fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
class_support_set1lA x : class_support [set x] A = x ^: A. Proof. exact: imset2_set1l. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_support_set1l
class_support_set1rA x : class_support A [set x] = A :^ x. Proof. exact: imset2_set1r. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_support_set1r
classMx A B : x ^: (A * B) = class_support (x ^: A) B. Proof. by rewrite -!class_support_set1l class_supportM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
classM
class_lcosetx y A : x ^: (y *: A) = (x ^ y) ^: A. Proof. by rewrite classM class_set1 class_support_set1l. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_lcoset
class_rcosetx A y : x ^: (A :* y) = (x ^: A) :^ y. Proof. by rewrite -class_support_set1r classM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_rcoset
conjugatesSA B C : B \subset C -> A :^: B \subset A :^: C. Proof. exact: imsetS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjugatesS
conjugates_set1A x : A :^: [set x] = [set A :^ x]. Proof. exact: imset_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjugates_set1
conjugates_conjA x B : (A :^ x) :^: B = A :^: (x *: B). Proof. rewrite /conjugates [x *: B]imset2_set1l -imset_comp. by apply: eq_imset => y /=; rewrite conjsgM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
conjugates_conj
class_supportElA B : class_support A B = \bigcup_(x in A) x ^: B. Proof. exact: curry_imset2l. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_supportEl
class_supportErA B : class_support A B = \bigcup_(x in B) A :^ x. Proof. exact: curry_imset2r. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
class_supportEr
group_setA := (1 \in A) && (A * A \subset A).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_set
group_setPA : reflect (1 \in A /\ {in A & A, forall x y, x * y \in A}) (group_set A). Proof. apply: (iffP andP) => [] [A1 AM]; split=> {A1}//. by move=> x y Ax Ay; apply: (subsetP AM); rewrite mem_mulg. by apply/subsetP=> _ /mulsgP[x y Ax Ay ->]; apply: AM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_setP
group_type: Type := Group { gval :> GroupSet.sort gT; _ : group_set gval }.
Structure
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_type
group_of: predArgType := group_type. Local Notation groupT := group_of. Identity Coercion type_of_group : group_of >-> group_type. HB.instance Definition _ := [isSub for gval]. #[hnf] HB.instance Definition _ := [Finite of group_type by <:].
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_of
Definition_ := SubFinite.copy groupT group_type.
HB.instance
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
Definition
group(A : {set gT}) gA : groupT := @Group A gA.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group
clone_groupG := let: Group _ gP := G return {type of Group for G} -> groupT in fun k => k gP.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
clone_group
group_inj: injective gval. Proof. exact: val_inj. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_inj
groupP(G : groupT) : group_set G. Proof. by case: G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupP
congr_group(H K : groupT) : H = K -> H :=: K. Proof. exact: congr1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
congr_group
isgroupPA : reflect (exists G : groupT, A = G) (group_set A). Proof. by apply: (iffP idP) => [gA | [[B gB] -> //]]; exists (Group gA). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
isgroupP
group_set_one: group_set 1. Proof. by rewrite /group_set set11 mulg1 subxx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_set_one
one_group:= group group_set_one.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
one_group
set1_group:= @group [set 1] group_set_one.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
set1_group
group_setT: group_set (setTfor gT). Proof. by apply/group_setP; split=> [|x y _ _]; rewrite inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_setT
setT_group:= group group_setT.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
setT_group
generated(gT : finGroupType) (A : {set gT}) := \bigcap_(G : {group gT} | A \subset G) G.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
generated
generated_unlockable:= Unlockable generated.unlock.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
generated_unlockable
gcore(gT : finGroupType) (A B : {set gT}) := \bigcap_(x in B) A :^ x.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gcore
joing(gT : finGroupType) (A B : {set gT}) := generated (A :|: B).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
joing
commutator(gT : finGroupType) (A B : {set gT}) := generated (commg_set A B).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
commutator
cycle(gT : finGroupType) (x : gT) := generated [set x].
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cycle
order(gT : finGroupType) (x : gT) := #|cycle x|. Arguments commutator _ _%_g _%_g. Arguments joing _ _%_g _%_g. Arguments generated _ _%_g.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
order
gsortgT := (FinStarMonoid.arg_sort gT%type) (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
gsort
sT:= {set gT}. Implicit Types A B C D : sT. Implicit Types x y z : gT. Implicit Types G H K : {group gT}.
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sT
valG: val G = G. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
valG
group1: 1 \in G. Proof. by case/group_setP: (valP G). Qed. #[local] Hint Resolve group1 : core.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group1
group1_contrax : x \notin G -> x != 1. Proof. by apply: contraNneq => ->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group1_contra
sub1G: [1 gT] \subset G. Proof. by rewrite sub1set. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sub1G
subG1: (G \subset [1]) = (G :==: 1). Proof. by rewrite eqEsubset sub1G andbT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subG1
setI1g: 1 :&: G = 1. Proof. exact: (setIidPl sub1G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
setI1g
setIg1: G :&: 1 = 1. Proof. exact: (setIidPr sub1G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
setIg1
subG1_contraH : G \subset H -> G :!=: 1 -> H :!=: 1. Proof. by move=> sGH; rewrite -subG1; apply: contraNneq => <-. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
subG1_contra
repr_group: repr G = 1. Proof. by rewrite /repr group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
repr_group
cardG_gt0: 0 < #|G|. Proof. by rewrite lt0n; apply/existsP; exists (1 : gT). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cardG_gt0
indexg_gt0A : 0 < #|G : A|. Proof. rewrite lt0n; apply/existsP; exists A. by rewrite -{2}[A]mulg1 -rcosetE; apply: imset_f. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
indexg_gt0
trivgP: reflect (G :=: 1) (G \subset [1]). Proof. by rewrite subG1; apply: eqP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
trivgP
trivGP: reflect (G = 1%G) (G \subset [1]). Proof. by rewrite subG1; apply: eqP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
trivGP
proper1G: ([1] \proper G) = (G :!=: 1). Proof. by rewrite properEneq sub1G andbT eq_sym. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
proper1G
in_one_groupx : (x \in 1%G) = (x == 1). Proof. by rewrite -[x \in _]/(x \in [set 1]) !inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
in_one_group
inE:= (in_one_group, inE).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
inE
trivgPn: reflect (exists2 x, x \in G & x != 1) (G :!=: 1). Proof. rewrite -subG1. by apply: (iffP subsetPn) => [] [x Gx x1]; exists x; rewrite ?inE in x1 *. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
trivgPn
trivg_card_le1: (G :==: 1) = (#|G| <= 1). Proof. by rewrite eq_sym eqEcard cards1 sub1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
trivg_card_le1
trivg_card1: (G :==: 1) = (#|G| == 1%N). Proof. by rewrite trivg_card_le1 eqn_leq cardG_gt0 andbT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
trivg_card1
cardG_gt1: (#|G| > 1) = (G :!=: 1). Proof. by rewrite trivg_card_le1 ltnNge. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
cardG_gt1
card_le1_trivg: #|G| <= 1 -> G :=: 1. Proof. by rewrite -trivg_card_le1; move/eqP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
card_le1_trivg
card1_trivg: #|G| = 1%N -> G :=: 1. Proof. by move=> G1; rewrite card_le1_trivg ?G1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
card1_trivg
mulG_sublA : A \subset A * G. Proof. exact: mulg_subl group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulG_subl
mulG_subrA : A \subset (G * A). Proof. exact: mulg_subr group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulG_subr
mulGid: G * G = G. Proof. by apply/eqP; rewrite eqEsubset mulG_subr andbT; case/andP: (valP G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGid
mulGSA B : (G * A \subset G * B) = (A \subset G * B). Proof. apply/idP/idP; first exact: subset_trans (mulG_subr A). by move/(mulgS G); rewrite mulgA mulGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGS
mulSGA B : (A * G \subset B * G) = (A \subset B * G). Proof. apply/idP/idP; first exact: subset_trans (mulG_subl A). by move/(mulSg G); rewrite -mulgA mulGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulSG
mul_subGA B : A \subset G -> B \subset G -> A * B \subset G. Proof. by move=> sAG sBG; rewrite -mulGid mulgSS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mul_subG
prod_subG(I : Type) (r : seq I) (P : {pred I}) (F : I -> {set gT}) : (forall i, P i -> F i \subset G) -> \prod_(i <- r | P i) F i \subset G. Proof. move=> subFG; elim/big_rec: _ => [|/= i A /subFG]; first by rewrite sub1set. exact: mul_subG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
prod_subG
groupMx y : x \in G -> y \in G -> x * y \in G. Proof. by case/group_setP: (valP G) x y. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupM
groupXx n : x \in G -> x ^+ n \in G. Proof. by move=> Gx; elim: n => [|n IHn]; rewrite ?group1 // expgS groupM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupX
groupVrx : x \in G -> x^-1 \in G. Proof. move=> Gx; rewrite -(mul1g x^-1) -mem_rcoset ((G :* x =P G) _) //. by rewrite eqEcard card_rcoset leqnn mul_subG ?sub1set. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupVr
groupVlx : x^-1 \in G -> x \in G. Proof. by move/groupVr; rewrite invgK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupVl
groupVx : (x^-1 \in G) = (x \in G). Proof. by apply/idP/idP; [apply: groupVl | apply: groupVr]. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupV
groupMlx y : x \in G -> (x * y \in G) = (y \in G). Proof. move=> Gx; apply/idP/idP=> [Gxy|]; last exact: groupM. by rewrite -(mulKg x y) groupM ?groupVr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupMl
groupMrx y : x \in G -> (y * x \in G) = (y \in G). Proof. by move=> Gx; rewrite -[_ \in G]groupV invMg groupMl groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupMr
in_group:= (group1, groupV, (groupMl, groupX)).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
in_group
groupJx y : x \in G -> y \in G -> x ^ y \in G. Proof. by move=> Gx Gy; rewrite !in_group. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupJ
groupJrx y : y \in G -> (x ^ y \in G) = (x \in G). Proof. by move=> Gy; rewrite groupMl (groupMr, groupV). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupJr
groupRx y : x \in G -> y \in G -> [~ x, y] \in G. Proof. by move=> Gx Gy; rewrite !in_group. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
groupR
group_prodI r (P : pred I) F : (forall i, P i -> F i \in G) -> \prod_(i <- r | P i) F i \in G. Proof. by move=> G_P; elim/big_ind: _ => //; apply: groupM. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
group_prod
invGid: G^-1 = G. Proof. by apply/setP=> x; rewrite inE groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
invGid
inv_subGA : (A^-1 \subset G) = (A \subset G). Proof. by rewrite -{1}invGid invSg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
inv_subG
invg_lcosetx : (x *: G)^-1 = G :* x^-1. Proof. by rewrite invMg invGid invg_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
invg_lcoset
invg_rcosetx : (G :* x)^-1 = x^-1 *: G. Proof. by rewrite invMg invGid invg_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
invg_rcoset
memV_lcosetVx y : (y^-1 \in x^-1 *: G) = (y \in G :* x). Proof. by rewrite -invg_rcoset memV_invg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
memV_lcosetV
memV_rcosetVx y : (y^-1 \in G :* x^-1) = (y \in x *: G). Proof. by rewrite -invg_lcoset memV_invg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
memV_rcosetV
mulSgGidA x : x \in A -> A \subset G -> A * G = G. Proof. move=> Ax sAG; apply/eqP; rewrite eqEsubset -{2}mulGid mulSg //=. apply/subsetP=> y Gy; rewrite -(mulKVg x y) mem_mulg // groupMr // groupV. exact: (subsetP sAG). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulSgGid
mulGSgidA x : x \in A -> A \subset G -> G * A = G. Proof. rewrite -memV_invg -invSg invGid => Ax sAG. by apply: invg_inj; rewrite invMg invGid (mulSgGid Ax). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mulGSgid
lcoset_reflx : x \in x *: G. Proof. by rewrite mem_lcoset mulVg group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lcoset_refl
lcoset_symx y : (x \in y *: G) = (y \in x *: G). Proof. by rewrite !mem_lcoset -groupV invMg invgK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lcoset_sym
lcoset_eqP{x y} : reflect (x *: G = y *: G) (x \in y *: G). Proof. suffices <-: (x *: G == y *: G) = (x \in y *: G) by apply: eqP. by rewrite eqEsubset !mulSG !sub1set lcoset_sym andbb. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lcoset_eqP
lcoset_translx y z : x \in y *: G -> (x \in z *: G) = (y \in z *: G). Proof. by move=> Gyx; rewrite -2!(lcoset_sym z) (lcoset_eqP Gyx). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lcoset_transl
lcoset_transx y z : x \in y *: G -> y \in z *: G -> x \in z *: G. Proof. by move/lcoset_transl->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lcoset_trans
lcoset_idx : x \in G -> x *: G = G. Proof. by move=> Gx; rewrite (lcoset_eqP (_ : x \in 1 *: G)) mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
lcoset_id
rcoset_reflx : x \in G :* x. Proof. by rewrite mem_rcoset mulgV group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_refl
rcoset_symx y : (x \in G :* y) = (y \in G :* x). Proof. by rewrite -!memV_lcosetV lcoset_sym. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_sym
rcoset_eqP{x y} : reflect (G :* x = G :* y) (x \in G :* y). Proof. suffices <-: (G :* x == G :* y) = (x \in G :* y) by apply: eqP. by rewrite eqEsubset !mulGS !sub1set rcoset_sym andbb. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_eqP
rcoset_translx y z : x \in G :* y -> (x \in G :* z) = (y \in G :* z). Proof. by move=> Gyx; rewrite -2!(rcoset_sym z) (rcoset_eqP Gyx). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_transl
rcoset_transx y z : x \in G :* y -> y \in G :* z -> x \in G :* z. Proof. by move/rcoset_transl->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_trans
rcoset_idx : x \in G -> G :* x = G. Proof. by move=> Gx; rewrite (rcoset_eqP (_ : x \in G :* 1)) mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_id
rcoset_repr_specx : gT -> Type := RcosetReprSpec g : g \in G -> rcoset_repr_spec x (g * x).
Variant
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_repr_spec
mem_repr_rcosetx : repr (G :* x) \in G :* x. Proof. exact: mem_repr (rcoset_refl x). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
mem_repr_rcoset
repr_rcosetPx : rcoset_repr_spec x (repr (G :* x)). Proof. by rewrite -[repr _](mulgKV x); split; rewrite -mem_rcoset mem_repr_rcoset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
repr_rcosetP
rcoset_reprx : G :* (repr (G :* x)) = G :* x. Proof. exact/rcoset_eqP/mem_repr_rcoset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
rcoset_repr