patriziobellan commited on
Commit
cfffbc0
1 Parent(s): e826b86

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -73,6 +73,7 @@ Test set to beanchmark *Business Process Extraction from Text* approaches.
73
 
74
  For each instance, there is a document name representing the name of the document of the Friedrich *et al.* dataset, an integer representing the number of the sentence, a list of tokens representing the words of the sentence instance, and a list of *ner tags* (in IOB2 format) representing the annotation of process elements of the sentence.
75
 
 
76
  ```
77
  {
78
  "document name":"doc-1.1",
@@ -112,25 +113,26 @@ The data was not splited. It contains the test set only.
112
 
113
  ## Dataset Creation
114
 
 
 
 
 
 
 
 
 
 
115
  The dataset construction process has been split in five main phases:
116
  1. Text pre-processing. As the first operation, we check the content of each document and we tokenized it. This initial check was necessary since some of the original texts were automatically translated into English by the authors of the dataset. The translations were never validated, indeed, several errors have been found and fixed.
117
 
118
- 2. Text Annotation. Each text has been annotated by using the guidelines (https://pdi.fbk.eu/pet/annotation-guidelines-for-process-description.pdf). The team was composed by five annotators with high expertise in BPMN. Each document has been assigned to three experts that were in change of identifying all the elements and flows with each document. In this phase, we used the the Inception tool to support annotators.
 
119
  3. Automatic annotation fixing. After the second phase, we ran an automatic procedure relying on a rule-based script to automatically fix annotations that were not compliant with the guidelines. For example, if a modal verb was erroneously included in the annotation of an Activity, the procedure removed it from the annotation. Another example is the missing of the article within an annotation related to an Actor. In this case, the script included it in the annotation. This phase allowed to remove possible annotation errors and to obtain annotations compliant with the guidelines.
120
 
121
- 4. Agreement Computation. Here, we computed, on the annotation provided by the experts, the agreement scores for each process element and for each relation between process elements pair adopting the methodology proposed in (George Hripcsak and Adam S. Rothschild. Technical brief: Agreement, the f-measure, and reliability in information retrieval. J. Am. Medical Informatics Assoc., 12(3):296–298, 2005.). We measured the agreement in terms of the F1 measure because, besides being straightforward to calculate, it is directly interpretable. Note that chance-corrected measures like κ approach the F1-measure as the number of cases that raters agree are negative grows. By following such a methodology, an annotation was considered in agreement among the experts if and only if they capture the same span of words and they assign the same process element tag to the annotation.
122
 
123
  5. Reconciliation. The last phase consisted of the mitigation of disagreements within the annotations provided by the experts. The aim of this phase is to obtain a shared and agreed set of gold standard annotations on each text for both entities and relations. Such entities also enable the generation of the related full-connected process model flow that can be rendered by using, but not limited to, a BPMN diagram. During this last phase, among the 47 documents originally included into the dataset, 2 of them were discarded. These texts were not fully annotated by the annotators since they were not be able to completely understand which process elements were actually included in some specific parts of the text. For this reason, the final size of the dataset is 45 textual descriptions of the corresponding process models together with their annotations.
124
 
125
- ### Curation Rationale
126
-
127
- [More Information Needed]
128
-
129
- ### Source Data
130
-
131
- #### Initial Data Collection and Normalization
132
-
133
- [More Information Needed]
134
 
135
  #### Who are the source language producers?
136
 
 
73
 
74
  For each instance, there is a document name representing the name of the document of the Friedrich *et al.* dataset, an integer representing the number of the sentence, a list of tokens representing the words of the sentence instance, and a list of *ner tags* (in IOB2 format) representing the annotation of process elements of the sentence.
75
 
76
+ Below, an example of data instance.
77
  ```
78
  {
79
  "document name":"doc-1.1",
 
113
 
114
  ## Dataset Creation
115
 
116
+ ### Curation Rationale
117
+
118
+ Although there is a long tradition of work in NLP on extracting entities and relations from text, to date there exists little work on the acquisition of business processes from unstructured data such as textual corpora of process descriptions. With this work we aim at filling this gap and establishing the first steps towards bridging data-driven information extraction methodologies from Natural Language Processing and the model-based formalization that is aimed from Business Process Management.
119
+
120
+ ### Source Data
121
+
122
+ #### Initial Data Collection and Normalization
123
+
124
+
125
  The dataset construction process has been split in five main phases:
126
  1. Text pre-processing. As the first operation, we check the content of each document and we tokenized it. This initial check was necessary since some of the original texts were automatically translated into English by the authors of the dataset. The translations were never validated, indeed, several errors have been found and fixed.
127
 
128
+ 2. Text Annotation. Each text has been annotated by using the [guidelines](https://pdi.fbk.eu/pet/annotation-guidelines-for-process-description.pdf). The team was composed by five annotators with high expertise in BPMN. Each document has been assigned to three experts that were in change of identifying all the elements and flows with each document. In this phase, we used the the Inception tool to support annotators.
129
+
130
  3. Automatic annotation fixing. After the second phase, we ran an automatic procedure relying on a rule-based script to automatically fix annotations that were not compliant with the guidelines. For example, if a modal verb was erroneously included in the annotation of an Activity, the procedure removed it from the annotation. Another example is the missing of the article within an annotation related to an Actor. In this case, the script included it in the annotation. This phase allowed to remove possible annotation errors and to obtain annotations compliant with the guidelines.
131
 
132
+ 4. Agreement Computation. Here, we computed, on the annotation provided by the experts, the agreement scores for each process element and for each relation between process elements pair adopting the methodology proposed in [Hripcsak *et al.*](https://academic.oup.com/jamia/article/12/3/296/812057?login=true). We measured the agreement in terms of the F1 measure because, besides being straightforward to calculate, it is directly interpretable. Note that chance-corrected measures like *k* approach the F1-measure as the number of cases that raters agree are negative grows. By following such a methodology, an annotation was considered in agreement among the experts if and only if they capture the same span of words and they assign the same process element tag to the annotation.
133
 
134
  5. Reconciliation. The last phase consisted of the mitigation of disagreements within the annotations provided by the experts. The aim of this phase is to obtain a shared and agreed set of gold standard annotations on each text for both entities and relations. Such entities also enable the generation of the related full-connected process model flow that can be rendered by using, but not limited to, a BPMN diagram. During this last phase, among the 47 documents originally included into the dataset, 2 of them were discarded. These texts were not fully annotated by the annotators since they were not be able to completely understand which process elements were actually included in some specific parts of the text. For this reason, the final size of the dataset is 45 textual descriptions of the corresponding process models together with their annotations.
135
 
 
 
 
 
 
 
 
 
 
136
 
137
  #### Who are the source language producers?
138