Datasets:

Sub-tasks:
extractive-qa
Languages:
Persian
ArXiv:
License:
parsinlu_reading_comprehension / parsinlu_reading_comprehension.py
danyaljj's picture
adding the files
d3d1438
raw
history blame
5.46 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ParsiNLU Persian reading comprehension task"""
from __future__ import absolute_import, division, print_function
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{huggingface:dataset,
title = {ParsiNLU: A Suite of Language Understanding Challenges for Persian},
authors = {Khashabi, Daniel and Cohan, Arman and Shakeri, Siamak and Hosseini, Pedram and Pezeshkpour, Pouya and Alikhani, Malihe and Aminnaseri, Moin and Bitaab, Marzieh and Brahman, Faeze and Ghazarian, Sarik and others},
year={2020}
journal = {arXiv e-prints},
eprint = {2012.06154},
}
"""
# You can copy an official description
_DESCRIPTION = """\
A Persian reading comprehenion task (generating an answer, given a question and a context paragraph).
The questions are mined using Google auto-complete, their answers and the corresponding evidence documents are manually annotated by native speakers.
"""
_HOMEPAGE = "https://github.com/persiannlp/parsinlu/"
_LICENSE = "CC BY-NC-SA 4.0"
_URL = "https://raw.githubusercontent.com/persiannlp/parsinlu/master/data/reading_comprehension/"
_URLs = {
"train": _URL + "train.jsonl",
"dev": _URL + "dev.jsonl",
"test": _URL + "eval.jsonl",
}
class ParsinluReadingComprehension(datasets.GeneratorBasedBuilder):
"""ParsiNLU Persian reading comprehension task."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="parsinlu-repo", version=VERSION, description="ParsiNLU repository: reading-comprehension"
),
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"url": datasets.Value("string"),
"context": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"answer_start": datasets.Value("int32"),
"answer_text": datasets.Value("string"),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
logger.info("generating examples from = %s", filepath)
def get_answer_index(passage, answer):
return passage.index(answer) if answer in passage else -1
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
answer = data["answers"]
if type(answer[0]) == str:
answer = [{"answer_start": get_answer_index(data["passage"], x), "answer_text": x} for x in answer]
else:
answer = [{"answer_start": x[0], "answer_text": x[1]} for x in answer]
yield id_, {
"question": data["question"],
"url": str(data["url"]),
"context": data["passage"],
"answers": answer,
}