pec / pec.py
Quentin Lhoest
Release: 1.18.1
1864061
raw
history blame
7.43 kB
"""TODO: Add a description here."""
import os
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@inproceedings{zhong2020towards,
title = "Towards Persona-Based Empathetic Conversational Models",
author = "Zhong, Peixiang and
Zhang, Chen and
Wang, Hao and
Liu, Yong and
Miao, Chunyan",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.531",
pages = "6556--6566"}
"""
# TODO: Add description of the dataset here
_DESCRIPTION = """\
A dataset of around 350K persona-based empathetic conversations. Each speaker is associated with a persona, which comprises multiple persona sentences. The response of each conversation is empathetic.
"""
_URL = "https://dl.dropboxusercontent.com/s/u04fzuhsnxd0uvw/hf_pec.zip"
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
# Using a specific configuration class is optional, you can also use the base class if you don't need
# to add specific attributes.
# here we give an example for three sub-set of the dataset with difference sizes.
class PECConfig(datasets.BuilderConfig):
"""BuilderConfig for PEC"""
def __init__(self, domain="all", **kwargs):
"""
Args:
domain: the domain of our dataset: happy or offmychest
**kwargs: keyword arguments forwarded to super.
"""
super(PECConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.domain = domain
class PEC(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
BUILDER_CONFIG_CLASS = PECConfig
BUILDER_CONFIGS = [
PECConfig(name=domain, description=f"A subset of PEC dataset: {domain}", domain=domain)
for domain in ["happy", "offmychest", "all"]
]
def _info(self):
# TODO: Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(
{
"personas": datasets.features.Sequence(datasets.Value("string")),
"context": datasets.features.Sequence(datasets.Value("string")),
"context_speakers": datasets.features.Sequence(datasets.Value("string")),
"response": datasets.Value("string"),
"response_speaker": datasets.Value("string"),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/zhongpeixiang/PEC",
citation=_CITATION,
)
def _load_persona(self, paths):
persona = {}
is_speaker = True
sentences = []
for path in paths:
with open(path, encoding="utf-8") as f:
for row in f:
if "********************" not in row:
if is_speaker:
speaker = row.strip()
is_speaker = False
else:
sentences.append(row.strip())
else:
persona[speaker] = sentences
is_speaker = True
sentences = []
return persona
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "hf_pec")
domains = ["happy", "offmychest"] if self.config.domain == "all" else [self.config.domain] # multiple domains
persona_paths = [os.path.join(data_dir, domain, "persona.txt") for domain in domains]
persona = self._load_persona(persona_paths)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": [os.path.join(data_dir, domain, "train.txt") for domain in domains],
"split": "train",
"persona": persona,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": [os.path.join(data_dir, domain, "test.txt") for domain in domains],
"split": "test",
"persona": persona,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": [os.path.join(data_dir, domain, "valid.txt") for domain in domains],
"split": "dev",
"persona": persona,
},
),
]
def _generate_examples(self, filepath, split, persona):
"""Yields examples."""
# TODO: Yields (key, example) tuples from the dataset
context_speakers = []
context = []
example_id = 0
for fpath in filepath:
with open(fpath, encoding="utf-8") as f:
for id_, row in enumerate(f):
if row.strip() == "":
continue
if "********************" not in row:
if "---+---" in row:
speaker, utterance = row.split("---+---")
context_speakers.append(speaker.strip())
context.append(utterance.strip())
else:
# contains inline \n
context[-1] = context[-1] + " " + row.strip()
else:
response_speaker = context_speakers.pop()
response = context.pop()
yield example_id, {
"personas": persona[response_speaker],
"context_speakers": context_speakers,
"context": context,
"response_speaker": response_speaker,
"response": response,
}
context_speakers = []
context = []
example_id += 1