Upload 2 files
Browse files- _script_for_eval.py +125 -224
- _script_for_gen.py +403 -124
_script_for_eval.py
CHANGED
@@ -1,231 +1,132 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import json
|
4 |
-
import
|
5 |
-
from
|
6 |
-
import
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
scores = rouge.get_scores(candidate, reference)
|
32 |
-
return {
|
33 |
-
'rouge-1': scores[0]['rouge-1']['f'],
|
34 |
-
'rouge-2': scores[0]['rouge-2']['f'],
|
35 |
-
'rouge-l': scores[0]['rouge-l']['f']
|
36 |
-
}
|
37 |
-
|
38 |
-
def calculate_cosine_similarity(reference, candidate):
|
39 |
-
vectorizer = TfidfVectorizer()
|
40 |
-
tfidf_matrix = vectorizer.fit_transform([reference, candidate])
|
41 |
-
return cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
|
42 |
-
|
43 |
-
def extract_sections(readme):
|
44 |
-
sections = []
|
45 |
-
current_section = ""
|
46 |
-
for line in readme.split('\n'):
|
47 |
-
if line.strip().startswith('#'):
|
48 |
-
if current_section:
|
49 |
-
sections.append(current_section.strip())
|
50 |
-
current_section = line + "\n"
|
51 |
-
else:
|
52 |
-
current_section += line + "\n"
|
53 |
-
if current_section:
|
54 |
-
sections.append(current_section.strip())
|
55 |
-
return sections
|
56 |
-
|
57 |
-
def calculate_structural_similarity(reference, candidate):
|
58 |
-
ref_sections = extract_sections(reference)
|
59 |
-
cand_sections = extract_sections(candidate)
|
60 |
-
|
61 |
-
section_diff = abs(len(ref_sections) - len(cand_sections))
|
62 |
-
|
63 |
-
ref_titles = [s.split('\n')[0] for s in ref_sections]
|
64 |
-
cand_titles = [s.split('\n')[0] for s in cand_sections]
|
65 |
-
title_similarity = len(set(ref_titles) & set(cand_titles)) / max(len(ref_titles), len(cand_titles))
|
66 |
-
|
67 |
-
return {
|
68 |
-
'section_difference': section_diff,
|
69 |
-
'title_similarity': title_similarity
|
70 |
-
}
|
71 |
-
|
72 |
-
def information_retrieval_score(readme):
|
73 |
-
key_sections = ['installation', 'usage', 'api', 'example', 'license']
|
74 |
-
found_sections = sum(1 for section in key_sections if section in readme.lower())
|
75 |
-
return found_sections / len(key_sections)
|
76 |
-
|
77 |
-
def code_readme_consistency(repo_content, readme):
|
78 |
-
code_elements = set(re.findall(r'def\s+(\w+)', repo_content) +
|
79 |
-
re.findall(r'class\s+(\w+)', repo_content))
|
80 |
-
|
81 |
-
mentioned_elements = sum(1 for element in code_elements if element in readme)
|
82 |
-
|
83 |
-
return mentioned_elements / len(code_elements) if code_elements else 0
|
84 |
-
|
85 |
-
def calculate_readability(text):
|
86 |
-
return flesch_reading_ease(text) / 100
|
87 |
-
|
88 |
-
def evaluate_readme(reference_readme, generated_readme, repo_content):
|
89 |
-
bleu_score = calculate_bleu(reference_readme, generated_readme)
|
90 |
-
rouge_scores = calculate_rouge(reference_readme, generated_readme)
|
91 |
-
cosine_sim = calculate_cosine_similarity(reference_readme, generated_readme)
|
92 |
-
structural_sim = calculate_structural_similarity(reference_readme, generated_readme)
|
93 |
-
info_retrieval = information_retrieval_score(generated_readme)
|
94 |
-
code_consistency = code_readme_consistency(repo_content, generated_readme)
|
95 |
-
readability = calculate_readability(generated_readme)
|
96 |
-
|
97 |
-
weights = {
|
98 |
-
'bleu': 0.1,
|
99 |
-
'rouge-1': 0.1,
|
100 |
-
'rouge-2': 0.1,
|
101 |
-
'rouge-l': 0.1,
|
102 |
-
'cosine_similarity': 0.1,
|
103 |
-
'structural_similarity': 0.1,
|
104 |
-
'information_retrieval': 0.15,
|
105 |
-
'code_consistency': 0.15,
|
106 |
-
'readability': 0.1
|
107 |
-
}
|
108 |
-
|
109 |
-
weighted_score = (
|
110 |
-
weights['bleu'] * bleu_score +
|
111 |
-
weights['rouge-1'] * rouge_scores['rouge-1'] +
|
112 |
-
weights['rouge-2'] * rouge_scores['rouge-2'] +
|
113 |
-
weights['rouge-l'] * rouge_scores['rouge-l'] +
|
114 |
-
weights['cosine_similarity'] * cosine_sim +
|
115 |
-
weights['structural_similarity'] * structural_sim['title_similarity'] +
|
116 |
-
weights['information_retrieval'] * info_retrieval +
|
117 |
-
weights['code_consistency'] * code_consistency +
|
118 |
-
weights['readability'] * readability
|
119 |
-
)
|
120 |
-
|
121 |
-
return {
|
122 |
-
'bleu': bleu_score,
|
123 |
-
'rouge': rouge_scores,
|
124 |
-
'cosine_similarity': cosine_sim,
|
125 |
-
'structural_similarity': structural_sim,
|
126 |
-
'information_retrieval': info_retrieval,
|
127 |
-
'code_consistency': code_consistency,
|
128 |
-
'readability': readability,
|
129 |
-
'weighted_score': weighted_score
|
130 |
-
}
|
131 |
-
|
132 |
-
def generate_readme(repo_content, model, client):
|
133 |
-
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository.
|
134 |
-
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks.
|
135 |
-
The README should include the following sections:
|
136 |
-
1. Project Title
|
137 |
-
2. Description
|
138 |
-
3. Installation
|
139 |
-
4. Usage
|
140 |
-
5. Features
|
141 |
-
6. Contributing
|
142 |
-
7. License
|
143 |
-
Ensure that your response is well-structured, informative, and directly usable as a README.md file."""
|
144 |
-
|
145 |
-
user_prompt = f"Here is the content of the repository:\n\n{repo_content}\n\nBased on this content, please generate a README.md file."
|
146 |
-
|
147 |
-
response = client.chat.completions.create(
|
148 |
-
model=model,
|
149 |
-
messages=[
|
150 |
-
{"role": "system", "content": system_prompt},
|
151 |
-
{"role": "user", "content": user_prompt}
|
152 |
-
]
|
153 |
-
)
|
154 |
-
|
155 |
-
return response.choices[0].message.content
|
156 |
-
|
157 |
-
def main(args):
|
158 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
159 |
-
if not openai.api_key:
|
160 |
-
raise ValueError("OPENAI_API_KEY environment variable is not set")
|
161 |
-
|
162 |
-
client = openai.OpenAI(base_url=args.base_url) if args.base_url else openai.OpenAI()
|
163 |
-
|
164 |
-
dataset = load_dataset("patched-codes/generate-readme-eval")
|
165 |
-
|
166 |
-
results = []
|
167 |
-
|
168 |
-
for item in tqdm(dataset['test'], desc="Processing repos"):
|
169 |
-
try:
|
170 |
-
generated_readme = generate_readme(item['repo_content'], args.model, client)
|
171 |
-
eval_result = evaluate_readme(item['repo_readme'], generated_readme, item['repo_content'])
|
172 |
-
# Add repo_name to the eval_result
|
173 |
-
eval_result['repo_name'] = item['repo_name']
|
174 |
-
results.append(eval_result)
|
175 |
-
except Exception as e:
|
176 |
-
print(f"Error processing repo {item['repo_name']}: {e}")
|
177 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
log_filename = f"{args.model}_results_{timestamp}.log"
|
200 |
-
|
201 |
-
with open(log_filename, 'w') as log_file:
|
202 |
-
log_file.write(f"Evaluation Results for model: {args.model}\n")
|
203 |
-
log_file.write(f"Timestamp: {timestamp}\n\n")
|
204 |
-
log_file.write("Average Scores:\n")
|
205 |
-
for metric, score in average_scores.items():
|
206 |
-
log_file.write(f"{metric}: {score:.4f}\n")
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
log_file.write(f" Title Similarity: {result['structural_similarity']['title_similarity']:.4f}\n")
|
218 |
-
log_file.write(f" Information Retrieval: {result['information_retrieval']:.4f}\n")
|
219 |
-
log_file.write(f" Code Consistency: {result['code_consistency']:.4f}\n")
|
220 |
-
log_file.write(f" Readability: {result['readability']:.4f}\n")
|
221 |
-
log_file.write(f" Weighted Score: {result['weighted_score']:.4f}\n")
|
222 |
-
|
223 |
-
print(f"\nResults saved to {log_filename}")
|
224 |
|
225 |
if __name__ == "__main__":
|
226 |
-
|
227 |
-
parser.add_argument("model", help="OpenAI model to use")
|
228 |
-
parser.add_argument("--base_url", help="Optional base URL for OpenAI API", default=None)
|
229 |
-
args = parser.parse_args()
|
230 |
-
|
231 |
-
main(args)
|
|
|
1 |
import os
|
2 |
+
import subprocess
|
3 |
import json
|
4 |
+
import logging
|
5 |
+
from github import Github
|
6 |
+
import tiktoken
|
7 |
+
from pathlib import Path
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
+
|
13 |
+
# Initialize GitHub client
|
14 |
+
github_token = os.getenv('GITHUB_TOKEN')
|
15 |
+
if not github_token:
|
16 |
+
raise ValueError("GITHUB_TOKEN environment variable is not set")
|
17 |
+
g = Github(github_token)
|
18 |
+
|
19 |
+
# Initialize tokenizer
|
20 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
21 |
+
|
22 |
+
def clone_repo(repo_url, repo_name):
|
23 |
+
tmp_dir = f"/tmp/{repo_name}"
|
24 |
+
subprocess.run(["git", "clone", "--depth", "1", repo_url, tmp_dir], check=True)
|
25 |
+
return tmp_dir
|
26 |
+
|
27 |
+
def get_repo_content(repo_dir):
|
28 |
+
content = []
|
29 |
+
for root, dirs, files in os.walk(repo_dir):
|
30 |
+
if "test" in root.lower() or "example" in root.lower():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
continue
|
32 |
+
for file in files:
|
33 |
+
if file.endswith('.py'):
|
34 |
+
file_path = os.path.join(root, file)
|
35 |
+
relative_path = os.path.relpath(file_path, repo_dir)
|
36 |
+
with open(file_path, 'r') as f:
|
37 |
+
file_content = f.read()
|
38 |
+
content.append(f"File: {relative_path}\n\n{file_content}\n\n")
|
39 |
+
return "\n".join(content)
|
40 |
+
|
41 |
+
def count_tokens(text):
|
42 |
+
return len(tokenizer.encode(text))
|
43 |
+
|
44 |
+
def process_repo(repo):
|
45 |
+
repo_name = repo.name
|
46 |
+
repo_url = repo.clone_url
|
47 |
+
logging.info(f"Processing repository: {repo_name}")
|
48 |
+
|
49 |
+
try:
|
50 |
+
tmp_dir = clone_repo(repo_url, repo_name)
|
51 |
+
readme_path = os.path.join(tmp_dir, "README.md")
|
52 |
+
|
53 |
+
if not os.path.exists(readme_path):
|
54 |
+
logging.info(f"README.md not found in {repo_name}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
repo_content = get_repo_content(tmp_dir)
|
58 |
+
if count_tokens(repo_content) >= 100000:
|
59 |
+
logging.info(f"Repository {repo_name} content exceeds 100k tokens")
|
60 |
+
return None
|
61 |
+
|
62 |
+
with open(readme_path, 'r') as f:
|
63 |
+
readme_content = f.read()
|
64 |
+
|
65 |
+
repo_commit = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=tmp_dir).decode().strip()
|
66 |
+
|
67 |
+
return {
|
68 |
+
"repo_name": repo_name,
|
69 |
+
"repo_commit": repo_commit,
|
70 |
+
"repo_content": repo_content,
|
71 |
+
"repo_readme": readme_content
|
72 |
+
}
|
73 |
+
except Exception as e:
|
74 |
+
logging.error(f"Error processing repository {repo_name}: {str(e)}")
|
75 |
+
return None
|
76 |
+
finally:
|
77 |
+
if 'tmp_dir' in locals():
|
78 |
+
shutil.rmtree(tmp_dir)
|
79 |
+
|
80 |
+
def load_existing_data(filename):
|
81 |
+
existing_data = {}
|
82 |
+
if os.path.exists(filename):
|
83 |
+
with open(filename, "r") as f:
|
84 |
+
for line in f:
|
85 |
+
item = json.loads(line)
|
86 |
+
existing_data[item['repo_name']] = item
|
87 |
+
return existing_data
|
88 |
+
|
89 |
+
def save_dataset(filename, dataset, mode='a'):
|
90 |
+
with open(filename, mode) as f:
|
91 |
+
for item in dataset:
|
92 |
+
json.dump(item, f)
|
93 |
+
f.write("\n")
|
94 |
+
|
95 |
+
def main():
|
96 |
+
g = Github(os.getenv('GITHUB_TOKEN'))
|
97 |
+
filename = "generate-readme-eval.jsonl"
|
98 |
+
existing_data = load_existing_data(filename)
|
99 |
|
100 |
+
new_dataset = []
|
101 |
+
updated_count = 0
|
102 |
+
skipped_count = 0
|
103 |
+
|
104 |
+
repos = g.search_repositories(query="language:python stars:>1000 forks:>100", sort="stars", order="desc")
|
105 |
+
|
106 |
+
for i, repo in enumerate(repos[200:400]):
|
107 |
+
if repo.full_name in existing_data:
|
108 |
+
existing_item = existing_data[repo.full_name]
|
109 |
+
if existing_item['repo_commit'] == repo.get_commits()[0].sha:
|
110 |
+
skipped_count += 1
|
111 |
+
logging.info(f"Skipped {repo.full_name}: Already processed with same commit")
|
112 |
+
continue
|
113 |
+
else:
|
114 |
+
logging.info(f"Updating {repo.full_name}: Commit changed")
|
115 |
+
updated_count += 1
|
116 |
+
|
117 |
+
item = process_repo(repo)
|
118 |
+
if item:
|
119 |
+
new_dataset.append(item)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
if i % 10 == 0:
|
122 |
+
logging.info(f"Processed {i+1} repositories")
|
123 |
+
|
124 |
+
# Append new and updated items to the file
|
125 |
+
save_dataset(filename, new_dataset, mode='a')
|
126 |
+
|
127 |
+
logging.info(f"Dataset updated with {len(new_dataset)} new/updated items")
|
128 |
+
logging.info(f"Skipped {skipped_count} repositories (no changes)")
|
129 |
+
logging.info(f"Updated {updated_count} repositories")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
+
main()
|
|
|
|
|
|
|
|
|
|
_script_for_gen.py
CHANGED
@@ -1,132 +1,411 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import json
|
4 |
-
import
|
5 |
-
from
|
6 |
-
import
|
7 |
-
from
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
return
|
40 |
-
|
41 |
-
def
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
"
|
69 |
-
|
70 |
-
"
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
else:
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
save_dataset(filename, new_dataset, mode='a')
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import argparse
|
3 |
import json
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
import nltk
|
7 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
8 |
+
from rouge import Rouge
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
+
import re
|
12 |
+
from textstat import flesch_reading_ease
|
13 |
+
from datasets import load_dataset
|
14 |
+
import openai
|
15 |
+
import time
|
16 |
+
from datetime import datetime
|
17 |
+
import google.generativeai as genai
|
18 |
+
import traceback
|
19 |
+
|
20 |
+
SLEEP_INTERVAL = 30
|
21 |
+
|
22 |
+
nltk.download('punkt', quiet=True)
|
23 |
+
nltk.download('averaged_perceptron_tagger', quiet=True)
|
24 |
+
|
25 |
+
def create_client(model_name, base_url):
|
26 |
+
if model_name.lower().startswith('gemini'):
|
27 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
28 |
+
if not api_key:
|
29 |
+
raise ValueError("GOOGLE_API_KEY environment variable is not set")
|
30 |
+
genai.configure(api_key=api_key)
|
31 |
+
return 'gemini'
|
32 |
+
else:
|
33 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
34 |
+
if not api_key:
|
35 |
+
raise ValueError("OPENAI_API_KEY environment variable is not set")
|
36 |
+
return openai.OpenAI(api_key=api_key) if base_url is None else openai.OpenAI(api_key=api_key, base_url=base_url)
|
37 |
+
|
38 |
+
def preprocess(text):
|
39 |
+
return nltk.word_tokenize(text.lower())
|
40 |
+
|
41 |
+
def calculate_bleu(reference, candidate):
|
42 |
+
reference_tokens = preprocess(reference)
|
43 |
+
candidate_tokens = preprocess(candidate)
|
44 |
+
smoothie = SmoothingFunction().method1
|
45 |
+
return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=smoothie)
|
46 |
+
|
47 |
+
def calculate_rouge(reference, candidate):
|
48 |
+
rouge = Rouge()
|
49 |
+
scores = rouge.get_scores(candidate, reference)
|
50 |
+
return {
|
51 |
+
'rouge-1': scores[0]['rouge-1']['f'],
|
52 |
+
'rouge-2': scores[0]['rouge-2']['f'],
|
53 |
+
'rouge-l': scores[0]['rouge-l']['f']
|
54 |
+
}
|
55 |
+
|
56 |
+
def calculate_cosine_similarity(reference, candidate):
|
57 |
+
vectorizer = TfidfVectorizer()
|
58 |
+
tfidf_matrix = vectorizer.fit_transform([reference, candidate])
|
59 |
+
return cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
|
60 |
+
|
61 |
+
def extract_sections(readme):
|
62 |
+
sections = []
|
63 |
+
current_section = ""
|
64 |
+
for line in readme.split('\n'):
|
65 |
+
if line.strip().startswith('#'):
|
66 |
+
if current_section:
|
67 |
+
sections.append(current_section.strip())
|
68 |
+
current_section = line + "\n"
|
69 |
+
else:
|
70 |
+
current_section += line + "\n"
|
71 |
+
if current_section:
|
72 |
+
sections.append(current_section.strip())
|
73 |
+
return sections
|
74 |
+
|
75 |
+
def calculate_structural_similarity(reference, candidate):
|
76 |
+
ref_sections = extract_sections(reference)
|
77 |
+
cand_sections = extract_sections(candidate)
|
78 |
+
|
79 |
+
# Calculate section difference
|
80 |
+
max_sections = max(len(ref_sections), len(cand_sections))
|
81 |
+
section_diff = abs(len(ref_sections) - len(cand_sections))
|
82 |
+
section_similarity = 1 - (section_diff / max_sections) if max_sections > 0 else 0
|
83 |
+
|
84 |
+
# Calculate title similarity
|
85 |
+
ref_titles = [s.split('\n')[0] for s in ref_sections]
|
86 |
+
cand_titles = [s.split('\n')[0] for s in cand_sections]
|
87 |
+
title_similarity = len(set(ref_titles) & set(cand_titles)) / max(len(ref_titles), len(cand_titles)) if ref_titles or cand_titles else 0
|
88 |
+
|
89 |
+
# Combine section and title similarity
|
90 |
+
structural_similarity = (section_similarity + title_similarity) / 2
|
91 |
+
|
92 |
+
return structural_similarity
|
93 |
+
|
94 |
+
def information_retrieval_score(readme):
|
95 |
+
key_sections = ['installation', 'usage', 'api', 'example', 'license']
|
96 |
+
found_sections = sum(1 for section in key_sections if section in readme.lower())
|
97 |
+
return found_sections / len(key_sections)
|
98 |
+
|
99 |
+
def code_readme_consistency(repo_content, readme):
|
100 |
+
code_elements = set(re.findall(r'def\s+(\w+)', repo_content) +
|
101 |
+
re.findall(r'class\s+(\w+)', repo_content))
|
102 |
+
|
103 |
+
mentioned_elements = sum(1 for element in code_elements if element in readme)
|
104 |
+
|
105 |
+
return mentioned_elements / len(code_elements) if code_elements else 0
|
106 |
+
|
107 |
+
def calculate_readability(text):
|
108 |
+
return flesch_reading_ease(text) / 100
|
109 |
+
|
110 |
+
def evaluate_readme(reference_readme, generated_readme, repo_content):
|
111 |
+
bleu_score = calculate_bleu(reference_readme, generated_readme)
|
112 |
+
rouge_scores = calculate_rouge(reference_readme, generated_readme)
|
113 |
+
cosine_sim = calculate_cosine_similarity(reference_readme, generated_readme)
|
114 |
+
structural_sim = calculate_structural_similarity(reference_readme, generated_readme)
|
115 |
+
info_retrieval = information_retrieval_score(generated_readme)
|
116 |
+
code_consistency = code_readme_consistency(repo_content, generated_readme)
|
117 |
+
readability = calculate_readability(generated_readme)
|
118 |
+
|
119 |
+
weights = {
|
120 |
+
'bleu': 0.1,
|
121 |
+
'rouge-1': 0.033,
|
122 |
+
'rouge-2': 0.033,
|
123 |
+
'rouge-l': 0.034,
|
124 |
+
'cosine_similarity': 0.1,
|
125 |
+
'structural_similarity': 0.1,
|
126 |
+
'information_retrieval': 0.2,
|
127 |
+
'code_consistency': 0.2,
|
128 |
+
'readability': 0.2
|
129 |
+
}
|
130 |
+
|
131 |
+
weighted_score = (
|
132 |
+
weights['bleu'] * bleu_score +
|
133 |
+
weights['rouge-1'] * rouge_scores['rouge-1'] +
|
134 |
+
weights['rouge-2'] * rouge_scores['rouge-2'] +
|
135 |
+
weights['rouge-l'] * rouge_scores['rouge-l'] +
|
136 |
+
weights['cosine_similarity'] * cosine_sim +
|
137 |
+
weights['structural_similarity'] * structural_sim +
|
138 |
+
weights['information_retrieval'] * info_retrieval +
|
139 |
+
weights['code_consistency'] * code_consistency +
|
140 |
+
weights['readability'] * readability
|
141 |
+
)
|
142 |
+
|
143 |
+
return {
|
144 |
+
'bleu': bleu_score,
|
145 |
+
'rouge': rouge_scores,
|
146 |
+
'cosine_similarity': cosine_sim,
|
147 |
+
'structural_similarity': structural_sim,
|
148 |
+
'information_retrieval': info_retrieval,
|
149 |
+
'code_consistency': code_consistency,
|
150 |
+
'readability': readability,
|
151 |
+
'weighted_score': weighted_score
|
152 |
+
}
|
153 |
+
|
154 |
+
def generate_readme_openai(repo_content, model, client):
|
155 |
+
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository.
|
156 |
+
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks.
|
157 |
+
The README should include the following sections:
|
158 |
+
1. Project Title
|
159 |
+
2. Description
|
160 |
+
3. Installation
|
161 |
+
4. Usage
|
162 |
+
5. Features
|
163 |
+
6. Contributing
|
164 |
+
7. License
|
165 |
+
Ensure that your response is well-structured, informative, and directly usable as a README.md file."""
|
166 |
+
|
167 |
+
user_prompt = f"Here is the content of the repository:\n\n{repo_content}\n\nBased on this content, please generate a README.md file."
|
168 |
+
|
169 |
+
response = client.chat.completions.create(
|
170 |
+
model=model,
|
171 |
+
messages=[
|
172 |
+
{"role": "system", "content": system_prompt},
|
173 |
+
{"role": "user", "content": user_prompt}
|
174 |
+
]
|
175 |
+
)
|
176 |
+
|
177 |
+
return response.choices[0].message.content
|
178 |
+
|
179 |
+
def generate_readme_gemini(repo_content, model):
|
180 |
+
safe = [
|
181 |
+
{
|
182 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
183 |
+
"threshold": "BLOCK_NONE",
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
187 |
+
"threshold": "BLOCK_NONE",
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
191 |
+
"threshold": "BLOCK_NONE",
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
195 |
+
"threshold": "BLOCK_NONE",
|
196 |
+
},
|
197 |
+
]
|
198 |
+
prompt = f"""Create a README.md file for a GitHub repository based on the following repository content.
|
199 |
+
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks.
|
200 |
+
The README should include the following sections:
|
201 |
+
1. Project Title
|
202 |
+
2. Description
|
203 |
+
3. Installation
|
204 |
+
4. Usage
|
205 |
+
5. Features
|
206 |
+
6. Contributing
|
207 |
+
7. License
|
208 |
+
Ensure that your response is well-structured, informative, and directly usable as a README.md file.
|
209 |
+
|
210 |
+
Repository content:
|
211 |
+
|
212 |
+
{repo_content}
|
213 |
+
"""
|
214 |
+
|
215 |
+
model = genai.GenerativeModel(model,safety_settings=safe)
|
216 |
+
response = model.generate_content(prompt)
|
217 |
+
|
218 |
+
return response.text
|
219 |
+
|
220 |
+
def generate_readme(repo_content, model_name, client):
|
221 |
+
if client == 'gemini':
|
222 |
+
return generate_readme_gemini(repo_content, model_name)
|
223 |
+
else:
|
224 |
+
return generate_readme_openai(repo_content, model_name, client)
|
225 |
+
|
226 |
+
def main(args):
|
227 |
+
dataset = load_dataset("patched-codes/generate-readme-eval")
|
228 |
+
|
229 |
+
results = []
|
230 |
+
|
231 |
+
if args.generate_fine_tune_jsonl:
|
232 |
+
output_file = f"fine_tune_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl"
|
233 |
+
generate_fine_tune_jsonl(dataset, output_file)
|
234 |
+
print(f"Fine-tune JSONL file generated: {output_file}")
|
235 |
+
return
|
236 |
+
|
237 |
+
if args.oracle:
|
238 |
+
model_name = "oracle"
|
239 |
+
else:
|
240 |
+
model_name = args.model
|
241 |
+
client = create_client(model_name, args.base_url)
|
242 |
+
|
243 |
+
for item in tqdm(dataset['test'], desc="Processing repos"):
|
244 |
+
try:
|
245 |
+
if args.oracle:
|
246 |
+
# Use the existing README as both reference and generated
|
247 |
+
generated_readme = item['repo_readme']
|
248 |
+
elif args.n_shot > 0:
|
249 |
+
generated_readme = generate_readme_n_shot(item['repo_content'], model_name, client, dataset['train'], args.n_shot)
|
250 |
else:
|
251 |
+
generated_readme = generate_readme(item['repo_content'], model_name, client)
|
252 |
+
|
253 |
+
eval_result = evaluate_readme(item['repo_readme'], generated_readme, item['repo_content'])
|
254 |
+
eval_result['repo_name'] = item['repo_name']
|
255 |
+
results.append(eval_result)
|
256 |
+
except Exception as e:
|
257 |
+
print(f"Error processing repo {item['repo_name']}: {e}")
|
258 |
+
continue
|
259 |
+
if model_name.lower().startswith('gemini'):
|
260 |
+
time.sleep(SLEEP_INTERVAL)
|
261 |
+
|
262 |
+
average_scores = {
|
263 |
+
'bleu': np.mean([r['bleu'] for r in results]),
|
264 |
+
'rouge-1': np.mean([r['rouge']['rouge-1'] for r in results]),
|
265 |
+
'rouge-2': np.mean([r['rouge']['rouge-2'] for r in results]),
|
266 |
+
'rouge-l': np.mean([r['rouge']['rouge-l'] for r in results]),
|
267 |
+
'cosine_similarity': np.mean([r['cosine_similarity'] for r in results]),
|
268 |
+
'structural_similarity': np.mean([r['structural_similarity'] for r in results]),
|
269 |
+
'information_retrieval': np.mean([r['information_retrieval'] for r in results]),
|
270 |
+
'code_consistency': np.mean([r['code_consistency'] for r in results]),
|
271 |
+
'readability': np.mean([r['readability'] for r in results]),
|
272 |
+
'weighted_score': np.mean([r['weighted_score'] for r in results])
|
273 |
+
}
|
274 |
+
|
275 |
+
# Print results to console
|
276 |
+
print("\nEvaluation Results:")
|
277 |
+
for metric, score in average_scores.items():
|
278 |
+
print(f"{metric}: {score:.4f}")
|
279 |
+
|
280 |
+
# Save results to log file
|
281 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
282 |
+
log_filename = f"{model_name}_results_{timestamp}.log"
|
283 |
+
|
284 |
+
with open(log_filename, 'w') as log_file:
|
285 |
+
log_file.write(f"Evaluation Results for model: {model_name}\n")
|
286 |
+
log_file.write(f"Timestamp: {timestamp}\n\n")
|
287 |
+
log_file.write("Average Scores:\n")
|
288 |
+
for metric, score in average_scores.items():
|
289 |
+
log_file.write(f"{metric}: {score:.4f}\n")
|
290 |
|
291 |
+
log_file.write(f"\nDetailed Results:\n")
|
292 |
+
for result in results:
|
293 |
+
log_file.write(f"\nRepository: {result['repo_name']}\n")
|
294 |
+
log_file.write("Scores:\n")
|
295 |
+
log_file.write(f" BLEU: {result['bleu']:.4f}\n")
|
296 |
+
log_file.write(f" ROUGE-1: {result['rouge']['rouge-1']:.4f}\n")
|
297 |
+
log_file.write(f" ROUGE-2: {result['rouge']['rouge-2']:.4f}\n")
|
298 |
+
log_file.write(f" ROUGE-L: {result['rouge']['rouge-l']:.4f}\n")
|
299 |
+
log_file.write(f" Cosine Similarity: {result['cosine_similarity']:.4f}\n")
|
300 |
+
log_file.write(f" Structural Similarity: {result['structural_similarity']:.4f}\n")
|
301 |
+
log_file.write(f" Information Retrieval: {result['information_retrieval']:.4f}\n")
|
302 |
+
log_file.write(f" Code Consistency: {result['code_consistency']:.4f}\n")
|
303 |
+
log_file.write(f" Readability: {result['readability']:.4f}\n")
|
304 |
+
log_file.write(f" Weighted Score: {result['weighted_score']:.4f}\n")
|
305 |
|
306 |
+
print(f"\nResults saved to {log_filename}")
|
|
|
307 |
|
308 |
+
def generate_fine_tune_jsonl(dataset, output_file):
|
309 |
+
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository.
|
310 |
+
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks.
|
311 |
+
The README should include the following sections:
|
312 |
+
1. Project Title
|
313 |
+
2. Description
|
314 |
+
3. Installation
|
315 |
+
4. Usage
|
316 |
+
5. Features
|
317 |
+
6. Contributing
|
318 |
+
7. License
|
319 |
+
Ensure that your response is well-structured, informative, and directly usable as a README.md file."""
|
320 |
+
|
321 |
+
with open(output_file, 'w') as f:
|
322 |
+
for item in tqdm(dataset['train'], desc="Generating fine-tune data"):
|
323 |
+
user_prompt = f"Here is the content of the repository:\n\n{item['repo_content']}\n\nBased on this content, please generate a README.md file."
|
324 |
+
|
325 |
+
messages = [
|
326 |
+
{"role": "system", "content": system_prompt},
|
327 |
+
{"role": "user", "content": user_prompt},
|
328 |
+
{"role": "assistant", "content": item['repo_readme']}
|
329 |
+
]
|
330 |
+
|
331 |
+
json.dump({"messages": messages}, f)
|
332 |
+
f.write('\n')
|
333 |
+
|
334 |
+
def find_similar_examples(repo_content, train_dataset, n):
|
335 |
+
vectorizer = TfidfVectorizer()
|
336 |
+
train_contents = [item['repo_content'] for item in train_dataset]
|
337 |
+
train_vectors = vectorizer.fit_transform(train_contents)
|
338 |
+
query_vector = vectorizer.transform([repo_content])
|
339 |
+
|
340 |
+
similarities = cosine_similarity(query_vector, train_vectors).flatten()
|
341 |
+
top_n_indices = similarities.argsort()[-n:][::-1]
|
342 |
+
|
343 |
+
return [train_dataset[int(i)] for i in top_n_indices]
|
344 |
+
|
345 |
+
def generate_readme_n_shot(repo_content, model_name, client, train_dataset, n_shot):
|
346 |
+
similar_examples = find_similar_examples(repo_content, train_dataset, n_shot)
|
347 |
+
|
348 |
+
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository.
|
349 |
+
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks.
|
350 |
+
The README should include the following sections:
|
351 |
+
1. Project Title
|
352 |
+
2. Description
|
353 |
+
3. Installation
|
354 |
+
4. Usage
|
355 |
+
5. Features
|
356 |
+
6. Contributing
|
357 |
+
7. License
|
358 |
+
Ensure that your response is well-structured, informative, and directly usable as a README.md file."""
|
359 |
+
|
360 |
+
few_shot_examples = ""
|
361 |
+
for example in similar_examples:
|
362 |
+
few_shot_examples += f"Repository content:\n\n{example['repo_content']}\n\n"
|
363 |
+
few_shot_examples += f"Generated README:\n\n{example['repo_readme']}\n\n---\n\n"
|
364 |
+
|
365 |
+
user_prompt = f"""Here are some examples of repository contents and their corresponding README files:
|
366 |
+
|
367 |
+
{few_shot_examples}
|
368 |
+
Now, here is the content of the repository you need to create a README for:
|
369 |
+
|
370 |
+
{repo_content}
|
371 |
+
|
372 |
+
Based on this content and the examples provided, please generate a README.md file."""
|
373 |
+
|
374 |
+
if client == 'gemini':
|
375 |
+
safe = [
|
376 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
377 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
378 |
+
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
379 |
+
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
380 |
+
]
|
381 |
+
model = genai.GenerativeModel(model_name, safety_settings=safe)
|
382 |
+
response = model.generate_content(user_prompt)
|
383 |
+
return response.text
|
384 |
+
else:
|
385 |
+
response = client.chat.completions.create(
|
386 |
+
model=model_name,
|
387 |
+
messages=[
|
388 |
+
{"role": "system", "content": system_prompt},
|
389 |
+
{"role": "user", "content": user_prompt}
|
390 |
+
]
|
391 |
+
)
|
392 |
+
return response.choices[0].message.content
|
393 |
|
394 |
if __name__ == "__main__":
|
395 |
+
parser = argparse.ArgumentParser(description="Generate and evaluate README files using OpenAI or Gemini API, or compute oracle scores")
|
396 |
+
parser.add_argument("model", nargs='?', help="Model to use (e.g., 'gpt-4o-mini' for OpenAI or 'gemini-1.5-flash' for Google)")
|
397 |
+
parser.add_argument("--base_url", help="Optional base URL for OpenAI API", default=None)
|
398 |
+
parser.add_argument("--oracle", action="store_true", help="Compute oracle scores using existing READMEs")
|
399 |
+
parser.add_argument("--generate-fine-tune-jsonl", action="store_true", help="Generate a JSONL file for fine-tuning")
|
400 |
+
parser.add_argument("--n_shot", type=int, default=0, help="Number of examples to use for few-shot learning")
|
401 |
+
args = parser.parse_args()
|
402 |
+
|
403 |
+
if args.generate_fine_tune_jsonl:
|
404 |
+
if args.oracle or args.model:
|
405 |
+
parser.error("--generate-fine-tune-jsonl flag cannot be used with --oracle or model specification")
|
406 |
+
elif args.oracle and args.model:
|
407 |
+
parser.error("--oracle flag cannot be used with a model specification")
|
408 |
+
elif not args.oracle and not args.model:
|
409 |
+
parser.error("Either --oracle flag or a model name must be provided")
|
410 |
+
|
411 |
+
main(args)
|