Datasets:
patriziobellan
commited on
Commit
·
005d947
1
Parent(s):
a6b1197
Upload PET.py
Browse files
PET.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TO CREATE dataset_infos.json use: datasets-cli test PET --save_infos --all_configs
|
2 |
+
#
|
3 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
17 |
+
"""TODO: Add a description here."""
|
18 |
+
|
19 |
+
|
20 |
+
import csv
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
|
27 |
+
# TODO: Add BibTeX citation
|
28 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
29 |
+
_CITATION = """\
|
30 |
+
@InProceedings{huggingface:dataset,
|
31 |
+
title = {A great new dataset},
|
32 |
+
author={huggingface, Inc.
|
33 |
+
},
|
34 |
+
year={2020}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
# TODO: Add description of the dataset here
|
39 |
+
# You can copy an official description
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
42 |
+
"""
|
43 |
+
|
44 |
+
# TODO: Add a link to an official homepage for the dataset here
|
45 |
+
_HOMEPAGE = ""
|
46 |
+
|
47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
48 |
+
_LICENSE = ""
|
49 |
+
|
50 |
+
_URL = "https://pdi.fbk.eu/pet/PETHuggingFace/"
|
51 |
+
# _TRAINING_FILE = "train.json"
|
52 |
+
# _DEV_FILE = "emerging.dev.conll"
|
53 |
+
_TEST_FILE = "test.json"
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
class PETConfig(datasets.BuilderConfig):
|
58 |
+
"""The WNUT 17 Emerging Entities Dataset."""
|
59 |
+
|
60 |
+
def __init__(self, **kwargs):
|
61 |
+
"""BuilderConfig for PET.
|
62 |
+
Args:
|
63 |
+
**kwargs: keyword arguments forwarded to super.
|
64 |
+
"""
|
65 |
+
super(PETConfig, self).__init__(**kwargs)
|
66 |
+
|
67 |
+
class PET(datasets.GeneratorBasedBuilder):
|
68 |
+
"""PET DATASET."""
|
69 |
+
BUILDER_CONFIGS = [
|
70 |
+
PETConfig(
|
71 |
+
name="PET", version=datasets.Version("1.0.0"), description="The PET Dataset"
|
72 |
+
),
|
73 |
+
]
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
features = datasets.Features(
|
77 |
+
{
|
78 |
+
"document name": datasets.Value("string"),
|
79 |
+
"sentence-ID": datasets.Value("int8"),
|
80 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
81 |
+
"ner-tags": datasets.Sequence(
|
82 |
+
datasets.features.ClassLabel(
|
83 |
+
names=[
|
84 |
+
"O",
|
85 |
+
"B-Actor",
|
86 |
+
"I-Actor",
|
87 |
+
"B-Activity",
|
88 |
+
"I-Activity",
|
89 |
+
"B-Activity Data",
|
90 |
+
"I-Activity Data",
|
91 |
+
"B-Further Specification",
|
92 |
+
"I-Further Specification",
|
93 |
+
"B-XOR Gateway",
|
94 |
+
"I-XOR Gateway",
|
95 |
+
"B-Condition Specification",
|
96 |
+
"I-Condition Specification",
|
97 |
+
"B-AND Gateway",
|
98 |
+
"I-AND Gateway",
|
99 |
+
]
|
100 |
+
)
|
101 |
+
),
|
102 |
+
}
|
103 |
+
)
|
104 |
+
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
# This is the description that will appear on the datasets page.
|
107 |
+
description=_DESCRIPTION,
|
108 |
+
# This defines the different columns of the dataset and their types
|
109 |
+
features=features, # Here we define them above because they are different between the two configurations
|
110 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
111 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
112 |
+
# supervised_keys=("sentence", "label"),
|
113 |
+
# Homepage of the dataset for documentation
|
114 |
+
homepage=_HOMEPAGE,
|
115 |
+
# License for the dataset if available
|
116 |
+
license=_LICENSE,
|
117 |
+
# Citation for the dataset
|
118 |
+
citation=_CITATION,
|
119 |
+
)
|
120 |
+
|
121 |
+
def _split_generators(self, dl_manager):
|
122 |
+
urls_to_download = {
|
123 |
+
# "train": f"{_URL}{_TRAINING_FILE}",
|
124 |
+
# "dev": f"{_URL}{_DEV_FILE}",
|
125 |
+
"test": f"{_URL}{_TEST_FILE}",
|
126 |
+
}
|
127 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
128 |
+
|
129 |
+
return [
|
130 |
+
# datasets.SplitGenerator(
|
131 |
+
# name=datasets.Split.TRAIN,
|
132 |
+
# # These kwargs will be passed to _generate_examples
|
133 |
+
# gen_kwargs={
|
134 |
+
# "filepath": downloaded_files["train"], #'/Users/patrizio/Documents/PhD/PythonProjects/HuggingFacePETtest/PET/train.json', #os.path.join(data_dir, "train.json"),
|
135 |
+
# "split": "train",
|
136 |
+
# },
|
137 |
+
# ),
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TEST,
|
140 |
+
# These kwargs will be passed to _generate_examples
|
141 |
+
gen_kwargs={
|
142 |
+
"filepath": downloaded_files["test"], #'/Users/patrizio/Documents/PhD/PythonProjects/HuggingFacePETtest/PET/test.json', #os.path.join(data_dir, "test.json"),
|
143 |
+
"split": "test"
|
144 |
+
},
|
145 |
+
),
|
146 |
+
#
|
147 |
+
# datasets.SplitGenerator(
|
148 |
+
# name=datasets.Split.VALIDATION,
|
149 |
+
# # These kwargs will be passed to _generate_examples
|
150 |
+
# gen_kwargs={
|
151 |
+
# "filepath": os.path.join(data_dir, "dev.jsonl"),
|
152 |
+
# "split": "dev",
|
153 |
+
# },
|
154 |
+
# ),
|
155 |
+
]
|
156 |
+
|
157 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
158 |
+
def _generate_examples(self, filepath, split):
|
159 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
160 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
161 |
+
|
162 |
+
with open(filepath, encoding="utf-8", mode='r') as f:
|
163 |
+
for key, row in enumerate(f):
|
164 |
+
row = json.loads(row)
|
165 |
+
yield key, {
|
166 |
+
"document name": row["document name"],
|
167 |
+
"sentence-ID": row["sentence-ID"],
|
168 |
+
"tokens": row["tokens"],
|
169 |
+
"ner-tags": row["ner-tags"]
|
170 |
+
}
|