Upload 2 files
Browse files- _script_for_eval.py +231 -0
- _script_for_gen.py +132 -0
_script_for_eval.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
import nltk
|
7 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
8 |
+
from rouge import Rouge
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
+
import re
|
12 |
+
from textstat import flesch_reading_ease
|
13 |
+
from datasets import load_dataset
|
14 |
+
import openai
|
15 |
+
from datetime import datetime
|
16 |
+
|
17 |
+
nltk.download('punkt', quiet=True)
|
18 |
+
nltk.download('averaged_perceptron_tagger', quiet=True)
|
19 |
+
|
20 |
+
def preprocess(text):
|
21 |
+
return nltk.word_tokenize(text.lower())
|
22 |
+
|
23 |
+
def calculate_bleu(reference, candidate):
|
24 |
+
reference_tokens = preprocess(reference)
|
25 |
+
candidate_tokens = preprocess(candidate)
|
26 |
+
smoothie = SmoothingFunction().method1
|
27 |
+
return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=smoothie)
|
28 |
+
|
29 |
+
def calculate_rouge(reference, candidate):
|
30 |
+
rouge = Rouge()
|
31 |
+
scores = rouge.get_scores(candidate, reference)
|
32 |
+
return {
|
33 |
+
'rouge-1': scores[0]['rouge-1']['f'],
|
34 |
+
'rouge-2': scores[0]['rouge-2']['f'],
|
35 |
+
'rouge-l': scores[0]['rouge-l']['f']
|
36 |
+
}
|
37 |
+
|
38 |
+
def calculate_cosine_similarity(reference, candidate):
|
39 |
+
vectorizer = TfidfVectorizer()
|
40 |
+
tfidf_matrix = vectorizer.fit_transform([reference, candidate])
|
41 |
+
return cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
|
42 |
+
|
43 |
+
def extract_sections(readme):
|
44 |
+
sections = []
|
45 |
+
current_section = ""
|
46 |
+
for line in readme.split('\n'):
|
47 |
+
if line.strip().startswith('#'):
|
48 |
+
if current_section:
|
49 |
+
sections.append(current_section.strip())
|
50 |
+
current_section = line + "\n"
|
51 |
+
else:
|
52 |
+
current_section += line + "\n"
|
53 |
+
if current_section:
|
54 |
+
sections.append(current_section.strip())
|
55 |
+
return sections
|
56 |
+
|
57 |
+
def calculate_structural_similarity(reference, candidate):
|
58 |
+
ref_sections = extract_sections(reference)
|
59 |
+
cand_sections = extract_sections(candidate)
|
60 |
+
|
61 |
+
section_diff = abs(len(ref_sections) - len(cand_sections))
|
62 |
+
|
63 |
+
ref_titles = [s.split('\n')[0] for s in ref_sections]
|
64 |
+
cand_titles = [s.split('\n')[0] for s in cand_sections]
|
65 |
+
title_similarity = len(set(ref_titles) & set(cand_titles)) / max(len(ref_titles), len(cand_titles))
|
66 |
+
|
67 |
+
return {
|
68 |
+
'section_difference': section_diff,
|
69 |
+
'title_similarity': title_similarity
|
70 |
+
}
|
71 |
+
|
72 |
+
def information_retrieval_score(readme):
|
73 |
+
key_sections = ['installation', 'usage', 'api', 'example', 'license']
|
74 |
+
found_sections = sum(1 for section in key_sections if section in readme.lower())
|
75 |
+
return found_sections / len(key_sections)
|
76 |
+
|
77 |
+
def code_readme_consistency(repo_content, readme):
|
78 |
+
code_elements = set(re.findall(r'def\s+(\w+)', repo_content) +
|
79 |
+
re.findall(r'class\s+(\w+)', repo_content))
|
80 |
+
|
81 |
+
mentioned_elements = sum(1 for element in code_elements if element in readme)
|
82 |
+
|
83 |
+
return mentioned_elements / len(code_elements) if code_elements else 0
|
84 |
+
|
85 |
+
def calculate_readability(text):
|
86 |
+
return flesch_reading_ease(text) / 100
|
87 |
+
|
88 |
+
def evaluate_readme(reference_readme, generated_readme, repo_content):
|
89 |
+
bleu_score = calculate_bleu(reference_readme, generated_readme)
|
90 |
+
rouge_scores = calculate_rouge(reference_readme, generated_readme)
|
91 |
+
cosine_sim = calculate_cosine_similarity(reference_readme, generated_readme)
|
92 |
+
structural_sim = calculate_structural_similarity(reference_readme, generated_readme)
|
93 |
+
info_retrieval = information_retrieval_score(generated_readme)
|
94 |
+
code_consistency = code_readme_consistency(repo_content, generated_readme)
|
95 |
+
readability = calculate_readability(generated_readme)
|
96 |
+
|
97 |
+
weights = {
|
98 |
+
'bleu': 0.1,
|
99 |
+
'rouge-1': 0.1,
|
100 |
+
'rouge-2': 0.1,
|
101 |
+
'rouge-l': 0.1,
|
102 |
+
'cosine_similarity': 0.1,
|
103 |
+
'structural_similarity': 0.1,
|
104 |
+
'information_retrieval': 0.15,
|
105 |
+
'code_consistency': 0.15,
|
106 |
+
'readability': 0.1
|
107 |
+
}
|
108 |
+
|
109 |
+
weighted_score = (
|
110 |
+
weights['bleu'] * bleu_score +
|
111 |
+
weights['rouge-1'] * rouge_scores['rouge-1'] +
|
112 |
+
weights['rouge-2'] * rouge_scores['rouge-2'] +
|
113 |
+
weights['rouge-l'] * rouge_scores['rouge-l'] +
|
114 |
+
weights['cosine_similarity'] * cosine_sim +
|
115 |
+
weights['structural_similarity'] * structural_sim['title_similarity'] +
|
116 |
+
weights['information_retrieval'] * info_retrieval +
|
117 |
+
weights['code_consistency'] * code_consistency +
|
118 |
+
weights['readability'] * readability
|
119 |
+
)
|
120 |
+
|
121 |
+
return {
|
122 |
+
'bleu': bleu_score,
|
123 |
+
'rouge': rouge_scores,
|
124 |
+
'cosine_similarity': cosine_sim,
|
125 |
+
'structural_similarity': structural_sim,
|
126 |
+
'information_retrieval': info_retrieval,
|
127 |
+
'code_consistency': code_consistency,
|
128 |
+
'readability': readability,
|
129 |
+
'weighted_score': weighted_score
|
130 |
+
}
|
131 |
+
|
132 |
+
def generate_readme(repo_content, model, client):
|
133 |
+
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository.
|
134 |
+
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks.
|
135 |
+
The README should include the following sections:
|
136 |
+
1. Project Title
|
137 |
+
2. Description
|
138 |
+
3. Installation
|
139 |
+
4. Usage
|
140 |
+
5. Features
|
141 |
+
6. Contributing
|
142 |
+
7. License
|
143 |
+
Ensure that your response is well-structured, informative, and directly usable as a README.md file."""
|
144 |
+
|
145 |
+
user_prompt = f"Here is the content of the repository:\n\n{repo_content}\n\nBased on this content, please generate a README.md file."
|
146 |
+
|
147 |
+
response = client.chat.completions.create(
|
148 |
+
model=model,
|
149 |
+
messages=[
|
150 |
+
{"role": "system", "content": system_prompt},
|
151 |
+
{"role": "user", "content": user_prompt}
|
152 |
+
]
|
153 |
+
)
|
154 |
+
|
155 |
+
return response.choices[0].message.content
|
156 |
+
|
157 |
+
def main(args):
|
158 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
159 |
+
if not openai.api_key:
|
160 |
+
raise ValueError("OPENAI_API_KEY environment variable is not set")
|
161 |
+
|
162 |
+
client = openai.OpenAI(base_url=args.base_url) if args.base_url else openai.OpenAI()
|
163 |
+
|
164 |
+
dataset = load_dataset("patched-codes/generate-readme-eval")
|
165 |
+
|
166 |
+
results = []
|
167 |
+
|
168 |
+
for item in tqdm(dataset['test'], desc="Processing repos"):
|
169 |
+
try:
|
170 |
+
generated_readme = generate_readme(item['repo_content'], args.model, client)
|
171 |
+
eval_result = evaluate_readme(item['repo_readme'], generated_readme, item['repo_content'])
|
172 |
+
# Add repo_name to the eval_result
|
173 |
+
eval_result['repo_name'] = item['repo_name']
|
174 |
+
results.append(eval_result)
|
175 |
+
except Exception as e:
|
176 |
+
print(f"Error processing repo {item['repo_name']}: {e}")
|
177 |
+
continue
|
178 |
+
|
179 |
+
average_scores = {
|
180 |
+
'bleu': np.mean([r['bleu'] for r in results]),
|
181 |
+
'rouge-1': np.mean([r['rouge']['rouge-1'] for r in results]),
|
182 |
+
'rouge-2': np.mean([r['rouge']['rouge-2'] for r in results]),
|
183 |
+
'rouge-l': np.mean([r['rouge']['rouge-l'] for r in results]),
|
184 |
+
'cosine_similarity': np.mean([r['cosine_similarity'] for r in results]),
|
185 |
+
'title_similarity': np.mean([r['structural_similarity']['title_similarity'] for r in results]),
|
186 |
+
'information_retrieval': np.mean([r['information_retrieval'] for r in results]),
|
187 |
+
'code_consistency': np.mean([r['code_consistency'] for r in results]),
|
188 |
+
'readability': np.mean([r['readability'] for r in results]),
|
189 |
+
'weighted_score': np.mean([r['weighted_score'] for r in results])
|
190 |
+
}
|
191 |
+
|
192 |
+
# Print results to console
|
193 |
+
print("\nEvaluation Results:")
|
194 |
+
for metric, score in average_scores.items():
|
195 |
+
print(f"{metric}: {score:.4f}")
|
196 |
+
|
197 |
+
# Save results to log file
|
198 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
199 |
+
log_filename = f"{args.model}_results_{timestamp}.log"
|
200 |
+
|
201 |
+
with open(log_filename, 'w') as log_file:
|
202 |
+
log_file.write(f"Evaluation Results for model: {args.model}\n")
|
203 |
+
log_file.write(f"Timestamp: {timestamp}\n\n")
|
204 |
+
log_file.write("Average Scores:\n")
|
205 |
+
for metric, score in average_scores.items():
|
206 |
+
log_file.write(f"{metric}: {score:.4f}\n")
|
207 |
+
|
208 |
+
log_file.write(f"\nDetailed Results:\n")
|
209 |
+
for result in results:
|
210 |
+
log_file.write(f"\nRepository: {result['repo_name']}\n")
|
211 |
+
log_file.write("Scores:\n")
|
212 |
+
log_file.write(f" BLEU: {result['bleu']:.4f}\n")
|
213 |
+
log_file.write(f" ROUGE-1: {result['rouge']['rouge-1']:.4f}\n")
|
214 |
+
log_file.write(f" ROUGE-2: {result['rouge']['rouge-2']:.4f}\n")
|
215 |
+
log_file.write(f" ROUGE-L: {result['rouge']['rouge-l']:.4f}\n")
|
216 |
+
log_file.write(f" Cosine Similarity: {result['cosine_similarity']:.4f}\n")
|
217 |
+
log_file.write(f" Title Similarity: {result['structural_similarity']['title_similarity']:.4f}\n")
|
218 |
+
log_file.write(f" Information Retrieval: {result['information_retrieval']:.4f}\n")
|
219 |
+
log_file.write(f" Code Consistency: {result['code_consistency']:.4f}\n")
|
220 |
+
log_file.write(f" Readability: {result['readability']:.4f}\n")
|
221 |
+
log_file.write(f" Weighted Score: {result['weighted_score']:.4f}\n")
|
222 |
+
|
223 |
+
print(f"\nResults saved to {log_filename}")
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
parser = argparse.ArgumentParser(description="Generate and evaluate README files using OpenAI API")
|
227 |
+
parser.add_argument("model", help="OpenAI model to use")
|
228 |
+
parser.add_argument("--base_url", help="Optional base URL for OpenAI API", default=None)
|
229 |
+
args = parser.parse_args()
|
230 |
+
|
231 |
+
main(args)
|
_script_for_gen.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
from github import Github
|
6 |
+
import tiktoken
|
7 |
+
from pathlib import Path
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
+
|
13 |
+
# Initialize GitHub client
|
14 |
+
github_token = os.getenv('GITHUB_TOKEN')
|
15 |
+
if not github_token:
|
16 |
+
raise ValueError("GITHUB_TOKEN environment variable is not set")
|
17 |
+
g = Github(github_token)
|
18 |
+
|
19 |
+
# Initialize tokenizer
|
20 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
21 |
+
|
22 |
+
def clone_repo(repo_url, repo_name):
|
23 |
+
tmp_dir = f"/tmp/{repo_name}"
|
24 |
+
subprocess.run(["git", "clone", "--depth", "1", repo_url, tmp_dir], check=True)
|
25 |
+
return tmp_dir
|
26 |
+
|
27 |
+
def get_repo_content(repo_dir):
|
28 |
+
content = []
|
29 |
+
for root, dirs, files in os.walk(repo_dir):
|
30 |
+
if "test" in root.lower() or "example" in root.lower():
|
31 |
+
continue
|
32 |
+
for file in files:
|
33 |
+
if file.endswith('.py'):
|
34 |
+
file_path = os.path.join(root, file)
|
35 |
+
relative_path = os.path.relpath(file_path, repo_dir)
|
36 |
+
with open(file_path, 'r') as f:
|
37 |
+
file_content = f.read()
|
38 |
+
content.append(f"File: {relative_path}\n\n{file_content}\n\n")
|
39 |
+
return "\n".join(content)
|
40 |
+
|
41 |
+
def count_tokens(text):
|
42 |
+
return len(tokenizer.encode(text))
|
43 |
+
|
44 |
+
def process_repo(repo):
|
45 |
+
repo_name = repo.name
|
46 |
+
repo_url = repo.clone_url
|
47 |
+
logging.info(f"Processing repository: {repo_name}")
|
48 |
+
|
49 |
+
try:
|
50 |
+
tmp_dir = clone_repo(repo_url, repo_name)
|
51 |
+
readme_path = os.path.join(tmp_dir, "README.md")
|
52 |
+
|
53 |
+
if not os.path.exists(readme_path):
|
54 |
+
logging.info(f"README.md not found in {repo_name}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
repo_content = get_repo_content(tmp_dir)
|
58 |
+
if count_tokens(repo_content) >= 100000:
|
59 |
+
logging.info(f"Repository {repo_name} content exceeds 100k tokens")
|
60 |
+
return None
|
61 |
+
|
62 |
+
with open(readme_path, 'r') as f:
|
63 |
+
readme_content = f.read()
|
64 |
+
|
65 |
+
repo_commit = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=tmp_dir).decode().strip()
|
66 |
+
|
67 |
+
return {
|
68 |
+
"repo_name": repo_name,
|
69 |
+
"repo_commit": repo_commit,
|
70 |
+
"repo_content": repo_content,
|
71 |
+
"repo_readme": readme_content
|
72 |
+
}
|
73 |
+
except Exception as e:
|
74 |
+
logging.error(f"Error processing repository {repo_name}: {str(e)}")
|
75 |
+
return None
|
76 |
+
finally:
|
77 |
+
if 'tmp_dir' in locals():
|
78 |
+
shutil.rmtree(tmp_dir)
|
79 |
+
|
80 |
+
def load_existing_data(filename):
|
81 |
+
existing_data = {}
|
82 |
+
if os.path.exists(filename):
|
83 |
+
with open(filename, "r") as f:
|
84 |
+
for line in f:
|
85 |
+
item = json.loads(line)
|
86 |
+
existing_data[item['repo_name']] = item
|
87 |
+
return existing_data
|
88 |
+
|
89 |
+
def save_dataset(filename, dataset, mode='a'):
|
90 |
+
with open(filename, mode) as f:
|
91 |
+
for item in dataset:
|
92 |
+
json.dump(item, f)
|
93 |
+
f.write("\n")
|
94 |
+
|
95 |
+
def main():
|
96 |
+
g = Github(os.getenv('GITHUB_TOKEN'))
|
97 |
+
filename = "generate-readme-eval.jsonl"
|
98 |
+
existing_data = load_existing_data(filename)
|
99 |
+
|
100 |
+
new_dataset = []
|
101 |
+
updated_count = 0
|
102 |
+
skipped_count = 0
|
103 |
+
|
104 |
+
repos = g.search_repositories(query="language:python stars:>1000 forks:>100", sort="stars", order="desc")
|
105 |
+
|
106 |
+
for i, repo in enumerate(repos[200:400]):
|
107 |
+
if repo.full_name in existing_data:
|
108 |
+
existing_item = existing_data[repo.full_name]
|
109 |
+
if existing_item['repo_commit'] == repo.get_commits()[0].sha:
|
110 |
+
skipped_count += 1
|
111 |
+
logging.info(f"Skipped {repo.full_name}: Already processed with same commit")
|
112 |
+
continue
|
113 |
+
else:
|
114 |
+
logging.info(f"Updating {repo.full_name}: Commit changed")
|
115 |
+
updated_count += 1
|
116 |
+
|
117 |
+
item = process_repo(repo)
|
118 |
+
if item:
|
119 |
+
new_dataset.append(item)
|
120 |
+
|
121 |
+
if i % 10 == 0:
|
122 |
+
logging.info(f"Processed {i+1} repositories")
|
123 |
+
|
124 |
+
# Append new and updated items to the file
|
125 |
+
save_dataset(filename, new_dataset, mode='a')
|
126 |
+
|
127 |
+
logging.info(f"Dataset updated with {len(new_dataset)} new/updated items")
|
128 |
+
logging.info(f"Skipped {skipped_count} repositories (no changes)")
|
129 |
+
logging.info(f"Updated {updated_count} repositories")
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
main()
|