|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ParsiNLU Persian reading comprehension task""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import csv |
|
import json |
|
|
|
import datasets |
|
from datasets import NamedSplit |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@article{huggingface:dataset, |
|
title = {ParsiNLU: A Suite of Language Understanding Challenges for Persian}, |
|
authors = {Khashabi, Daniel and Cohan, Arman and Shakeri, Siamak and Hosseini, Pedram and Pezeshkpour, Pouya and Alikhani, Malihe and Aminnaseri, Moin and Bitaab, Marzieh and Brahman, Faeze and Ghazarian, Sarik and others}, |
|
year={2020} |
|
journal = {arXiv e-prints}, |
|
eprint = {2012.06154}, |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
A Persian sentiment analysis task (deciding whether a given sentence contains a particular sentiment). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/persiannlp/parsinlu/" |
|
|
|
_LICENSE = "CC BY-NC-SA 4.0" |
|
|
|
_URL = "https://raw.githubusercontent.com/persiannlp/parsinlu/master/data/sentiment-analysis/" |
|
_URLs = { |
|
"train": _URL + "ABSA_Dataset_train.jsonl", |
|
"dev_food": _URL + "food_dev.jsonl", |
|
"dev_movies": _URL + "movie_dev.jsonl", |
|
"test_food": _URL + "food_test.jsonl", |
|
"test_movies": _URL + "movie_test.jsonl", |
|
} |
|
|
|
TRAIN_ALL = NamedSplit("train") |
|
TEST_FOOD = NamedSplit("test_food") |
|
TEST_MOVIES = NamedSplit("test_movies") |
|
VALIDATION_FOOD = NamedSplit("validation_food") |
|
VALIDATION_MOVIES = NamedSplit("validation_movies") |
|
|
|
|
|
class ParsinluReadingComprehension(datasets.GeneratorBasedBuilder): |
|
"""ParsiNLU Persian reading comprehension task.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="parsinlu-repo", version=VERSION, description="ParsiNLU repository: sentiment-analysis" |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"review": datasets.Value("string"), |
|
"review_id": datasets.Value("string"), |
|
"example_id": datasets.Value("string"), |
|
"excel_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"aspect": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"guid": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=TRAIN_ALL, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=TEST_FOOD, |
|
|
|
gen_kwargs={"filepath": data_dir["test_food"], "split": "test_food"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=TEST_MOVIES, |
|
|
|
gen_kwargs={"filepath": data_dir["test_movies"], "split": "test_movies"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=VALIDATION_FOOD, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["dev_food"], |
|
"split": "dev_food", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=VALIDATION_MOVIES, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["dev_movies"], |
|
"split": "dev_movies", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
logger.info("generating examples from = %s", filepath) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f.readlines()): |
|
row = json.loads(row) |
|
yield id_, row |
|
|