Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Portuguese
Size:
10K<n<100K
Tags:
legal
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""LeNER-Br dataset""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
@inproceedings{luz_etal_propor2018, | |
author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and | |
Renato R. R. {de Oliveira} and Matheus Stauffer and | |
Samuel Couto and Paulo Bermejo}, | |
title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text}, | |
booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})}, | |
publisher = {Springer}, | |
series = {Lecture Notes on Computer Science ({LNCS})}, | |
pages = {313--323}, | |
year = {2018}, | |
month = {September 24-26}, | |
address = {Canela, RS, Brazil}, | |
doi = {10.1007/978-3-319-99722-3_32}, | |
url = {https://cic.unb.br/~teodecampos/LeNER-Br/}, | |
} | |
""" | |
_DESCRIPTION = """ | |
LeNER-Br is a Portuguese language dataset for named entity recognition | |
applied to legal documents. LeNER-Br consists entirely of manually annotated | |
legislation and legal cases texts and contains tags for persons, locations, | |
time entities, organizations, legislation and legal cases. | |
To compose the dataset, 66 legal documents from several Brazilian Courts were | |
collected. Courts of superior and state levels were considered, such as Supremo | |
Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas | |
Gerais and Tribunal de Contas da União. In addition, four legislation documents | |
were collected, such as "Lei Maria da Penha", giving a total of 70 documents | |
""" | |
_HOMEPAGE = "https://cic.unb.br/~teodecampos/LeNER-Br/" | |
_URL = "https://github.com/peluz/lener-br/raw/master/leNER-Br/" | |
_TRAINING_FILE = "train/train.conll" | |
_DEV_FILE = "dev/dev.conll" | |
_TEST_FILE = "test/test.conll" | |
class LenerBr(datasets.GeneratorBasedBuilder): | |
"""LeNER-Br dataset""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="lener_br", version=VERSION, description="LeNER-Br dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-ORGANIZACAO", | |
"I-ORGANIZACAO", | |
"B-PESSOA", | |
"I-PESSOA", | |
"B-TEMPO", | |
"I-TEMPO", | |
"B-LOCAL", | |
"I-LOCAL", | |
"B-LEGISLACAO", | |
"I-LEGISLACAO", | |
"B-JURISPRUDENCIA", | |
"I-JURISPRUDENCIA", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://cic.unb.br/~teodecampos/LeNER-Br/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_files["train"], "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |