG sKH; apply/eqP; rewrite mulnC -(eqn_pmul2l (cardG_gt0 K)). by rewrite mulnA !Lagrange // (subset_trans sKH). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
Lagrange_index
indexgIG H : #|G : G :&: H| = #|G : H|. Proof. by rewrite -[RHS]divgI divgS ?subsetIl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexgI
indexgSG H K : H \subset K -> #|G : K| %| #|G : H|. Proof. move=> sHK; rewrite -(@dvdn_pmul2l #|G :&: K|) ?cardG_gt0 // LagrangeI. by rewrite -(Lagrange (setIS G sHK)) mulnAC LagrangeI dvdn_mulr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexgS
indexSgG H K : H \subset K -> K \subset G -> #|K : H| %| #|G : H|. Proof. move=> sHK sKG; rewrite -(@dvdn_pmul2l #|H|) ?cardG_gt0 //. by rewrite !Lagrange ?(cardSg, subset_trans sHK). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexSg
indexg_eq1G H : (#|G : H| == 1%N) = (G \subset H). Proof. rewrite eqn_leq -(leq_pmul2l (cardG_gt0 (G :&: H))) LagrangeI muln1. by rewrite indexg_gt0 andbT (sameP setIidPl eqP) eqEcard subsetIl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexg_eq1
indexg_gt1G H : (#|G : H| > 1) = ~~ (G \subset H). Proof. by rewrite -indexg_eq1 eqn_leq indexg_gt0 andbT -ltnNge. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexg_gt1
index1gG H : H \subset G -> #|G : H| = 1%N -> H :=: G. Proof. by move=> sHG iHG; apply/eqP; rewrite eqEsubset sHG -indexg_eq1 iHG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
index1g
indexg1G : #|G : 1| = #|G|. Proof. by rewrite -divgS ?sub1G // cards1 divn1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexg1
indexMgG A : #|G * A : G| = #|A : G|. Proof. apply/eq_card/setP/eqP; rewrite eqEsubset andbC imsetS ?mulG_subr //. by apply/subsetP=> _ /rcosetsP[x GAx ->]; rewrite mem_rcosets. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexMg
rcosets_partition_mulG H : partition (rcosets H G) (H * G). Proof. set HG := H * G; have sGHG: {subset G <= HG} by apply/subsetP/mulG_subr. have defHx x: x \in HG -> [set y in HG | rcoset H x == rcoset H y] = H :* x. move=> HGx; apply/setP=> y; rewrite inE !rcosetE (sameP eqP rcoset_eqP). by rewrite rcoset_sym; apply/andb_idl/subsetP; rewrite mulGS sub1set. have:= preim_partitionP (rcoset H) HG; congr (partition _ _); apply/setP=> Hx. apply/imsetP/idP=> [[x HGx ->] | ]; first by rewrite defHx // mem_rcosets. by case/rcosetsP=> x /sGHG-HGx ->; exists x; rewrite ?defHx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcosets_partition_mul
rcosets_partitionG H : H \subset G -> partition (rcosets H G) G. Proof. by move=> sHG; have:= rcosets_partition_mul G H; rewrite mulSGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcosets_partition
LagrangeMlG H : (#|G| * #|H : G|)%N = #|G * H|. Proof. rewrite mulnC -(card_uniform_partition _ (rcosets_partition_mul H G)) //. by move=> _ /rcosetsP[x Hx ->]; rewrite card_rcoset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
LagrangeMl
LagrangeMrG H : (#|G : H| * #|H|)%N = #|G * H|. Proof. by rewrite mulnC LagrangeMl -card_invg invMg !invGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
LagrangeMr