|
--- |
|
task_categories: |
|
- translation |
|
language: |
|
- en |
|
- kn |
|
tags: |
|
- machine-translation |
|
- nllb |
|
- english |
|
- kannada |
|
- parallel-corpus |
|
- multilingual |
|
- low-resource |
|
pretty_name: English-Kannada NLLB Machine Translation Dataset |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# English-Kannada NLLB Machine Translation Dataset |
|
|
|
This dataset contains English-Kannada parallel text from NLLB dataset along with new NLLB model translations. |
|
|
|
## Dataset Structure |
|
|
|
- Train: 16,702 examples |
|
- Test: 8,295 examples |
|
- Validation: 4,017 examples |
|
|
|
### Features |
|
|
|
- `en`: Source English text (from NLLB Dataset) |
|
- `kn`: Human-translated Kannada text (from NLLB Dataset) |
|
- `kn_nllb`: Machine-translated Kannada text using facebook/nllb-200-distilled-600M model |
|
|
|
While `kn` translations are available in the NLLB dataset, their quality is poor. Therefore, we created `kn_nllb` by translating the English source text using NLLB's distilled model to obtain cleaner translations. |
|
|
|
## Preprocessing |
|
|
|
- Filtered: Minimum 5 words in both English and NLLB-translated Kannada texts |
|
- Train-test split: 2:1 ratio |
|
|
|
|
|
## Sample Dataset |
|
|
|
| en | kn | kn_nllb | |
|
|---|---|---| |
|
| The weather is beautiful today. | ಇಂದು ಹವಾಮಾನ ಅದ್ಭುತವಾಗಿದೆ. | ಇಂದು ಹವಾಮಾನ ಸುಂದರವಾಗಿದೆ. | |
|
| I love reading interesting books. | ನಾನು ಆಸಕ್ತಿದಾಯಕ ಪುಸ್ತಕಗಳನ್ನು ಓದಲು ಇಷ್ಟಪಡುತ್ತೇನೆ. | ನಾನು ಆಸಕ್ತಿದಾಯಕ ಪುಸ್ತಕಗಳನ್ನು ಓದಲು ಪ್ರೀತಿಸುತ್ತೇನೆ. | |
|
|
|
## Loading the Dataset |
|
|
|
### Using Pandas |
|
```python |
|
import pandas as pd |
|
|
|
splits = { |
|
'train': 'data/train-00000-of-00001.parquet', |
|
'validation': 'data/validation-00000-of-00001.parquet', |
|
'test': 'data/test-00000-of-00001.parquet' |
|
} |
|
|
|
# Load all splits into DataFrames |
|
dataframes = {} |
|
for split, path in splits.items(): |
|
dataframes[split] = pd.read_parquet(f"hf://datasets/pavan-naik/mt-nllb-en-kn/{path}") |
|
|
|
# Access individual splits |
|
train_data = dataframes['train'] |
|
test_data = dataframes['test'] |
|
validation_data = dataframes['validation'] |
|
|
|
``` |
|
|
|
### Using HuggingFace 🤗 Datasets |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load from HuggingFace Hub |
|
dataset = load_dataset("pavan-naik/mt-nllb-en-kn") |
|
|
|
# Access splits |
|
train_data = dataset["train"] |
|
test_data = dataset["test"] |
|
validation_data = dataset["validation"] |
|
|
|
``` |
|
|
|
|
|
## Use Cases |
|
|
|
- Evaluating NLLB translations for English-Kannada |
|
- Training/fine-tuning MT models |
|
- Analyzing translation quality: NLLB Dataset vs NLLB Model outputs |
|
|
|
## Citation |
|
|
|
- NLLB Team et al. "No Language Left Behind: Scaling Human-Centered Machine Translation" |
|
- OPUS parallel corpus |
|
|
|
## License |
|
|
|
Same as NLLB license |