contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC188 | https://onlinemathcontest.com/contests/omc188 | https://onlinemathcontest.com/contests/omc188/tasks/3254 | A | OMC188(A) | 100 | 427 | 435 | [
{
"content": "ãã$X$ ãã以å€ã®å¹³å幎霢ãã® $4$ åã¯ã$X$ ãã以å€ã® $4$ 人ã®å¹Žéœ¢ã®åèšãã«äžèŽããããïŒåå¹³å幎霢㮠$4$ åã®ç·åã¯å
šå¡ã®åèšå¹Žéœ¢ã® $4$ åã«äžèŽããïŒãã®å€ã $4$ ã§å²ã£ãŠã$E$ ãã以å€ã® $4$ 人ã®å¹Žéœ¢ã®åèšããåŒãã° $E$ ããã®å¹Žéœ¢ããããïŒå®éã«èšç®ããã° $(56+53+49+45+37)\\times 4\\/4-37\\times 4=\\textbf{92}$ æ³ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/3254"
}
] | ãããéšå±ã« $A,B,C,D,E$ ã® $5$ 人ã®äººãããŸãïŒ$A$ ãã以å€ã®å¹³å幎霢㯠$56$ æ³ïŒ$B$ ãã以å€ã®å¹³å幎霢㯠$53$ æ³ïŒ$C$ ãã以å€ã®å¹³å幎霢㯠$49$ æ³ïŒ$D$ ãã以å€ã®å¹³å幎霢㯠$45$ æ³ïŒ$E$ ãã以å€ã®å¹³å幎霢㯠$37$ æ³ã§ãïŒ$E$ ããã®å¹Žéœ¢ãæ±ããŠãã ããïŒ\
ããã ãïŒ$5$ 人ã®å¹Žéœ¢ã¯ãã¹ãŠæŽæ°å€ã§ãããã®ãšããŠèãïŒå¹³å幎霢ã¯äžžããããŠããªããã®ãšããŸãïŒ |
OMC188 | https://onlinemathcontest.com/contests/omc188 | https://onlinemathcontest.com/contests/omc188/tasks/4905 | B | OMC188(B) | 200 | 407 | 419 | [
{
"content": "ãäžå€é
åŒã®å¥æ°æ¬¡ã®ã¿ãåãåºãããã®ã¯\r\n$$x(x^2+1)(x^2+2)(x^2+3)(x^2+4)$$\r\nã§äžãããïŒäžå€é
åŒã®å¶æ°æ¬¡ã®ã¿ãåãåºãããã®ã¯\r\n$$-2(x^2+1)(x^2+2)(x^2+3)(x^2+4)$$\r\nã§äžããããïŒããªãã¡ïŒå¶æ°æ¬¡ã®ä¿æ°ã®ã¿ããã¹ãŠè² ã§ããããïŒ\r\n$$(x+2)(x^2+1)(x^2+2)(x^2+3)(x^2+4)$$\r\nã«ãã£ãŠäžå€é
åŒã®ä¿æ°ã«ãã¹ãŠçµ¶å¯Ÿå€ãæœãããã®ãåŸãããïŒ\\\r\nããã®ç·å㯠$x=1$ ã代å
¥ããããšã§åŸãããããïŒ$3Ã2Ã3Ã4Ã5=\\mathbf{360}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/4905"
}
] | $$(x-2)(x^2+1)(x^2+2)(x^2+3)(x^2+4)$$
ãå±éãããšãïŒå次æ°ã®ä¿æ°ã®çµ¶å¯Ÿå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC188 | https://onlinemathcontest.com/contests/omc188 | https://onlinemathcontest.com/contests/omc188/tasks/1707 | C | OMC188(C) | 300 | 84 | 178 | [
{
"content": "ã$BC$ ã $BA$ ã«éãªãããã«ïŒ$B$ ãäžå¿ã«äžè§åœ¢ $QBC$ ãå転ããããã®ã $Q^\\prime BA$ ãšãããšïŒ$QBQ^\\prime$ ã¯çŽè§äºç蟺äžè§åœ¢ã§ãããã $QQ^\\prime=9\\sqrt{2}$ ã§ããïŒãŸã $\\angle PAQ^\\prime=90^\\circ$ ã§ããããïŒäœçœ®é¢ä¿ãšããŠããåŸããã®ã«çæããããšã§ïŒ$CQ=AQ^\\prime=8+\\sqrt{(9\\sqrt{2})^2-10^2}=8+\\sqrt{62}$ ãåŸã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{70}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/1707"
},
{
"content": "ã$B$ ãã $AP$ ã«äžãããåç·ã®è¶³ã $R$ïŒ$BR$ ãš $CQ$ ã®äº€ç¹ã $S$ ãšããã°ïŒåè§åœ¢ $PQSR$ ã¯é·æ¹åœ¢ã§ïŒäžè§åœ¢ $ABR$ ãšäžè§åœ¢ $BCS$ ã¯ååã§ããïŒãã£ãŠ $AR=x$ ãšããã°ïŒ$$QS=PR=10-xïŒBS=xïŒCS=BR=x+8ïŒCQ=CS-QS=2x-2$$ ãæãç«ã€ïŒäžè§åœ¢ $QSB$ ã«äžå¹³æ¹ã®å®çãé©çšãããš $x=5\\pm\\dfrac{\\sqrt{62}}{2}$ ã§ãããïŒ$x =5-\\dfrac{\\sqrt{62}}{2}$ ã®æ¹ã¯ $P$ ãæ£æ¹åœ¢ã®å€éšã«åºãŠããŸãïŒäžé©ïŒãã£ãŠ $CQ=2\\times\\left(5+\\dfrac{\\sqrt{62}}{2}\\right)-2=8+\\sqrt{62}$ ã§ïŒè§£çãã¹ãå€ã¯ $\\bf{70}$ ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/1707/327"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã«ãããŠïŒäžè§åœ¢ $ADC$ ã®å
éšã®ç¹ $P$ ãšäžè§åœ¢ $ABC$ã®å
éšã®ç¹ $Q$ ã
$$\angle APQ=\angle PQC=90^\circ,\quad AP=10,\quad PQ=8,\quad BQ=9$$
ãã¿ãããšãïŒç·å $CQ$ ã®é·ããæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $a+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒãªãïŒæ¡ä»¶ãæºããå³ã¯äžæã«ååšããŸãïŒ |
OMC188 | https://onlinemathcontest.com/contests/omc188 | https://onlinemathcontest.com/contests/omc188/tasks/5686 | D | OMC188(D) | 400 | 81 | 146 | [
{
"content": "ãæ£ã®æŽæ° $m$ ã«ã€ããŠïŒ$m$ ã®æ£ã®çŽæ°ã®åæ°ã $d(m)$ ã§è¡šãïŒæ¬¡ã®ãããªåé¡ãèããïŒ\r\n\r\n- $\\dfrac{m}{x},\\dfrac{m}{y},\\dfrac{m}{z}$ ãå
šãŠæŽæ°ãšãªããã㪠$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®çµ $(m,x,y,z)$ ã¯ããã€ãããïŒ\r\n\r\nã$(x,y,z)$ ãåºå®ããŠèãããšïŒåé¡ã®æ¡ä»¶ãæºãã $m$ 㯠$\\bigg \\lfloor \\dfrac{n}{\\mathrm{lcm}(x,y,z)} \\bigg \\rfloor$ åããããïŒåé¡ã®çã㯠$S_n$ ã§ããïŒäžæ¹ïŒ$m$ ãåºå®ãããšãïŒåé¡ã®æ¡ä»¶ãæºãã $(x,y,z)$ 㯠$d(m)^3$ åããããïŒåé¡ã®çã㯠$d(1)^3+d(2)^3+\\cdots+d(n)^3$ ãšãè¡šããïŒä»¥äžããïŒ$S_n = \\sum\\limits_{k=1}^{n}d(n)^3$ ã§ããïŒ\\\r\nã$d(i)^3$ 㯠$i$ ãå¹³æ¹æ°ã®ãšãå¥æ°ã§ããïŒããã§ãªããšãå¶æ°ã§ãããã $S_n$ ã®å¶å¥ã¯ $\\lfloor \\sqrt{n} \\rfloor$ ã®å¶å¥ã«çããïŒä»»æã®æ£ã®æŽæ° $k$ ã«å¯ŸãïŒ$\\lfloor \\sqrt{n} \\rfloor=k$ ãªã $n$ ã $2k+1$ åååšããããšã«çæããã°ïŒæ±ããçãã¯\r\n$$\\sum_{k=1}^{2^9} \\big(2(2k-1) + 1\\big)=\\mathbf{524800}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/5686"
},
{
"content": "ã$x,y,z$ ãçžç°ãªãæ£æŽæ°ãšããã°ïŒ$$\\left\\lfloor\\frac{n}{\\mathrm{lcm}(x,y,z)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(x,z,y)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm} (y,x,z)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(y,z,x)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(z,x,y)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(z,y,x)}\\right\\rfloor$$ \r\n$$\\left\\lfloor\\frac{n}{\\mathrm{lcm} (x,x,y)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(x,y,x)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(y,x,x)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(y,y,x)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(y,x,y)}\\right\\rfloor= \\left\\lfloor\\frac{n}{\\mathrm{lcm}(x,y,y)}\\right\\rfloor$$ ãšãªãããïŒ$$T_{n}=\\sum_{k=1}^{n} \\left\\lfloor\\frac{n}{\\mathrm{lcm}(k,k,k)}\\right\\rfloor$$ ãšããã°ïŒ$S_{n}\\equiv{T_{n}} \\pmod6$ ã§ãã. ãã£ãŠ $T_{n}$ ãå¥æ°ãšãªããã㪠$n$ ã®ç·åãæ±ããã°è¯ã. \r\n\r\nã$f(n,k)=\\left\\lfloor\\dfrac{n}{k}\\right\\rfloor$ ãšããã°ïŒ$$T_{n}=\\sum_{k=1}^{n}f(n,k)$$ \r\nããŸã $f(n+1,k)-f(n,k)$ 㯠$0$ ãŸã㯠$1$ ã§ïŒ $$f(n+1,k) \\neq f(n,k) \\iff k|n+1$$ã§ããããïŒ $T_{n+1}- T_{n}$ ã¯ïŒ$n+1$ ãå¹³æ¹æ°ã®æã«å¥æ°ãšãªãïŒãã以å€ã¯å¶æ°ãšãªã. $T_{1}=1$ ã ããïŒçµå± $T_{n}$ ã®å¶å¥ã¯ $\\lfloor\\sqrt{n}\\rfloor$ ã®å¶å¥ãšçããããšã確èªã§ãã. ïŒåŸã¯å
¬åŒè§£èª¬ãšåæ§ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/5686/328"
},
{
"content": "(以äžã¯conan_kunãããImLãããªã©ã®æ¹ãå
¬éããŠãã解æ³ã§ã) \r\næ¬è³ªçã« $T_n = \\displaystyle\\sum_{k=1}^{n} \\Big\\lfloor\\dfrac{n}{k}\\Big\\rfloor$ ã®å¶å¥ã調ã¹ãã°ããïŒãšããæãŸã§ã¯[ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc188\\/editorial\\/5686\\/328)ãšåæ§ïŒ \r\n$T_n$ 㯠$xy$ å¹³é¢äžã§ïŒ$xy = n, x=1, y=1$ ã§å²ãŸããŠã§ããé åå
ïŒãã ãïŒå¢çãå«ãïŒã®æ Œåç¹ãæ°ããŠãããšæãããšãã§ããïŒäžæ¹ã§ïŒæ¬é åã $y=x$ ã軞ã«ç·å¯Ÿç§°ãšãªã£ãŠããããšãã ïŒ$T_n$ ã®å¶å¥ã¯é åå
ã§ã® $y=x$ ãšãªãæ Œåç¹ã®æ°ã®å¶å¥ãšäžèŽããïŒãã㯠$1 \\leq x^2 \\leq n$ ãæºããæŽæ° $x$ ã®æ°ã®å¶å¥ãšäžèŽããŠããïŒ$\\lfloor\\sqrt{n}\\rfloor$ ã®å¶å¥ã«äžèŽããïŒ",
"text": "察称æ§ãå©çšããå¶å¥å€å®",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/5686/337"
}
] | ã$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®çµ $(x,y,z)$ ãã¹ãŠã«ã€ããŠã®
$$\bigg \lfloor \dfrac{n}{\mathrm{lcm}(x,y,z)} \bigg \rfloor$$
ã®ç·åã $S_n$ ãšããŸãïŒ$S_n$ ãå¥æ°ãšãªããã㪠$1$ ä»¥äž $2^{20}$ æªæºã®æŽæ° $n$ ã¯ããã€ãããŸããïŒ |
OMC188 | https://onlinemathcontest.com/contests/omc188 | https://onlinemathcontest.com/contests/omc188/tasks/4425 | E | OMC188(E) | 400 | 37 | 66 | [
{
"content": "ç¹ $F$ ãçŽç· $AB$ ã察称ã®è»žãšããŠç§»åããç¹ã $F_1$ ïŒçŽç· $AC$ ã察称ã®è»žãšããŠç§»åããç¹ã $F_2$ ãšããïŒ\r\n$$\\angle F_1 A F_2 =2 \\angle FAB +2 \\angle FAC =2 \\angle BAC,\\quad \r\n\\angle FBF_1 =2 \\angle FBA,\\quad \r\n\\angle FCF_2 =2 \\angle FCA$$\r\nã§ããïŒãŸãæ¡ä»¶ãã \r\n$\\angle FBA= \\angle BAC= \\angle FCA$ \r\nãåããããïŒ\r\n$$\\angle F_1AF_2=\\angle FBF_1=\\angle FCF_2$$\r\nãšãªãïŒãŸãïŒ\r\n$$AF_1=AF=AF_2,\\quad BF_1=BF,\\quad CF_2=CF$$\r\nã§ããããïŒ$\\triangle AF_1F_2,\\triangle BFF_1,\\triangle CFF_2$ ã¯çžäŒŒã§ããïŒãã®çžäŒŒæ¯ã¯ $AF:BF:CF=10:4:7$ ã§ããïŒ\\\r\nãã£ãŠ $\\triangle FF_1F_2$ ã«ãã㊠$FF_1:FF_2:F_1F_2=4:7:10$ ãæç«ããããïŒäœåŒŠå®çãã\r\n$$\\cos \\angle F_1FF_2 =\\frac{4^2+7^2-10^2}{2Ã4Ã7}=-\\frac{5}{8}$$\r\nãšãªãïŒããã§ïŒ$180°- \\angle F_1FF_2=\\angle BAC$ ãšãªãããïŒ\r\n$$\\cos \\angle BAC= -\\cos \\angle F_1FF_2= \\frac{5}{8}$$\r\nãšãªãïŒ$\\angle BFC=3\\angle BAC$ ã§ããããïŒ$$\\cos BFC=4(\\cos \\angle BAC)^3-3\\cos \\angle BAC=-\\displaystyle \\frac{115}{128}$$ ãšãªãïŒäœåŒŠå®çãã $$BC^2=4^2+7^2+2Ã4Ã7Ã\\frac{115}{128}=\\frac{1845}{16}$$ ãåŸãïŒ\\\r\nãããã£ãŠçã㯠$\\mathbf{1861}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/4425"
},
{
"content": "ãæ¡ä»¶ããã$$\\angle{ABD}=\\angle{BAC}=\\angle{ACE}$$ ãªã®ã§ïŒååšè§ã®å®çã®éãã $4$ ç¹ $B,C,D,E$ ã¯åäžååšäžã«ããïŒãã£ãŠæ¹åªã®å®çããïŒ$$BFÃDF=CFÃEF$$ ã§ïŒ$DF=7x$ ãšããã° $$EF=4xïŒAE=CE=4x+7ïŒAD=BD=7x+4$$ ãšãªãïŒ $\\angle{ADF}=2Ξ$ ãšãããšïŒæ¡ä»¶ãã $\\angle{AEF}=2Ξ$ ã§ïŒäœåŒŠå®çãäžè§åœ¢ $ADF$ ãšäžè§åœ¢ $AEF$ ã«ããããé©çšããããšã§ïŒ$$\\frac{(7x)^2+(7x+4)^2-10^2}{2Ã7xÃ(7x+4)}=\\frac{(4x)^2+(4x+7)^2-10^2}{2Ã4xÃ(4x+7)}=\\cos{2Ξ}$$ ãæãç«ã€ïŒããã解ã㊠$x=\\dfrac{4}{5}$ ã§ïŒ$$\\cos2Ξ=\\frac{7}{32}ïŒ\\sinΞ=\\frac{5}{8}ïŒ\\cos(\\angle{BAC})=\\sinΞ=\\frac{5}{8}$$ ãé ã«ããã.ïŒåŸã¯å
¬åŒè§£èª¬ãšåæ§ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/4425/330"
},
{
"content": "çŽç· $AB$ äžã« $AF=PF$ ãæºãã $A$ ã§ãªãç¹ $P$ ã, çŽç· $AC$ äžã« $AF=QF$ ãæºãã $A$ ã§ãªãç¹ $Q$ ããšã.\r\nãããš, \r\n - $\\angle FBP=\\angle FCQ=180^\\circ -\\angle BAC$.\r\n - $\\angle CFQ=\\angle ACE-\\angle AQF=\\angle BAC-\\angle FAQ=\\angle FAP=\\angle BPF$.\r\n\r\nãã£ãŠ, $\\triangle{BFP}$ ãš $\\triangle{CQF}$ ã¯çžäŒŒã§ãã, ããã« $FP=FQ=10$ ãããããã¯åå.\\\r\n以äžãã, $BP=CF=7$ ãªã®ã§, $\\triangle{BFP}$ ã«å¯ŸããäœåŒŠå®çãã $\\displaystyle \\mathrm{cos} \\ \\angle FBP=-\\frac{5}{8}$ ãèšç®ã§ã, $\\displaystyle \\mathrm{cos} \\ \\angle BAC=\\mathrm{cos} \\ (\\pi-\\angle FBP)=\\frac{5}{8}$ ãšãªã. 以äžå
¬åŒè§£èª¬åç
§.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/4425/335"
}
] | ãè§ $A$ ãæãå°ããè§ã§ããéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AC$ äžã« $AD=BD$ ãªãç¹ $D$ ãïŒèŸº $AB$ äžã« $AE=CE$ ãšãªãç¹ $E$ ããšããŸãïŒãŸãïŒç·å $CE$ ãšç·å $BD$ ã®äº€ç¹ã $F$ ãšãããšïŒ
$$AF=10,\quad BF=4,\quad CF=7$$
ãšãªããŸããïŒèŸº $BC$ ã®é·ãã®äºä¹ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC188 | https://onlinemathcontest.com/contests/omc188 | https://onlinemathcontest.com/contests/omc188/tasks/4037 | F | OMC188(F) | 500 | 41 | 115 | [
{
"content": "ãéžãã $3$ ç¹ããã¹ãŠå
éšãŸãã¯åšäžã«å«ãã©ã®èŸºã $x$ 軞ãŸã㯠$y$ 軞ã«å¹³è¡ãªæå°ã®é·æ¹åœ¢ã $R$ ãšããïŒ\r\n\r\n<details><summary>圢åŒç㪠$R$ ã®å®çŸ©<\\/summary>\r\néžãã $3$ ç¹ã® $x$ 座æšã®ãã¡æ倧ã®ãã®ïŒæå°ã®ãã®ããããã $M_x, m_x$ ãšããŠïŒ$y$ 座æšã«ã€ããŠãåæ§ã«å®ãããšãïŒ$4$ çŽç· $x = m_x, x = M_x, y = m_y, y = M_y$ ã§å²ãŸããé·æ¹åœ¢ã $R$ ãšããïŒ\r\n<\\/details>\r\n\r\nã$R$ ã® $4$ é ç¹ã®ãã¡ããã€ã«éžã°ããç¹ããããã§å Žååããè¡ãïŒå°ãªããšã $1$ 以äžã§ããããšã«æ³šæããïŒ\r\n\r\n- $3$ ã€ãããšãïŒ$R$ ã® $x$ 軞ã«å¹³è¡ãªèŸºãš $y$ 軞ã«å¹³è¡ãªèŸºã®é·ãã®å㯠$10$ 以äžã§ããããïŒ$R$ 㯠$5\\times5$ ã®æ£æ¹åœ¢ãšãªãä»ãªãïŒãã£ãŠïŒãã®å Žå㯠$4$ éãã§ãã. \r\n- $2$ ã€ãããšãïŒãããã® $x$ 座æšã $y$ 座æšãéãå ŽåãšïŒçæ¹ã¯åãå Žåããã.\r\n\t- åè
ã®å ŽåïŒ$3$ ã€çœ®ãããŠãããšããšåæ§ã®è°è«ã«ãã $R$ 㯠$5\\times5$ ã®æ£æ¹åœ¢ãšãªãä»ãªãïŒæ®ã $1$ ã€ã¯å¯Ÿè§ç·äžã«äžŠã¶ããïŒ$2Ã4=8$ éãïŒ\r\n\t- åŸè
ã®å ŽåïŒ$R$ ã®é ç¹ã® $2$ ç¹ã¯ $y$ 座æšãçããïŒæ®ãã® $1$ ã€ãã $y$ 座æšãå°ãããšããïŒãã®ãšãïŒé ç¹ã® $2$ ç¹ã® $x$ 座æšã®å·®ã¯ $5$ 以äžã§ããããçæ¹ã $0$ïŒããçæ¹ã $5$ ã«ãªãä»ãªãïŒãŸãïŒ$y$ 座æšã¯ïŒ$0,1,2$ ã®ããããã«ãªãä»ãªããïŒãããããã $1$ ã€ã®ç¹ãšããŠèããããäœçœ®ã¯ $10,6,2$ éãããããšã確ãããããïŒããªãã¡å
šäœã§ã¯ $4\\times(10+6+2) = 72$ éãããïŒ\r\n- $1$ ã€ãããšãïŒãŸã $R$ ã $a\\times b$ ã®ãšãïŒ$R$ ãšããŠããåŸããã®ã¯ $(7-a)\\times (7-b)$ éãååšããïŒãããèžãŸããŠïŒ$R$ ãåºå®ããŠèããïŒ$R$ ã®é ç¹ã®ãã¡éžã°ããç¹ã¯ $x$ 座æšã $y$ 座æšãæ倧ã®é ç¹ã§ãããšããŠããïŒãã®ãšãïŒæ®ã $2$ ã€ã®ç¹ã¯ $R$ ã®é ç¹ã§ãªã $x$ 座æšãæå°ã®èŸºãš $y$ 座æšãæå°ã®èŸºã«ããïŒããããïŒ$R$ ã®å€åšã¯ $15$ 以äžã§ãªããã°ãªããªãããïŒ$a+b\\ge 8$ ãå¿
èŠã§ããïŒ$(a,b)=(3,5),(4,4),(4,5),(5,5)$ ã®ãšãïŒããããæ®ã $2$ ç¹ã®é
眮㯠$1,3,6,10$ éãããããšã確ãããããã®ã§ïŒå
šäœã§ã¯\r\n$$4\\times(2\\times 3\\times 1+ 4\\times 3+2\\times 2\\times 6+1\\times 10)=208$$\r\néãããïŒ\r\n\r\nã以äžããïŒè§£çãã¹ãå€ã¯ $4+8+72+208=\\bf{292}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc188/editorial/4037"
}
] | ã$x$ 座æšãš $y$ 座æšããšãã« $0$ ä»¥äž $5$ 以äžã®æŽæ°ã§ãããããªçžç°ãªã $3$ ç¹ãéžã¶æ¹æ³ã§ãã£ãŠïŒéžã¶é åºã¯èããªãïŒïŒã©ã® $2$ ã€ã®ãã³ããã¿ã³è·é¢ã $5$ 以äžã§ãããããªãã®ã¯äœéããããŸããïŒ
<details><summary>ãã³ããã¿ã³è·é¢ãšã¯<\/summary>
ã$xy$ å¹³é¢äžã® $2$ ç¹ $A = (x_1, y_1), B = (x_2, y_2)$ ã®ãã³ããã¿ã³è·é¢ã¯
$$|x_1 - x_2| + |y_1 - y_2|$$
ã§ãïŒ
<\/details> |
OMC187 (SEGæ¯) | https://onlinemathcontest.com/contests/omc187 | https://onlinemathcontest.com/contests/omc187/tasks/4222 | A | OMC187(A) | 100 | 371 | 379 | [
{
"content": "ã$AB = a, BC = b$ ãšããã°ïŒ\r\n$$a^2+b^2=85^2,\\quad ab=2772$$\r\nãåããã®ã§ $|a-b|=\\sqrt{a^2+b^2-2ab}=\\bf{41}$ ïŒ\r\n\r\nãªãïŒ $\\\\{AB,BC\\\\}=\\\\{36,77\\\\}$ ãªãäžè§åœ¢ãå®éã«æ¡ä»¶ãæºããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4222"
},
{
"content": "ãäžèŸºã®é·ãã $85$ ã®æ£æ¹åœ¢ $EFGH$ ã®å
éšã«ïŒ$4$ ç¹ $I,J,K,L$ ã $\\triangle{EFI}\\equiv\\triangle{FGJ}\\equiv\\triangle{GHK}\\equiv\\triangle{HEL}\\equiv\\triangle{ACB}$ ãšãªãããã«ãšããšïŒåè§åœ¢ $IJKL$ ã¯é¢ç©ã $85^2-1386\\times4=1681$ ã®æ£æ¹åœ¢ãšãªãïŒæ±ããå€ã¯ãã®æ£æ¹åœ¢ã®äžèŸºã®é·ããªã®ã§ïŒ$\\sqrt{1681}=\\textbf{41}$ ãšãªãïŒ",
"text": "ãããŠå³åœ¢çèšå®ãçãããªãâŠ",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4222/334"
}
] | ã $\angle{ABC}=90^\circ, ~ AC=85$ãã¿ããäžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®é¢ç©ã $1386$ ã§ãããšãïŒ $|AB-BC|$ ãæ±ããŠãã ããïŒ |
OMC187 (SEGæ¯) | https://onlinemathcontest.com/contests/omc187 | https://onlinemathcontest.com/contests/omc187/tasks/4142 | B | OMC187(B) | 100 | 377 | 383 | [
{
"content": "ãå
šäœã®ç·åããïŒå¥æ°ã®ç·åãåŒãããšã§æ±ããããïŒ\r\n$$(1+2+...+9)(1+2+...+9)-(1+3+5+7+9)(1+3+5+7+9)=45^2-25^2=\\textbf{1400}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4142"
}
] | ãäžè¬çãªä¹ä¹è¡šã«ãããŠïŒæãç®ã®çµæãšããŠçŸããæ£æŽæ°ã¯éè€ãèš±ããŠå
šéšã§ $81$ åãããŸãïŒãã®ãã¡ïŒå¶æ°ã§ãããã®ã®ç·åãæ±ããŠãã ããïŒ |
OMC187 (SEGæ¯) | https://onlinemathcontest.com/contests/omc187 | https://onlinemathcontest.com/contests/omc187/tasks/3198 | C | OMC187(C) | 200 | 320 | 345 | [
{
"content": "ãé·éã¯çéãã $1$ åããã $5.5^\\circ$ ã ãå€ãé²ãïŒ\r\nãªãè§ãäžåºŠ $90^\\circ$ ã«ãªã£ãããšæ¬¡ã« $90^\\circ$ ã«ãªãã®ã¯é·éãçéã«é¢ããŠã¡ããã© $180°$ é²ãã æã§ããããïŒããã«ãããæé㯠$\\dfrac{360}{11}(=t)$ åïŒ\r\nãã£ãŠ $11$ åç®ã« $90^\\circ$ ã«ãªãã®ã¯ $11t\\times 60=\\textbf{21600}$ ç§åŸã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/3198"
}
] | ãäžè¬ç㪠$12$ æéå¶ã®ã¢ããã°æèšãããïŒçŸåš $9$ æã¡ããã©ãæããŠããŸãïŒãã以éïŒçŸåšãé€ããŠïŒ$11$ åç®ã«é·éããã³çéã®ãªãè§ã $90^\circ$ ã«ãªãã®ã¯äœç§åŸã§ããïŒããã ãïŒé·éããã³çéã¯é£ç¶çã«äžå®ã®è§é床ã§åããã®ãšããŸãïŒ |
OMC187 (SEGæ¯) | https://onlinemathcontest.com/contests/omc187 | https://onlinemathcontest.com/contests/omc187/tasks/4182 | D | OMC187(D) | 200 | 178 | 252 | [
{
"content": "ãæ¹ã¹ãã®å®çãã $FB\\times{FA}=FC\\times{FD}$ ã§ãããã $FD=16$ ã§ããïŒåŸã£ãŠïŒMenelausã®å®çãã\r\n$$\\frac{CE}{EA} = \\frac{BF\\times DC}{AB\\times FD} = \\frac{13}{32},\\quad \\frac{DE}{EB} = \\frac{AF\\times CD}{BA\\times FC} = \\frac{13}{2}$$\r\nã§ããïŒãŸãïŒæ¹ã¹ãã®å®çãã $CE\\times EA = DE\\times EB$ ã§ããã®ã§ïŒäžåŒãåãããããšã§\r\n$$AE : BE : CE : DE = 32 : 8 : 13 : 52$$\r\nãåŸãïŒ$AE = 32x$ ãªã©ãšçœ®ãã°ïŒPtolemyã®å®çãã\r\n$$45x\\times60x = 8\\times 13 + 52$$\r\nã§ãããã $AE^2 = 1024x^2 = \\dfrac{13312}{225}$ ãåŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{13537}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4182"
},
{
"content": "Menelausã®å®çã䜿ããªããŠã解ããŸãïŒ\\\r\n$\\triangle{AFD}\\sim\\triangle{CFB}$ ãã $AD:BC=4:1$ ãªã®ã§ïŒ$AD\\times BC=52$ ãã $AD=4\\sqrt{13},BC=\\sqrt{13}$ ãšãªããŸãïŒãã£ãŠïŒ$\\triangle{ABE}\\sim\\triangle{DCE},\\triangle{ADE}\\sim\\triangle{BCE}$ ã«æ³šæãããšïŒ$AE:BE:CE:DE=32:8:13:52$ ãåãããŸãïŒããšã¯æ¬è§£ãšåæ§ã§ãïŒ",
"text": "çžäŒŒã§è§£ã",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4182/332"
},
{
"content": "ã解説ã®æåŸã«ã€ããŠïŒPtoremyã®å®çã䜿ããªãæ¹æ³ã玹ä»ããŸãïŒ\\\r\näžè§åœ¢ $BCF$ ãš $DAF$ ã¯çžäŒŒãªã®ã§ïŒ$BC = y , AD = 4y$ ãšããïŒ$y = \\sqrt{13}$ ãããããŸãïŒããã§ïŒäžè§åœ¢ $BCF$ ã§äœåŒŠå®çããïŒ$\\angle{BFC} = 60^{\\circ}$ ãªã®ã§ïŒããšã¯äžè§åœ¢ $AFC$ ã§äœåŒŠå®çã䜿ã£ãŠ $AC$ ãæ±ããããã®ã§çç¥ããŸãïŒ",
"text": "ãã¬ããŒã®å®çãç¥ããªãå Žå",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4182/333"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã®å¯Ÿè§ç·ã®äº€ç¹ã $E$ ãšããŸãïŒåçŽç· $AB$ ãšåçŽç· $DC$ ã®äº€ç¹ãååšããã®ã§ããã $F$ ãšãããšïŒ
$$AB=8, \quad BF=4, \quad CF=3, \quad AD\times{BC}=52$$
ãæç«ããŸããïŒãã®ãšãïŒç·å $AE$ ã®é·ãã® $2$ ä¹ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ãæ±ããŠãã ããïŒ |
OMC187 (SEGæ¯) | https://onlinemathcontest.com/contests/omc187 | https://onlinemathcontest.com/contests/omc187/tasks/4406 | E | OMC187(E) | 300 | 194 | 240 | [
{
"content": "ã$P, Q, R, S, T$ ããã®é ã« $1$ åãã€ç¢ç³ããšã£ãŠããããšã**ã¿ãŒã³**ãšåŒã¶ããšã«ããïŒäžäººãç¢ç³ãåããšæ£æ¹åœ¢ã®äžèŸºã¯ $2$ ã ãå°ãããªãã®ã§, $n\\times n$ ã®ç¢ç³ã䞊ãã ç¶æ
ãã $1$ ã€ã®ã¿ãŒã³ã®ãã¡ã«ïŒ$P$ ãš $Q$ ã®åãå»ã£ãç¢ç³ã®æ°ã®å·®ã¯ $n\\geq 4$ ã®ãšã $8$ , $n=3$ ã®ãšã $7$ , $n=2$ ã®ãšã $4$ , $n=1$ ã®ãšã $1$ ã§ããïŒ\\\r\nã$999=8\\times124+7$ ã«æ³šæãããšïŒ$124$ ã¿ãŒã³ãçµããããšïŒ$P, Q$ ã $1$ åãã€ç¢ç³ãåãå»ã£ãŠçµãããšãããïŒ$Q$ ãåãå»ã£ãç¢ç³ã®æ°ã«ã€ããŠã¯ïŒæåŸã¯ $1$ åã§ïŒ$124$ ã¿ãŒã³ç®ã«ã¯ $40$ åïŒ$123$ ã¿ãŒã³ç®ã«ã¯ $80$ åãšããããã« $40$ ãã€å€åããããïŒãããã®ç·åã¯\r\n$$1+40\\times{\\displaystyle\\sum_{k=1}^{124}k}=\\mathbf{310001}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/4406"
}
] | ãããã€ãã®ç¢ç³ãæ£æ¹åœ¢ç¶ã«äžŠãã§ããïŒ$P, Q, R, S, T$ ã® $5$ 人ããã®é çªã§ç¹°ãè¿ãïŒ$P$ ããå§ããŠä»¥äžã®æäœãè¡ããŸãïŒ
- å€åšã«äžŠãã ç¢ç³ããã¹ãŠåãå»ãïŒããªãã¡ïŒæäœã®æç¹ã§ $n\times n$ ã®æ£æ¹åœ¢ç¶ã«ç¢ç³ã $n^2$ å䞊ãã§ãããšãïŒ$(n-2)\times (n-2)$ ã®æ£æ¹åœ¢ç¶ã«ãªãããã«ããïŒ$n=1,2$ ã®ãšãã¯ãã¹ãŠã®ç¢ç³ãåãå»ãïŒïŒ
ãã¹ãŠã®ç¢ç³ããªããªã£ãããã®æç¹ã§çµäºããŸãïŒæçµçã« $P$ ãåãå»ã£ãç¢ç³ã®æ°ãšïŒ$Q$ ãåãå»ã£ãç¢ç³ã®æ°ã®å·®ã $999$ åã§ãã£ããšãïŒ$Q$ ãå
šäœã§åãå»ã£ãç¢ç³ã®æ°ãæ±ããŠãã ããïŒ |
OMC187 (SEGæ¯) | https://onlinemathcontest.com/contests/omc187 | https://onlinemathcontest.com/contests/omc187/tasks/6668 | F | OMC187(F) | 400 | 76 | 189 | [
{
"content": "ã$n$ ã $2 \\leq n \\leq 10000$ ãªãæŽæ°ãšããïŒ $\\sigma (n) \\geq n + 1$ ã§ããïŒãŸãïŒä»¥äž $3$ ã€ã®äºå®ãæãç«ã€ïŒ\r\n- $n$ ãçŽ æ°ã®ãšãïŒ$\\sigma (n) = n + 1$\r\n- $n$ ãçŽ æ°ã®å¹³æ¹ã®ãšãïŒ$\\sigma (n) = n + \\sqrt{n} + 1$\r\n- $n$ ãæ£ã®çŽæ°ã $4$ ã€ä»¥äžãã€ãšãïŒ$\\sigma (n) \\gt n + 2 \\sqrt{n} + 1$\r\n\r\nãªãïŒäžãã $3$ çªç®ã®äºå®ã¯ïŒ$ab = n$ ã〠$1 \\lt a \\lt b \\lt n$ ãæºãã $n$ ã®çŽæ° $a, b$ ãéžã¶ããšã§ïŒçžå å¹³åã»çžä¹å¹³åã®å€§å°é¢ä¿ã«ãã£ãŠæ¬¡ã®ããã«ç€ºãããšãã§ããïŒ\r\n$$\\sigma (n) \\geq 1 + a + b + n \\gt 1 + 2 \\sqrt{ab} + n = n + 2 \\sqrt{n} + 1$$\r\näžã®äžã€ãçšããã°ïŒä»¥äžã®å Žååãããæ±ããæå°å€ã¯ $\\dfrac{8012}{7921}$ ãšåããã®ã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{15933}$ ã§ããïŒ\r\n----\r\n- $n$ ãçŽ æ°ã®å Žå\\\r\nã$\\dfrac{\\sigma( \\sigma (2))}{2} = 2$ ã確ããããïŒ$n \\geq 3$ ã ãšãããšå°ãªããšã $1, \\dfrac{n + 1}{2}, n + 1$ ã® $3$ ã€ã $n + 1$ ã®çŽæ°ã§ããããšã«æ³šæããã°ïŒ\r\n$$\\sigma (\\sigma (n)) = \\sigma (n + 1) \\geq \\dfrac{3n + 5}{2}$$\r\nãåŸãããïŒãããã£ãŠãã®å Žå $\\dfrac{\\sigma( \\sigma (n))}{n} \\gt \\dfrac{3}{2}$ ã§ããïŒ\r\n- $n$ ãçŽ æ°ã®å¹³æ¹ã®å Žå\\\r\n$$\\sigma (\\sigma (97^2)) = \\sigma(9507) = 1 + 3 + 3169 + 9507 = 12680$$\r\nãã $\\dfrac{\\sigma( \\sigma (97^2))}{97^2} = \\dfrac{12680}{9409}$ ã§ããïŒ$8011$ ãçŽ æ°ã§ããããšã«æ³šæããã°ïŒ\r\n$$\\sigma (\\sigma (89^2)) = \\sigma(8011) = 8012$$\r\nãã $\\dfrac{\\sigma( \\sigma (89^2))}{89^2} = \\dfrac{8012}{7921}$ ãåŸãããïŒ$n \\lt 89^2$ ã ãšããã°\r\n$$\\dfrac{\\sigma( \\sigma (n))}{n} = \\dfrac{\\sigma (n + \\sqrt{n} + 1)}{n} \\geq \\dfrac{n + \\sqrt{n} + 2}{n} = 1 + \\dfrac{1}{\\sqrt{n}} + \\dfrac{2}{n} \\gt 1 + \\dfrac{1}{\\sqrt{89^2}} + \\dfrac{2}{89^2} = \\dfrac{8012}{7921}$$\r\nãæãç«ã€ïŒãããã£ãŠãã®å Žå $\\dfrac{\\sigma( \\sigma (n))}{n}$ 㯠$n = 89^2$ ã®ãšãã«æå°å€ $\\dfrac{8012}{7921}$ ããšãïŒ\r\n- $n$ ãæ£ã®çŽæ°ã $4$ ã€ä»¥äžãã€å Žå\r\n$$\\dfrac{\\sigma( \\sigma (n))}{n} \\geq \\dfrac{\\sigma(n) + 1}{n} \\gt \\dfrac{n + 2 \\sqrt{n} + 2}{n} = 1 + \\dfrac{2}{\\sqrt{n}} + \\dfrac{2}{n} \\geq 1 + \\dfrac{2}{\\sqrt{10000}} + \\dfrac{2}{10000} = \\dfrac{5101}{5000}$$\r\nãªã®ã§ïŒãããã $\\dfrac{\\sigma( \\sigma (n))}{n} \\gt \\dfrac{8012}{7921}$ ã§ããããšãåããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc187/editorial/6668"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$n$ ã®æ£ã®çŽæ°ã®**ç·å**ã $\sigma (n)$ ãšè¡šããŸãïŒæŽæ° $n$ ã $2$ ä»¥äž $10000$ 以äžã®ç¯å²ã§åããããšãã« $\dfrac{\sigma (\sigma (n))}{n}$ ããšãããæå°ã®å€ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a + b$ ã®å€ã解çããŠãã ããïŒ |
OMC186 (ãŽãŒã¬è§£æã³ã³ãµã«ãã£ã³ã°æ¯) | https://onlinemathcontest.com/contests/omc186 | https://onlinemathcontest.com/contests/omc186/tasks/5989 | A | OMC186(A) | 200 | 234 | 250 | [
{
"content": "ãçŽç· $FE$ ãšèŸº $AB$ ãšã®äº€ç¹ã $G$ ãšããïŒ \r\nã$\\angle{BAD} = x$ ãšãããšïŒ$AD$ 㯠$\\angle{A}$ ã®äºçåç·ã§ãããã $\\angle{CAD} = \\angle{BAD} = x$ ãšãªãïŒ$AC \\parallel EF$ ãã $\\angle{AEG} = \\angle{CAE} = x$ ã§ããããïŒäžè§åœ¢ ${AGE}$ ã¯äºç蟺äžè§åœ¢ãšãªã $AG = EG$ ãåŸãïŒãŸãïŒ$\\angle{BEG} = 90\\degree - x = \\angle{EBG}$ ãã$\\triangle{BEG}$ ã¯äºç蟺äžè§åœ¢ã§ãããã $EG = BG$ ã§ããã®ã§ïŒçµå± $AG=BG$ ãåããïŒåŸã£ãŠïŒ$BF = CF$ ãšãªãïŒãããã $CF = \\dfrac{19}{2}$ ã§ããïŒ \r\nãããã«ïŒ$AD$ ã $\\angle{A}$ ã®äºçåç·ã§ããããšã«çæããã° $CD = \\dfrac{23 \\times 19}{40}$ ã§ããããïŒæ±ããçãã¯\r\n$$DF = CD-CF = \\dfrac{23 \\times 19}{40}-\\dfrac{19}{2} = \\dfrac{57}{40}$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bold{97}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5989"
},
{
"content": "ã$F$ ã $BC$ ã®äžç¹ã§ããããšã®èšŒæã®å¥è§£ã§ãïŒ \r\n\r\n $BE$ ãš $AC$ ã®äº€ç¹ã $P$ ãšããïŒäžè§åœ¢ $ABE$ ãšäžè§åœ¢ $APE$ ã¯ååãšãªãïŒ$E$ 㯠$BP$ ã®äžç¹ã§ããïŒãã£ãŠïŒäžè§åœ¢ $BCP$ ã§äžç¹é£çµå®çããïŒ$F$ 㯠$BC$ ã®äžç¹ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5989/322"
}
] | ã$AB = 17, BC = 19, CA = 23$ ãã¿ããäžè§åœ¢ $ABC$ ã«ãããŠïŒ$\angle{A}$ ã®äºçåç·ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãïŒ$B$ ããçŽç· $AD$ ã«äžãããåç·ã®è¶³ã $E$ ãšããŸãïŒãŸãïŒ$E$ ãéã蟺 $AC$ ã«å¹³è¡ãªç·åãšçŽç· $BC$ ãšã®äº€ç¹ã $F$ ãšããŸãïŒãã®ãšãïŒç·å $DF$ ã®é·ããæ±ããŠãã ããïŒãã ãïŒæ±ããé·ãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC186 (ãŽãŒã¬è§£æã³ã³ãµã«ãã£ã³ã°æ¯) | https://onlinemathcontest.com/contests/omc186 | https://onlinemathcontest.com/contests/omc186/tasks/4015 | B | OMC186(B) | 300 | 228 | 255 | [
{
"content": "ãäžããããäžçåŒã®å·ŠèŸºã $S(n)$ ãšããïŒãŸãïŒããæ£æŽæ° $m$ ã«ãã£ãŠïŒ$n=m^2$ ãšè¡šãããå Žåã«ã€ããŠèããïŒ\\\r\nã$1 \\leq k \\leq m^2$ ãªãæ£æŽæ° $k$ ã«ã€ããŠïŒ$k$ ãå¹³æ¹æ°ã®ãšãïŒ$\\sqrt{k}$ ã¯æŽæ°ã§ããããïŒ\r\n$$\r\n\\Bigl\\lceil \\sqrt{k} \\ \\Bigl\\rceil ^2\\ -\\ \\Bigl\\lfloor \\sqrt{k}\\ \\Bigl\\rfloor^2=0\r\n$$\r\nã§ããïŒäžæ¹ïŒ$k$ ãå¹³æ¹æ°ã§ãªããšãïŒ$k$ 㯠$1\\leq t \\leq m-1$ ãªãæ£æŽæ° $t$ ã«ãã£ãŠ $t^2 \\lt k \\lt (t+1)^2$ ãšè¡šãããïŒãã®äžçåŒãæºããæŽæ° $k$ 㯠$2t$ åååšãïŒãã®å¶çŽã®ããšã§\r\n$$\r\n\\Bigl\\lceil \\sqrt{k} \\ \\Bigl\\rceil ^2\\ -\\ \\Bigl\\lfloor \\sqrt{k}\\ \\Bigl\\rfloor^2=2t+1\r\n$$\r\nã§ããïŒãããã£ãŠïŒ\r\n$$\r\n\\begin{aligned}\r\nS(m^2) &= \\sum_{t=1}^{m-1} 2t(2t+1)\\\\\\\\\r\n&= \\frac{1}{3} (m-1)m(4m+1)\r\n\\end{aligned}\r\n$$\r\nãšèšç®ã§ãïŒç¹ã« $S(42^2)\\lt 10^5 \\lt S(43^2)$ ã§ããïŒ\\\r\nãããã«ïŒ$1\\leq d \\leq 84$ ãªãæ£æŽæ° $d$ ãçšã㊠$n=42^2+d$ ãšè¡šãããšã«ãããšïŒå
ãšåæ§ã®èå¯ã«ãã\r\n$$\r\n\\begin{aligned}\r\nS(n) &= S(42^2)+ (2\\cdot 42+1)d\\\\\\\\\r\n&=97006+85d\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒããã $10^5$ ãäžåãã®ã¯ $d\\geq 36$ ã®ãšãã§ããããïŒæ±ããã¹ãå€ã¯ $42^2+36=\\mathbf{1800}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/4015"
}
] | ã 次ã®äžçåŒãæç«ãããããªïŒæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ããïŒ
$$
\sum_{k=1}^{n} \biggl( \Bigl\lceil \sqrt{k} \ \Bigl\rceil ^2\ -\ \Bigl\lfloor \sqrt{k}\ \Bigl\rfloor^2 \biggr) \geq 10^5
$$
ããã ãïŒ$\lceil x \rceil$ 㧠$x$ ãäžåããªãæå°ã®æŽæ°ãïŒ$\lfloor x \rfloor$ 㧠$x$ ãäžåããªãæ倧ã®æŽæ°ãè¡šããã®ãšããŸãïŒ |
OMC186 (ãŽãŒã¬è§£æã³ã³ãµã«ãã£ã³ã°æ¯) | https://onlinemathcontest.com/contests/omc186 | https://onlinemathcontest.com/contests/omc186/tasks/2602 | C | OMC186(C) | 400 | 84 | 181 | [
{
"content": "ãäžããããé£ç«æ¹çšåŒãå®æ°è§£ $(x, y, z, w)$ ããã€ããšã¯ïŒä»¥äžã® $x,y,z,w$ ã«ã€ããŠã®é£ç«æ¹çšåŒ\r\n\r\n$$\r\n \\begin{cases}\r\n (x+w)(y+z) = a+b\\\\\\\\\r\n (x+y)(z+w) = b+c\\\\\\\\\r\n (x+z)(y+w) = c+a\\\\\\\\\r\n x+y+z+w = 20\r\n \\end{cases}\r\n$$ \r\n\r\nãå®æ°è§£ $(x, y, z, w)$ ããã€ããšãšåå€ã§ããïŒããã« $Y=x+y, Z=x+z, W=x+w$ ãšçœ®ãã°ïŒæ¬¡ãã¿ããå®æ° $Y,Z,W$ ãååšããããšãšåå€ã§ããïŒ\r\n\r\n$$\r\n\\begin{cases}\r\nW(20-W) = a+b\\\\\\\\\r\nY(20-Y) = b+c\\\\\\\\\r\nZ(20-Z) = c+a\r\n\\end{cases}\r\n$$\r\n\r\nå®æ° $t$ ã«å¯Ÿã $t(20-t)$ ã®ãšãåŸãå€ã¯ $100$ 以äžã®å®æ°å
šäœã§ããããïŒåã®æ¡ä»¶ãã¿ããããã® $(a, b, c)$ ã«ã€ããŠã®å¿
èŠååæ¡ä»¶ã¯\r\n\r\n$$\r\na+b \\leq 100,\\quad \r\nb+c \\leq 100,\\quad \r\nc+a \\leq 100\r\n$$\r\n\r\nãšãããïŒãã㧠$c$ ã $1\\leq c\\lt 100$ ã®ç¯å²ã§åºå®ãããšãïŒäžã®æ¡ä»¶ãã¿ããæ£æŽæ°ã®çµ $(a,b)$ ã®åæ°ã¯\r\n- $2(100-c)\\leq 100$ïŒããªãã¡ $c\\geq 50$ïŒ ã®ãšãïŒ$(100-c)^2$ å\r\n- $2(100-c)\\gt 100$ïŒããªãã¡ $c\\lt 50$ïŒ ã®ãšãïŒ$(100-c)^2-(100-2c)(101-2c)\\/2$ å\r\n\r\nã§ããããïŒæ±ããå€ã¯æ¬¡ã§èšç®ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\n&\\quad\\sum_{c=50}^{99}(100-c)^2+\\sum_{c=1}^{49}\\left((100-c)^2-(100-2c)(101-2c)\\/2\\right)\\\\\\\\\r\n&=\\sum_{c=1}^{99}(100-c)^2-\\sum_{c=1}^{49}(50-c)(101-2c)\\\\\\\\\r\n&=\\sum_{c=1}^{99}c^2-\\sum_{c=1}^{49}c(2c+1)\\\\\\\\\r\n&=\\frac{99\\times 100\\times 199}{6}-2\\times\\frac{49\\times 50\\times 99}{6}-\\frac{49\\times 50}{2}\\\\\\\\\r\n&={\\bf 246275}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/2602"
},
{
"content": "$$(x+y+z+w)^2=(x^2+y^2+z^2+w^2)+2(xy+zw+xz+yw+xw+yz)$$\r\n\r\nãã,\r\n\r\nãã®ãšã,\r\n$$0\\leq (x+y-z-w)^2=(x+y+z+w)^2-4(x+y)(z+w)$$\r\n$$=400-4(xz+yw+xw+yz)=400-4(b+c)$$\r\nåæ§ã«ããŠ,\r\n$$0\\leq (x-y+z-w)^2=400-4(c+a)$$\r\n$$0\\leq (x-y-z+w)^2=400-4(a+b)$$\r\n\r\nãã,\r\n$$400-4(b+c)\\geq 0,400-4(c+a)\\geq 0,400-4(a+b)\\geq 0$$\r\n\r\nã€ãŸã,\r\n$$a+b,b+c,c+a\\leq 100$$\r\nãå¿
èŠã§ãã.\r\n\r\néã«ãã®ãšã,ããå®æ°$p,q,r$ãååšããŠ\r\n\r\n$$x+y-z-w=p$$\r\n$$x-y+z-w=q$$\r\n$$x-y-z+w=r$$\r\n\r\nã€ãŸã,\r\n\r\n$$\\left(\\begin{matrix}1&1&1&1\\\\\\\\1&1&-1&-1\\\\\\\\1&-1&1&-1\\\\\\\\1&-1&-1&1\\\\\\\\\\end{matrix}\\right)\\left(\\begin{matrix}x\\\\\\\\y\\\\\\\\z\\\\\\\\w\\\\\\\\\\end{matrix}\\right)=\\left(\\begin{matrix}20\\\\\\\\p\\\\\\\\q\\\\\\\\r\\\\\\\\\\end{matrix}\\right)$$\r\n\r\nãšããé£ç«æ¹çšåŒã«è§£ãååšãããã©ãããå€å®ããã°è¯ã.\r\n\r\nããã§,巊蟺ã«ãã4x4è¡åã¯æ£åãªã®ã§ïŒå
·äœçã«ã¯ãã¢ãããŒã«è¡åã®åãå
¥ãæ¿ãããã®ã«ãªããïŒå³èŸºã®ãã¯ãã«ã«éè¡åããããã°å®éã«è§£ãæ§æããããšãã§ãããã€ãŸãã解ã¯ååšããã\r\n\r\nçµå±ãå®æ°è§£ãååšããããšã®å¿
èŠååæ¡ä»¶ã¯\r\n$$a+b\\leq 100,b+c\\leq 100,c+a\\leq 100$$\r\nã§ããããã®æ¡ä»¶ãæºãããããªæ£ã®æŽæ°$(a,b,c)$ã®çµãæ°ããã°OK\r\n\r\nããšã¯å
¬åŒè§£èª¬ãšåã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/2602/325"
}
] | ã æ£æŽæ°ã®çµ $(a, b, c) $ ã§ãã£ãŠïŒæ¬¡ãã¿ããå®æ° $x,y,z,w$ ãååšãããããªãã®ã¯ããã€ãããŸããïŒ
$$
\begin{cases}
\quad xy+zw &= a\\\\
\quad xz+yw &= b\\\\
\quad xw+yz &= c\\\\
x+y+z+w &= 20
\end{cases}
$$ |
OMC186 (ãŽãŒã¬è§£æã³ã³ãµã«ãã£ã³ã°æ¯) | https://onlinemathcontest.com/contests/omc186 | https://onlinemathcontest.com/contests/omc186/tasks/5815 | D | OMC186(D) | 600 | 11 | 38 | [
{
"content": "ã以äžã®è£é¡ã瀺ãïŒ$(a_0, b_0)$ ãåæå€ãšããŠæäœããããªãïŒ $N$ åç®ã®æŽæ°ã®çŽåŸã«æäœãåæ¢ãããã®ãšããïŒãŸãïŒ\r\n$$\r\n\\frac{\\max \\\\{a_{n}, b_{n}\\\\}}{\\min \\\\{a_{n}, b_{n}\\\\}}=k_{n}\r\n$$\r\nãšè¡šèšããããšã«ããïŒ\r\n---\r\n**è£é¡ 1.** $0$ ä»¥äž $N-1$ 以äžã®ä»»æã®æŽæ° $n$ ã«å¯ŸãïŒä»¥äžãæç«ããïŒ ïŒãã ãïŒ$a_{N} = b_{N} =1$ ãšãªãå Žåã¯èããªããã®ãšããïŒïŒ\r\n$$\r\na_{n} \\gt b_{n} \\Longleftrightarrow a_{n+1} \\lt b_{n+1}\r\n$$\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nã$a_{n} \\gt b_{n}$ ã〠$a_{n+1} \\gt b_{n+1}$ ãšãããšïŒ\r\n$$\r\na_{n} a_{n+1} -b_{n} b_{n+1} \\gt b_{n} (a_{n+1}-b_{n+1})\\gt 1\r\n$$\r\nãšãªãïŒ$a_{n} a_{n+1} -b_{n} b_{n+1}=1$ ã«ççŸããïŒ$a_{n} \\lt b_{n}$ ã〠$a_{n+1} \\lt b_{n+1}$ ãšä»®å®ããå Žåã§ãåæ§ã§ããïŒ\r\n<\\/details>\r\n\r\n**è£é¡ 2.** $0$ ä»¥äž $N$ 以äžã®ä»»æã®æŽæ° $n$ ã«å¯ŸãïŒä»¥äžãæç«ããïŒ\r\n$$\r\n\\lfloor k_{0} \\rfloor \\leq k_{n} \\leq \\lfloor k_{0} \\rfloor +1\r\n$$\r\nãªãïŒããããã®äžçåŒã®çå·ãæç«ããã®ã¯ïŒ$n=N$ ã®ãšãã®ã¿ã§ããïŒ\r\n\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nãæ°åŠçåž°çŽæ³ã§ç€ºãïŒ$n=0$ ã¯æããïŒä»¥äžïŒããæŽæ° $n$ ã§è£é¡ 2 ã®æç«ãä»®å®ãïŒ$n+1$ ã§ãè£é¡ 2 ãæç«ããããšãïŒèçæ³ãçšããŠç€ºãïŒ$a_{n} \\gt b_{n}$ ã®ãšã\r\n$$\r\na_{n} a_{n+1} - b_{n} b_{n+1} =1 \\Longrightarrow k_{n+1} = \\frac{a_{n} a_{n+1} -1}{a_{n+1}b_{n}} \\lt k_{n} \\leq \\lfloor k_{0} \\rfloor +1.\r\n$$\r\nãã㧠$k_{n+1} \\lt \\lfloor k_{0} \\rfloor$ ãä»®å®ãããšïŒ\r\n$$\r\n1=a_{n} a_{n+1} - b_{n} b_{n+1}= a_{n+1} ( a_{n} -k_{n+1} b_{n} ) \\gt a_{n+1}(a_{n} - \\lfloor k_{0} \\rfloor b_{n}) \\geq 1\r\n$$\r\nãšãªãççŸããïŒä»¥äžãã $\\lfloor k_{0} \\rfloor \\leq k_{n} \\leq \\lfloor k_{0} \\rfloor +1$ ã§ããïŒ$a_{n} \\lt b_{n}$ ã®ãšããåæ§ã§ããïŒ\r\n<\\/details>\r\n\r\n**è£é¡ 3.** $a_{n}, b_{n}, a_{n+1}, b_{n+1}$ ããããã $3$ 以äžã®æŽæ°ã§ãããšãïŒä»¥äžãæç«ããïŒ \r\n$$\r\n\\begin{aligned}\r\n\\lfloor k_{0} \\rfloor \\lt k_{n} \\lt \\lfloor k_{0} \\rfloor + \\frac{1}{2}\r\n& \\Longleftrightarrow \r\n\\lfloor k_{0} \\rfloor \\lt k_{n+1} \\lt \\lfloor k_{0} \\rfloor + \\frac{1}{2}\r\n\\\\\\\\\r\n\\lfloor k_{0} \\rfloor + \\frac{1}{2} \\lt k_{n} \\lt \\lfloor k_{0} \\rfloor +1 & \\Longleftrightarrow \r\n\\lfloor k_{0} \\rfloor + \\frac{1}{2} \\lt k_{n+1} \\lt \\lfloor k_{0} \\rfloor +1\r\n\\end{aligned}\r\n$$\r\n\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nãã¯ããã«ïŒ$\\Longrightarrow$ ã«ã€ããŠç€ºãïŒ\\\r\nã$a_{n} \\gt b_{n} \\geq 3$ ãšãïŒ$a_{n}= \\lfloor k_{0} \\rfloor b_{n}+r_{n}$ ãšããïŒè£é¡ 2 ãã $\\lfloor k_{0} \\rfloor = \\lfloor k_{n} \\rfloor $ ã§ããããïŒ$r_{n}$ 㯠$1$ ä»¥äž $b_{n}$ æªæºã®æŽæ°ãšãªãïŒãŸãïŒ$a_{n}$ ãš $b_{n}$ ãäºãã«çŽ ã§ããããïŒ$b_{n}$ ã®å¶å¥ã«ããã $r_{n}={b_{n}}\\/{2}$ ã«ãªãããªãããšã«æ³šæããŠã»ããïŒ\r\n\r\n - $k_{n} \\lt \\lfloor k_{0} \\rfloor+1\\/2$ ã®ãšãïŒ$r_{n}\\lt b_{n}\\/2$ ã§ããïŒè£é¡ 2 ãšåãããŠä»¥äžã®äžçåŒãæãç«ã€ïŒ\r\n$$\r\n\\lfloor k_{0} \\rfloor +\\frac{1}{2} \\gt k_{n} = \\frac{b_n b_{n+1}+1}{b_{n} a_{n+1}} \\gt k_{n+1} \r\n$$\r\n\r\n - $k_{n} \\gt \\lfloor k_{0} \\rfloor +1\\/2 $ ã®ãšãïŒ$r_n\\gt b_{n}\\/2$ ã§ããïŒãã㧠$k_{n+1} \\leq \\lfloor k_{0} \\rfloor + 1\\/2$ ãä»®å®ãããšïŒ\r\n$$\r\n1=a_n a_{n+1} - b_n b_{n+1}= a_{n+1} (a_n - k_{n+1} b_n ) \\geq a_{n+1}\\Bigl(r_n - \\frac{b_n}{2}\\Bigl) \\geq \\frac{a_{n+1}}{2} \\gt 1\r\n$$\r\nãšãªãççŸããïŒè£é¡ 2 ãšåãããŠææã®çµæãåŸãïŒ\r\n\r\nã$b_n \\gt a_n \\geq 3$ ã®ãšããåæ§ã«ç€ºãããšãã§ããïŒ\\\r\nãããã«ïŒ$\\Longleftarrow$ ã«ã€ããŠãåæ§ã®ç€ºãæ¹ãã§ããïŒ\r\n<\\/details>\r\n\r\n**è£é¡ 4 .** 以äžã®äžæ¬¡äžå®æ¹çšåŒ\r\n$$\r\n\\begin{aligned}\r\n(2 \\lfloor k_{0} \\rfloor +1) x - 2y = 1 \\\\\\\\\r\n2x - (2 \\lfloor k_{0} \\rfloor +1) y = 1 \\\\\\\\\r\nx - \\lfloor k_{0} \\rfloor y = 1 \\\\\\\\\r\n(\\lfloor k_{0} \\rfloor +1)x - y = 1 \r\n\\end{aligned}\r\n$$\r\n\r\nã®æ£ã®æŽæ°ã®çµã®äžè¬è§£ã¯ïŒããéè² æŽæ° $t$ ãçšããããšã«ããïŒäžããé ã«æ¬¡ã®ããã«è¡šãããïŒ\r\n$$\r\n(x,y) = ( 2t+1, 2 \\lfloor k_{0} \\rfloor t + t +\\lfloor k_{0} \\rfloor ) \\tag{1}\r\n$$\r\n$$\r\n(x,y) = (2 \\lfloor k_{0} \\rfloor t + t +\\lfloor k_{0} \\rfloor +1, 2t+1 ) \\tag{2}\r\n$$\r\n$$\r\n(x,y) = (\\lfloor k_{0} \\rfloor t + \\lfloor k_{0} \\rfloor+1, t+1)\\tag{3}\r\n$$\r\n$$\r\n(x,y) = ( t+1, \\lfloor k_{0} \\rfloor t + \\lfloor k_{0} \\rfloor + t ) \\tag{4}\r\n$$\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nãå®éã«èšç®ããããšã«ãã£ãŠç€ºãããïŒ\\\r\nãããã§ïŒ$\\min\\\\{x,y\\\\} \\geq 3$ ã®å ŽåïŒ$(1), (3)$ ã®è§£ã®æ¯ã¯ $\\lfloor k_{0} \\rfloor + \\frac{1}{2}$ ããå°ããïŒ$(2), (4)$ ã®è§£ã®æ¯ã¯ $\\lfloor k_{0} \\rfloor + \\frac{1}{2}$ ãã倧ãããªã£ãŠããããšã«çæããŠã»ããïŒ\r\n<\\/details>\r\n\r\n**è£é¡ 5 .** $\\min\\\\{a_{0}, b_{0}\\\\} \\geq 3$ ã®ãšãïŒä»¥äžãæç«ããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\lfloor k_{0} \\rfloor \\lt k_{0} \\lt \\lfloor k_{0} \\rfloor+\\frac{1}{2} \r\n& \\Longleftrightarrow (a_{N}, b_{N})=(1, \\lfloor k_{0} \\rfloor)\\\\\\\\\r\n\\lfloor k_{0} \\rfloor+\\frac{1}{2} \\lt k_0 \\lt \\lfloor k_{0} \\rfloor +1 \r\n& \\Longleftrightarrow (a_{N}, b_{N})=(\\lfloor k_{0} \\rfloor+1,1)\r\n\\end{aligned}\r\n$$\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nã¯ããã« $\\Longleftarrow$ ã«ã€ããŠç€ºãïŒ\r\n\r\n - $\\min \\\\{a_{N-1}, b_{N-1}\\\\} \\geq 3$ ã®å ŽåïŒ\r\n - $(a_{N}, b_{N}) = (1, \\lfloor k_{0} \\rfloor)$ ã®ãšãïŒ\r\n$(x,y)=(a_{N-1}, b_{N-1})$ 㯠$x-\\lfloor k_{0} \\rfloor y=1$ ã®æŽæ°è§£ã® $1$ ã€ã§ããïŒè£é¡ 4 ãã $k_{N-1} \\lt \\lfloor k_{0} \\rfloor +\\frac{1}{2}$ ã ããïŒè£é¡ 3 ãã $\\lfloor k_{0} \\rfloor \\lt k_{0} \\lt \\lfloor k_{0} \\rfloor+\\frac{1}{2}$ ãåŸãïŒ\r\n - $(a_{N}, b_{N})=( \\lfloor k_{0} \\rfloor +1, 1)$ ã®ãšãïŒ\r\n$(x,y)=(a_{N-1}, b_{N-1})$ 㯠$(\\lfloor k_{0} \\rfloor +1)x - y = 1$ ã®æŽæ°è§£ã® $1$ ã€ã§ããïŒè£é¡ 4 ãã $k_{N-1} \\gt \\lfloor k_{0} \\rfloor +\\frac{1}{2}$ ã ããïŒè£é¡ 3 ãã $\\lfloor k_{0} \\rfloor+\\frac{1}{2} \\lt k_0 \\lt \\lfloor k_{0} \\rfloor +1$ ãåŸãïŒ\r\n\r\n - $\\min \\\\{a_{N-1}, b_{N-1}\\\\} =2$ ã®å ŽåïŒè£é¡ 2 ããµãŸããã°ïŒ$\\max \\\\{a_{N-1}, b_{N-1}\\\\} = 2 \\lfloor k_{0} \\rfloor+1$ ã§ããïŒ\r\n - $(a_{N}, b_{N})=(1, \\lfloor k_{0} \\rfloor)$ ã®ãšãïŒ\r\n $(a_{N-1}, b_{N-1})=(2 \\lfloor k_{0} \\rfloor+1, 2)$ ã§ããïŒãŸãïŒ$(x,y)=(a_{N-2}, b_{N-2})$ 㯠$(2 \\lfloor k_{0} \\rfloor +1) x - 2y = 1$ ã®æŽæ°è§£ã® $1$ ã€ã§ããïŒè£é¡ 4 ãã $k_{N-2} \\lt \\lfloor k_{0} \\rfloor + \\frac{1}{2}$ ãšãªãïŒè£é¡ 3 ãã $\\lfloor k_{0} \\rfloor \\lt k_{0} \\lt \\lfloor k_{0} \\rfloor+\\frac{1}{2}$ ãåŸãïŒ\r\n - $(a_{N}, b_{N})=(\\lfloor k_{0} \\rfloor +1, 1)$ ã®ãšãïŒ\r\n $(a_{N-1}, b_{N-1})=(2, 2 \\lfloor k_{0} \\rfloor +1)$ ã§ããïŒãŸãïŒ$(x,y)=(a_{N-2}, b_{N-2})$ 㯠$2x - (2 \\lfloor k_{0} \\rfloor +1) y = 1$ ã®æŽæ°è§£ã® $1$ ã€ã§ããïŒè£é¡ 4 ãã $k_{N-2} \\gt \\lfloor k_{0} \\rfloor + \\frac{1}{2}$ ãšãªãïŒè£é¡ 3 ãã $\\lfloor k_{0} \\rfloor+\\frac{1}{2} \\lt k_0 \\lt \\lfloor k_{0} \\rfloor +1$ ãåŸãïŒ\r\n\r\nã$\\Longrightarrow$ ã«ã€ããŠã¯ïŒå¯Ÿå¶ããšãããšã«ãã£ãŠç€ºãããïŒ\r\n<\\/details>\r\n\r\n---\r\nã$x=1$ ã®å ŽåïŒ$N=0$ ã§ããããïŒæŽæ°ãåæ¢ãããšã $ (2^{25}, 1), (1, 2^{25})$ ãæ®ãïŒ\\\r\nã$x \\geq 3$ ã®å ŽåãèãããïŒè£é¡5ããïŒ$x \\in S \\setminus \\\\{1\\\\}$ ãããæ£æŽæ° $m$ ã«ãã£ãŠïŒ$m \\lt 2^{26}\\/x \\lt m+1$ ãšè©äŸ¡ãããŠãããšãïŒ\r\n\r\n - $m$ ãå¶æ°ãªãã°ïŒæ£æŽæ°ã®çµ $(2^{25}, x), (x, 2^{25})$ ã¯æäœã«ãã£ãŠ $(1, m\\/2)$ ã«ãªãïŒ\r\n - $m$ ãå¥æ°ãªãã°ïŒæ£æŽæ°ã®çµ $(2^{25}, x), (x, 2^{25})$ ã¯æäœã«ãã£ãŠ $((m+1)\\/2, 1)$ ã«ãªãïŒ\r\n\r\nããšããããïŒãããã£ãŠïŒä»åã®åé¡ã¯äžèšã®äžçåŒãæºãã $x \\in S$ ãååšãããããªæŽæ° $m$ ãäœçš®é¡ååšããããšããããšã«åž°çãããïŒãã㯠$\\lfloor {2^{26}}\\/{x} \\rfloor$ ãç°ãªãæŽæ°ãäœçš®é¡ãã€ããšããåé¡ãã®ãã®ã§ããïŒ\\\r\nã$n = 2, 3, \\cdots , 2^{24}$ ã«å¯ŸãïŒæ°å$\\\\{p_n\\\\}$ ã次ã®ããã«å®ããïŒ\r\n$$\r\np_n = \\frac {2^{26}}{2n-1}\r\n$$\r\nãŸãïŒ$\\\\{p_n\\\\}$ ãå調æžå°ã§ããããšãèžãŸãïŒ $2 \\leq n \\leq 2^{24}-1$ ã«å¯ŸãïŒ$\\\\{d_n\\\\}$ ã以äžã®ããã«å®ããïŒ\r\n$$\r\nd_{n} = p_{n} - p_{n+1} = \\frac{2^{27}}{(2n-1)(2n+1)}\r\n$$\r\n\r\n - $2 \\leq n \\leq 5792$ ã®ãšã\\\r\n$d_{n} \\gt 1$ ã§ããããïŒ$\\lfloor p_{n} \\rfloor$ ãš $\\lfloor p_{n+1} \\rfloor$ ã¯çžç°ãªãïŒ\r\n\r\n - $5793 \\leq n \\leq 2^{24}-1$ã®ãšã\\\r\n$d_n \\lt 1$ ã§ããããšããïŒ $\\lfloor p_{n} \\rfloor$ 㯠$\\lfloor p_{2^{24} } \\rfloor =2$ ãã $\\lfloor p_{5793} \\rfloor = 5792$ ãŸã§ã®ãã¹ãŠã®å€ããšãããïŒ\r\n\r\nã以äžããïŒæ±ããçã㯠$2 + 5791 + 5791= \\textbf{11584}$ çš®é¡ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5815"
},
{
"content": "åæå€ã $(x,2^{25})$ ã§ãããããªãã®ã®æçµçãªå€ã¯ä»¥äžã®ããã«ããŠæ±ãŸã .\r\n\r\n---\r\n\r\n[Stern-Brocot tree](https:\\/\\/en.wikipedia.org\\/wiki\\/SternâBrocot_tree) äžã§ $\\dfrac{x}{2^{25}}$ ã®å€ãæã€é ç¹ããå§ããŠ, 以äžã®æäœãååã $1$ ã«ãªããŸã§ç¹°ãè¿ã.\r\n\r\n- ä»ããé ç¹ã®èŠªãžãšé²ã¿ç¶ãã.ãã ã,\r\n - å¥æ°åç®ã®æäœã§ã¯ ,ä»ããé ç¹ããå°ããå€ã®èŠªãžé²ãã æç¹ã§æäœãããã.\r\n - å¶æ°åç®ã®æäœã§ã¯, ä»ããé ç¹ãã倧ããå€ã®èŠªãžé²ãã æç¹ã§æäœãããã.\r\n\r\næäœçµäºåŸã«ããé ç¹ã®å€ã $\\frac{1}{a}$ ãšãããšã, æäœãããåæ°ãå¥æ°åãªã $(a,1)$, å¶æ°åãªã$(1,a)$ ãæçµçãªå€.\r\n\r\n---\r\n\r\nãããçšãããš, $x\\neq 1$ ã§ããã°ä»¥äžãæãç«ã€.\r\n\r\n- $\\frac{2}{2a}\\lt \\frac{x}{2^{25}}\\lt \\frac{2}{2a+1}$ ãæºããæ£æŽæ° $a$ ãååšãããªã, $(x,2^{25})$ ã®æçµçãªå€ã¯ $(1,a)$\r\n- $\\frac{2}{2a+1}\\lt \\frac{x}{2^{25}}\\lt \\frac{2}{2a+2}$ ãæºããæ£æŽæ° $a$ ãååšãããªã, $(x,2^{25})$ ã®æçµçãªå€ã¯ $(a+1,1)$\r\n\r\nãããŸã§ããã°, äžã®äºåŒãæºãã $x$ ãååšãããã㪠$a$ ãæ°ããåé¡ã«ãªã.\r\n\r\n以éã¯å
¬åŒè§£èª¬ãšåããªã®ã§çç¥ããããšã«ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5815/320"
},
{
"content": "äžå€éãäœã£ãŠè§£ãæ¹æ³ã解説ããïŒ\r\n\r\n**ã¢ã€ãã£ã¢**\r\n\r\n$a_n$ãš$b_n$ã®ïŒå€§ããæ¹ïŒ\\/ïŒå°ããæ¹ïŒã®å€ã$k_n$ãšããïŒ$k_n$ã¯é·ç§»ã«ãã£ãŠããŸãå€ãããªãã®ã§ïŒ$k_n$ãå©çšããŠäžå€éãäœãã®ãè¯ãããã§ããïŒããã§å°ããæ°ã§$k_n$ã®é·ç§»ã芳å¯ãããïŒäŸãã°\r\n$$(32,5)\\to (3,19)\\to (13,2)\\to (1,6)$$\r\nãšããé·ç§»ã®å ŽåïŒ$k_n$ã¯\r\n$$6.4\\to 6.33\\dots\\to 6.5\\to 6$$\r\nãšãªãïŒ$6$ãã$6.5$ã®éãåãïŒãŸã\r\n$$(7,32)\\to (23,5)\\to (2,9)\\to (5,1)$$\r\nãšããé·ç§»ã®å ŽåïŒ$k_n$ã¯\r\n$$4.57\\dots\\to 4.6\\to 4.5\\to 5$$\r\nãšãªãïŒ$4.5$ãã$5$ã®éãåãïŒ\r\nãã®ãããªäŸããïŒ$k_n$以äžã®æ倧ã®**0.5ã®åæ°**ãäžå€ã§ããããšãäºæ³ã§ããïŒãã ãäžã€ç®ã®äŸã®$6.5$ã¯$6.4999\\dots$ãšè§£éããïŒã€ãŸã$6.5$ããå°ãããã®ããã«æ±ãïŒå¿
èŠãããïŒäºã€ç®ã®äŸã®$5$ã¯$4.9999\\dots$ãšè§£éããïŒã€ãŸã$5$ããå°ãããã®ããã«æ±ãïŒå¿
èŠãããïŒãã®ãããªçºæ³ã§äžå€éãäœããšä»¥äžã®ããã«ãªãïŒ\r\n\r\nãªãïŒãããŸã§ã®èå¯ãããšã«æ£ããäžå€éãäºæ³ã§ããã°ïŒãããäžå€éã§ããããšã蚌æãããšãçããå°ãããšãã§ããïŒ\r\n\r\n**解ç**\r\n\r\nå®æ°$x$ã«å¯ŸãïŒ$x$以äžã®æ倧ã®$0.5$ã®åæ°ã$\\langle x\\rangle$ã§è¡šãããšã«ããïŒ\r\nå®çŸ©ãã$a_n$ãš$b_n$ã¯åžžã«äºãã«çŽ ã§ããïŒãããã£ãŠ$a_n=b_n$ãšãªãã®ã¯$(a_n,b_n)=(1,1)$ã®å Žåã®ã¿ã§ããïŒãŸãïŒ$(a_n,b_n)\\neq (1,1)$ãªãã°$a_{n-1}-b_{n-1}$ãš$a_n-b_n$ã®ç¬Šå·ã¯ç°ãªãïŒå
¬åŒè§£èª¬åç
§ïŒïŒããã§ååå°ããæ£ã®å®æ°$\\varepsilon$ïŒäŸãã°$\\varepsilon=2^{-100000000000}$ïŒãåãïŒ\r\n$$P_n=\\begin{cases}\\langle k_n-\\varepsilon\\rangle&(a_n\\gt b_n)\\\\\\ \\langle k_n+\\varepsilon\\rangle&(a_n\\leq b_n)\\end{cases}$$\r\nãšå®ããïŒãã ã$k_n=\\max\\\\{a_n,b_n\\\\}\\/\\min\\\\{a_n,b_n\\\\}$ã§ããïŒãã®ãšã$P_{n-1}=P_n$ãæãç«ã€ããšã瀺ããïŒ\r\n- $a_{n-1}\\gt b_{n-1}$ã®å ŽåïŒåè¿°ã®ããã«$a_n\\leq b_n$ã§ããïŒ$(a_{n-1},b_{n-1})$ãçµç¶æ
ã§ãªãããšãã$b_{n-1}\\geq 2$ã§ããïŒããããš$a_{n-1}a_n-b_{n-1}b_n=1$ãåããããš\r\n$$\\dfrac{b_n}{a_n}\\lt\\dfrac{a_{n-1}}{b_{n-1}}\\leq\\dfrac{b_n+0.5}{a_n}$$\r\nãåŸãããïŒãããã£ãŠ$k_n+\\varepsilon, k_{n-1}-\\varepsilon$ã¯ãããã$\\dfrac{b_n}{a_n}\\lt x\\lt \\dfrac{b_n+0.5}{a_n}$ã®ç¯å²ã«ãããïŒãã®ç¯å²ã«ã¯$\\dfrac{0.5}{a_n}$ã®åæ°ãååšããªãã®ã§ïŒç¹ã«0.5ã®åæ°ã¯ååšããªãïŒãã£ãŠãããã«å¯Ÿãã$\\langle{x}\\rangle$ã®å€ã¯äžèŽããïŒ\r\n- $a_{n-1}\\lt b_{n-1}$ã®å ŽåïŒ$(a_n,b_n)\\neq(1,1)$ãšãªããã$a_n\\gt b_n$ã§ããïŒ$(a_{n-1},b_{n-1})$ãçµç¶æ
ã§ãªãããšãã$a_{n-1}\\geq 2$ã§ããïŒããããš$a_{n-1}a_n-b_{n-1}b_n=1$ãåããããš\r\n$$\\dfrac{a_n-0.5}{b_n}\\leq\\dfrac{b_{n-1}}{a_{n-1}}\\lt\\dfrac{a_n}{b_n}$$\r\nãåŸãããïŒãããã£ãŠ$k_{n-1}+\\varepsilon, k_n-\\varepsilon$ã¯ãããã$\\dfrac{a_n-0.5}{b_n}\\lt x\\lt \\dfrac{a_n}{b_n}$ã®ç¯å²ã«ãããïŒãã®ç¯å²ã«ã¯$\\dfrac{0.5}{b_n}$ã®åæ°ãååšããªãã®ã§ïŒç¹ã«0.5ã®åæ°ã¯ååšããªãïŒãã£ãŠãããã«å¯Ÿãã$\\langle{x}\\rangle$ã®å€ã¯äžèŽããïŒ\r\n\r\n以äžãã$P_n$ã®å€ã¯$n$ã«ãããäžå®ã§ããïŒçµç¶æ
$(a_N,b_N)$ã«ãããå€ã¯\r\n$$\\begin{aligned}&(a_N,b_N)=(m,1),m\\gt1\\implies P_N=m-0.5,\\\\\\ &(a_N,b_N)=(1,m),m\\geq 1\\implies P_N=m\\end{aligned}$$\r\nãšãªãå
šãŠç°ãªãããïŒ**çµç¶æ
ãšããŠããåŸãçµã®ç·æ°ã¯ïŒ$P_0$ãšããŠããåŸãå€ã®ç·æ°ã«çãã**ïŒåæç¶æ
$(a_0,b_0)$ã«ãããå€ã¯\r\n$$\\begin{aligned}&(a_0,b_0)=(2^{25},1),(1,2^{25})\\implies P_0=2^{25}-0.5,2^{25},\\\\\\ &(a_0,b_0)=(2^{25},x),(x,2^{25})\\implies P_0=\\langle 2^{25}\\/x\\rangle=\\dfrac{1}{2}\\lfloor 2^{26}\\/x\\rfloor\\quad(x=3,5,7,\\dots,2^{25}-1)\\end{aligned}$$\r\nãšãªãããïŒ$x=3,5,7,\\dots,2^{25}-1$ã«å¯Ÿãã$\\lfloor 2^{26}\\/x\\rfloor$ãšããŠããåŸãå€ã®ç·æ°ã«$2$ãå ãããã®ãçãã§ããïŒããšã¯å
¬åŒè§£èª¬ãšåæ§ã§ããïŒ",
"text": "äžå€éãäœã",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5815/323"
}
] | ãäºãã«çŽ 㪠$2$ ã€ã®æ£æŽæ°ã®çµ $(a_0, b_0)$ ã«ã€ããŠïŒãããåæå€ãšããŠïŒãã $2$ ã€ã®æ£æŽæ°ã®çµããå¥ã®ãã $2$ ã€ã®æ£æŽæ°ã®çµãžæŽæ°ããããšãç¹°ãè¿ããŸãïŒ$n$ åç®ã®æŽæ°ã§åŸãããæ£æŽæ°ã®çµ $(a_n, b_n)$ ã¯ïŒä»¥äžã§äžãããããã®ãšããŸãïŒ
- æ¹çšåŒ $a_{n-1}x-b_{n-1}y=1$ ã®æ£æŽæ°è§£ $(x, y)$ ã®ãã¡ïŒ$x$ ãæå°ã®ãã®ïŒ
ãã®æŽæ°ãïŒ$2$ ã€ã®æåã®ãã¡å°ãªããšãäžæ¹ã $1$ ã«**åããŠ**ãªããŸã§äœåãïŒ$0$ åã§ãããïŒç¹°ãè¿ããŠïŒãã®æç¹ã§åæ¢ãããããšãèããŸãïŒ
---
ãããŸïŒ$1$ ä»¥äž $2^{25}-1$ 以äžã®å¥æ°å
šäœãããªãéåã $S$ ãšãïŒéå $T$ ã
$$
T = \\{ (2^{25}, x) \mid x \in S \\} \cup \\{ (x, 2^{25}) \mid x \in S \\}
$$
ã§å®ããŸãïŒéå $T$ ã«å«ãŸãããã¹ãŠã®çµããããã«å¯ŸãïŒãããåæå€ãšããŠäžèšã®æŽæ°ãåæ¢ãããšãïŒæçµçã«åŸãããçµãšããŠãããããã®ã¯å
šéšã§ããã€ã§ããïŒ\
ããã ãïŒéå $T$ ã«å±ãããã¹ãŠã®çµã«ã€ããŠïŒæéåã§æŽæ°ãåæ¢ããããšãä¿èšŒãããŸãïŒ |
OMC186 (ãŽãŒã¬è§£æã³ã³ãµã«ãã£ã³ã°æ¯) | https://onlinemathcontest.com/contests/omc186 | https://onlinemathcontest.com/contests/omc186/tasks/5984 | E | OMC186(E) | 600 | 11 | 38 | [
{
"content": "ããŸã\r\n$$ \\alpha \\coloneqq \\angle ABO = \\angle BAO,\\qquad \\beta \\coloneqq \\angle ACO = \\angle CAO $$\r\nãšãããšïŒ$DQ = DR$ ãã $\\angle AED = \\angle AFD$ ãšãªãããšãçšããŠ\r\n$$ \\angle ADE = \\frac{90^\\circ - \\alpha + \\beta}2 = \\angle BDE,\\qquad \\angle ADF = \\frac{90^\\circ + \\alpha - \\beta}2 = \\angle CDF. $$\r\nãããã\r\n$$ \\frac{AE}{EB} \\times \\frac{BD}{DC} \\times \\frac{CF}{FA} = \\frac{AD}{BD} \\times \\frac{BD}{CD} \\times \\frac{CD}{AD} = 1 $$\r\nãšãªãïŒ$AD, BF, CE$ ã¯äžç¹ã§äº€ããïŒãŸãæ¹ã¹ãã®å®çãã \r\n$$\\frac{AE}{FA} = \\frac{RA}{AQ}, \\quad \\frac{BD}{EB} = \\frac{QB}{BP}, \\quad \\frac{CF}{DC} = \\frac{PC}{CR}$$\r\nã§ããã®ã§ïŒ\r\n$$1 = \\frac{AE}{FA} \\times \\frac{BD}{EB} \\times \\frac{CF}{DC}\r\n = \\frac{RA}{AQ} \\times \\frac{QB}{BP} \\times \\frac{PC}{CR}\r\n = \\frac{QB}{AQ} \\times \\frac{PC}{BP} \\times \\frac{RA}{CR}\r\n$$\r\nãã $AP, BR, CQ$ ãäžç¹ã§äº€ããããïŒ$DQ = DR$ ãã\r\n$\\angle BPQ = \\angle DRQ = \\angle CPR$ ãšãªãããšãšåãããŠïŒ$AP \\perp BC$ ãåŸãïŒ \r\nããã®ãšã $\\angle BAD = \\angle CAP,\\\\, \\angle BAP = \\angle CAD$ ã§ãããã\r\n$$ \\frac{BD}{CD} = \\frac{\\triangle ABD}{\\triangle ACD} = \\frac{AB^2}{AC^2} \\times \\frac{\\triangle ACP}{\\triangle ABP} = \\frac{AB^2}{AC^2} \\times \\frac{CP}{BP} $$\r\nãšãªãïŒ$AP \\perp BC$ ãã $AB = \\dfrac{95}{12},\\\\, AC = \\dfrac{121}{12}$ ãåŸãããã®ã§ïŒ$\\displaystyle \\frac{BD}{CD} = \\frac{14440}{14641}$ïŒãã£ãŠ $DP = \\dfrac{3255}{2237}$ ãšåããïŒè§£çãã¹ãå€ã¯ $\\textbf{5492}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5984"
},
{
"content": "ãã®åé¡ã§ã¯ $AP \\perp BC$ ã瀺ãã®ãæ倧ã®ãã€ã³ãã«ãªãããšæããŸãïŒããã¯å®èŠãšã³ã³ãã¹ã䜿ã£ãŠããããªå³ãæãããšã§ç°¡åã«äºæ³ã§ããŸãïŒåé¡æã®ç¹ã®åãæ¹ã®é ã«äœå³ããããšãããšæ£ç¢ºã«æãã®ãé£ããã§ããïŒä»¥äžã®ããã«é çªã工倫ããããšã§æ¯èŒçç°¡åã«æ£ç¢ºãªå³ãæããŸãïŒ\r\n\r\n$(1)$ ç¹ $A,E,F$ ãéè§äžè§åœ¢ããªãããã«å®ããïŒ\r\n\r\n$(2)$ $EF $ãçŽåŸãšããå $Î$ ãš $AE,AF$ ã®äº€ç¹ããããã $Q,R$ ãšããïŒ\r\n\r\n$(3)$ $QR$ ã®åçŽäºçåç·ãš $Î$ ã®äº€ç¹ã®ãã¡ïŒçŽç· $EF$ ã«é¢ã㊠$Q,R$ ãšå察åŽã«ãããã®ã $D$ ãšããïŒ\r\n\r\n$(4)$ è§ $EAF$ ã® äºçåç·ã«é¢ã㊠$AD$ ãšå¯Ÿç§°ãªçŽç· $l$ ãæãïŒ$D$ ãéã $l$ ã«åçŽãªçŽç·ãšçŽç· $AE,AF$ ã®äº€ç¹ããããã $B,C$ ãšããïŒ\r\n\r\n$(5)$ $Î$ ãš $BC$ ã®äº€ç¹ã $P$ ãšããïŒ \r\n\r\n幟äœã®åé¡ã§ã¯ããããªäœå³ãããããšã§ããŒãšãªãæ§è³ªãããã«åããããšãããã®ã§ïŒæåã®å³ã¯å·¥å€«ãããŠãããã«æãã®ãããããã§ãïŒ",
"text": "è£è¶³ - äœå³æ³ã«ã€ããŠ",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/5984/321"
}
] | ãåšã®é·ãã $31$ ã®äžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®å€å¿ã $O$ ãšããŸãïŒãŸãçŽç· $AO$ ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãïŒèŸº $AB, AC$ äžã«ããããç¹ $E, F$ ããšããšïŒ$DE \perp DF$ ãšãªããŸããïŒããã«èŸº $BC$ïŒçŽç· $AB, AC$ ãïŒäžè§åœ¢ $DEF$ ã®å€æ¥åãšãããã $D, E, F$ ã§ãªãç¹ $P, Q, R$ ã§äº€ãã
$$ BP = 5,\quad CP = 8,\quad DQ = DR $$
ãšãªããŸããïŒ
ããã®ãšãç·å $DP$ ã®é·ãã¯ïŒäºãã«çŽ ãªæ£æŽæ° $p, q$ ãçšã㊠$\dfrac pq$ ãšè¡šããã®ã§ïŒ$p + q$ ã解çããŠãã ããïŒ |
OMC186 (ãŽãŒã¬è§£æã³ã³ãµã«ãã£ã³ã°æ¯) | https://onlinemathcontest.com/contests/omc186 | https://onlinemathcontest.com/contests/omc186/tasks/4335 | F | OMC186(F) | 700 | 18 | 61 | [
{
"content": "ãäžè¬ã« $N=1000$ ãšããïŒæ¡ä»¶ãã¿ããéã®åŒãæ¹ã«ãããŠéœåžãé ç¹ïŒéœåž $i$ ãé ç¹ $i$ ãšåäžèŠããïŒïŒéãç¡å蟺ãšèŠãªããã°ã©ã $G$ ãèãããšïŒäžã€ç®ã®æ¡ä»¶ãã $G$ ã¯æšã§ããïŒ$G$ ãé ç¹ $3N$ ãæ ¹ãšããæ ¹ä»ãæšãšèŠãŠïŒæ¬¡ã®æäœã $3N-2$ åè¡ãããšãèããïŒ\r\n- **æäœïŒ** $G$ ã®èã§ããé ç¹ã®ãã¡çªå·ãæå°ã§ãããã®ããã³ããã«ç¹ãã蟺ãåãé€ãïŒ\r\n\r\n$n$ åç®ã®æäœã§åãé€ããã蟺ãçµã¶é ç¹ã®ãã¡ïŒèŸºãšå
±ã«åãé€ãããé ç¹ã®çªå·ã $a_n$ïŒããã§ãªãæ¹ã®çªå·ã $p_n$ ãšããïŒãã®ãšã\r\n$$a_n=\\min\\bigl(\\\\{1,2,\\dots,3N\\\\}\\setminus\\\\{a_1,a_2,\\dots,a_{n-1},p_n,p_{n+1},\\dots,p_{3N-2}\\\\}\\bigr)$$\r\n\r\nãæãç«ã€ããïŒ$p_1,\\dots,p_{3N-2}$ ãå®ããã° $a_1,\\dots,a_{3N-2}$ ãå®ãŸãïŒãŸãæäœãéã«èããŠããããšã§ïŒã¯ããã®éã®çµã¿åãããäžæã«å®ãŸãïŒé ç¹ $i$ ã®æ¬¡æ°ã¯ $(p_n=i$ ãªã $n$ ã®åæ°$)+1$ ã§ããããšã«æ³šæããã°ïŒ$M$ 㯠$$N+1,N+2,\\dots,2N,2N+1,2N+1,2N+2,2N+2,\\dots,3N,3N$$ ã® $3N$ åã®æ°ãã $3N-2$ åãéžã³ïŒããããåãæ°ã¯åºå¥ããã«äžåã«äžŠã¹ãå Žåã®æ°ã«çããããšããããïŒããã¯ç°¡åãªè°è«ã«ãã\r\n$$ M = \\frac{9N - 1}{2^{N+1} \\times 3 \\left(3N - 1\\right)} \\times \\left(3N\\right)! $$\r\nãšæ±ããããïŒ\r\n<details><summary>ãç°¡åãªè°è«ã<\\/summary>\r\n$$ S_1 \\coloneqq \\left\\\\{N + 1, \\ldots, 2N\\right\\\\}\\mathclose{},\\qquad S_2 \\coloneqq \\left\\\\{2N + 1, \\ldots, 3N\\right\\\\} $$\r\nãšããïŒ$S_1$ ã®çžç°ãªã $2$ é ç¹ããåãé€ããå Žåã®æ°ã¯\r\n$$ {}\\_N\\mathrm C\\_2 \\times \\frac{\\left(3N - 2\\right)!}{\\left(1!\\right)^{N-2} \\left(2!\\right)^N} = \\frac{N \\left(N - 1\\right) \\left(3N - 2\\right)!}{2^{N+1}}, $$\r\n$S_1, S_2$ ããããã®é ç¹ããåãé€ããå Žåã®æ°ã¯\r\n$$ N^2 \\times \\frac{\\left(3N - 2\\right)!}{\\left(1!\\right)^N \\left(2!\\right)^{N-1}} = \\frac{N^2 \\left(3N - 2\\right)!}{2^{N-1}}, $$\r\n$S_2$ ã®çžç°ãªã $2$ é ç¹ããåãé€ããå Žåã®æ°ã¯\r\n$$ {}\\_N\\mathrm C\\_2 \\times \\frac{\\left(3N - 2\\right)!}{\\left(1!\\right)^{N+2} \\left(2!\\right)^{N-2}} = \\frac{N \\left(N - 1\\right) \\left(3N - 2\\right)!}{2^{N-1}}, $$\r\n$S_2$ ã®åãé ç¹ããåãé€ããå Žåã®æ°ã¯\r\n$$ N \\times \\frac{\\left(3N - 2\\right)!}{\\left(1!\\right)^N \\left(2!\\right)^{N-1}} = \\frac{N \\left(3N - 2\\right)!}{2^{N-1}} $$\r\nã§ããããïŒãããã足ãåããããš\r\n$$ M = \\frac{N \\left(9N - 1\\right) \\left(3N - 2\\right)!}{2^{N+1}}. $$ \r\n\r\nããããã¯å±éããæ§åãèããã°æ¬¡ãæãç«ã€ããšãããæ±ããããïŒ\r\n$$M=\\left(\\frac{(1\\times N+2\\times N)^2-(1^2\\times N+2^2\\times N)}{2}+2!\\times N\\right)\\times\\frac{(3N-2)!}{(1!)^N(2!)^N}$$\r\n<\\/details> \r\nããããã£ãŠ $N=1000$ ã代å
¥ã㊠$\\dfrac pq = \\dfrac{8999}{2^{1001} \\times 3 \\times 2999}$ ãåŸããïŒEuler ã®å®çãªã©ã«ããæ±ããäœã㯠$\\mathbf{2256}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/4335"
},
{
"content": "ãéœåžãé ç¹, éã蟺ãšããã°ã©ããèãããš, äžã€ç®ã®æ¡ä»¶ã¯ã°ã©ããæšã§ããããšã«å¯Ÿå¿ããŸã. \r\n次æ°ã $i=1,2,3$ ã®é ç¹ã®åæ°ã $e\\_i$ ãšãããš, åé ç¹ã®æ¬¡æ°ã®æ±ºãæ¹ã¯ \r\n$$\\binom{1000}{e\\_{3}}\\binom{2000-e\\_{3}}{e\\_{2}}$$ \r\nãšãªããŸã. ($e\\_{3},e\\_{2},e\\_{1}$ ã®é ã«å²ãåœãŠãŠããããšãèãããšè¯ãã§ã. ) \r\nããã§, 以äžã®äºå®ã次æ°å¶éä»ã $\\mathrm{Cayley}$ ã®å®ççã®é称ã§ç¥ãããŠããŸã. \r\n\r\n---\r\nåé ç¹ã« $1,2,\\dots,n$ ãšã©ãã«ã®ä»ãã $n$ é ç¹ã®æšã§ãã£ãŠ, é ç¹ $i$ ã®æ¬¡æ°ã $d(i)$ (ãã ã, é ç¹æ°ãšèŸºã®åæ°ã®é¢ä¿åŒ $\\sum d(i)=2n-2$ ã¯æºãããšãã. )ã§ãããããªãã®ã®åæ°ã¯, \r\n\r\n$$\\frac{(n-2)!}{\\prod\\_{i=1}^{n}(d(i)-1)!}$$\r\nåã§ãã. \r\n---\r\n\r\nç¹ã«, ä»ã®ç¶æ³ã«åœãŠã¯ãããš, $e$ ãåºå®ããããšã§, æ¡ä»¶ãæºããæšã®åæ°ã¯\r\n\r\n$$\\frac{(2998)!}{2\\^{e\\_3}}$$\r\nãšãªããŸã. \r\n\r\nåŸã¯ $e$ ãèµ°ãããã°è¯ãã§ã. \r\né ç¹æ°ã«é¢ããæ¡ä»¶ $e\\_{1}+e\\_{2}+e\\_{3}=3000$ åã³, 蟺ã®æ¬æ°ã«é¢ããæ¡ä»¶ $e\\_{1}+2e\\_{2}+3e\\_{3}=2999\\times 2$ ãã, $e\\_{2}=2998-2e\\_{3}$ ãå¿
èŠãªã®ã§, äžè¿°ããäºé
ä¿æ°ãæå³ãæã€(ããªãã¡ãã®ãããªæšãå®éã«ååšãã) $e\\_{3} $ ã¯, $e\\_{3}=998,999,1000$ ã«éãããŸã. ãã£ãŠ \r\n$$M=2998!\\left(\\frac{1000\\*999}{2\\^{999}}+\\frac{1000\\*1001}{2\\^{999}}+\\frac{1000\\*999}{2\\^{1001}}\\right)$$ \r\n\r\nãšèšç®ã§ããŸã.",
"text": "Cayleyã®å®çãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc186/editorial/4335/319"
}
] | ãããåœã«ã¯ $3000$ åã®éœåžãããïŒããããã®éœåžã«ïŒéœåž $1, \ldots, 3000$ ãšçªå·ãæ¯ãããŠããŸãïŒãããã®éœåžã®éã«ïŒçžç°ãªã $2$ éœåžéãçµã¶åæ¹åã«è¡ãæ¥å¯èœãªéãäœæ¬ãåŒãæ¹æ³ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãæºãããã®ã $M$ éããããšããŸãïŒ
* ä»»æã®éœåžããä»»æã®å¥ã®éœåžãžïŒå¿
èŠãªãã°ããã€ãã®éœåžãçµç±ããŠïŒåŒãããŠããéã ãã䜿ã£ãŠå¿
ããã©ãçãããšãã§ãïŒãŸãåãéœåžã $2$ å以äžéããªãå ŽåïŒãã®éé ã¯ã¡ããã© $1$ ã€ååšããïŒ
* éœåž $1,\ldots,1000$ ã端ç¹ã«æã€éã¯ïŒããããé«ã
$1$ æ¬ã§ããïŒ
* éœåž $1001,\ldots,2000$ ã端ç¹ã«æã€éã¯ïŒããããé«ã
$2$ æ¬ã§ããïŒ
* éœåž $2001,\ldots,3000$ ã端ç¹ã«æã€éã¯ïŒããããé«ã
$3$ æ¬ã§ããïŒ
ã$\dfrac{M}{3000!} = \dfrac pq$ ãã¿ããäºãã«çŽ ãªæ£æŽæ° $p, q$ ã«å¯ŸããŠïŒ$p \times q$ ã $3000$ ã§å²ã£ãäœããçããŠãã ããïŒ |
OMC185 (SEGæ¯) | https://onlinemathcontest.com/contests/omc185 | https://onlinemathcontest.com/contests/omc185/tasks/6469 | A | OMC185(A) | 100 | 364 | 364 | [
{
"content": "ã$(x-14)=4(x-68)$ ãæãç«ã€ã®ã§ïŒããã解ã㊠$x=\\textbf{86}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/6469"
}
] | ãOMCåãšOMCåã®ãæ¯ãããã¹ãããå
é»ããŠããŸãïŒOMCåã®ã¹ããã¯ãæ¯ããã®ã¹ããã® $4$ åã®é床ã§ããããªãŒãå¢å ããŸãïŒããŸïŒOMCåã®ã¹ããã®ããããªãŒã¯ $14\\%$ïŒãæ¯ããã®ã¹ããã®ããããªãŒã¯ $68\\%$ ã§ãïŒãã°ããçµã€ãšïŒ$2$ 人ã®ã¹ããã®ããããªãŒã¯ã©ã¡ãã $x\\%$ ã«ãªããŸããïŒãã®ãšãïŒ$x$ ã解çããŠãã ããïŒ |
OMC185 (SEGæ¯) | https://onlinemathcontest.com/contests/omc185 | https://onlinemathcontest.com/contests/omc185/tasks/7127 | B | OMC185(B) | 100 | 293 | 334 | [
{
"content": "ã$465\\equiv 52 \\pmod{59}$ ã§ïŒãŸãFermatã®å°å®çãã $52^{58}\\equiv1\\pmod{59}$ ã ããïŒ\r\n$$465^{465}\\equiv52^{465}\\equiv(52^{58})^{8}\\times52\\equiv\\mathbf{52}\\pmod{59}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/7127"
}
] | ã$465^{465}$ ã $59$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC185 (SEGæ¯) | https://onlinemathcontest.com/contests/omc185 | https://onlinemathcontest.com/contests/omc185/tasks/5831 | C | OMC185(C) | 200 | 300 | 343 | [
{
"content": "ããŸãïŒ$2$ ã®åæ°ã©ãããé£ãåããªãããã«ã¯\r\n\r\n- å¶æ°âå¥æ°âå¶æ°âå¥æ°âå¶æ°âå¥æ°âå¶æ°âå¥æ°âå¶æ°âå¥æ°âå¶æ°\r\n\r\nã®é ã«äžŠã¹ãã°ããïŒ$5! \\times 6!$ éãã§ããïŒãã®ãã¡ïŒ$5$ ã®åæ°ãé£ãåãã«ã¯ïŒå¥æ°ã䞊ã¹ãåŸã« $10$ ã $5$ ã®å·Šå³ã®ã©ã¡ããã«äžŠã¹ãã°ããïŒãã£ãŠïŒ$5! \\times 2 \\times 5!$ éãïŒããªãã¡ïŒæ¡ä»¶ãæºãã䞊ã¹æ¹ã¯ïŒ$5! \\times 6! - 5! \\times 2 \\times 5! = \\mathbf{57600}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/5831"
}
] | ã$2$ ä»¥äž $12$ 以äžã®æ£æŽæ°ã $1$ ã€ãã€æšªäžåã«äžŠã¹ããšãïŒä»¥äžã® $2$ ã€ã®æ¡ä»¶ããšãã«ã¿ããæ¹æ³ã¯äœéããããæ±ããŠãã ããïŒ
- $2$ ã®åæ°ã©ããã¯é£ãåããªã
- $5$ ã®åæ°ã©ããã¯é£ãåããªã
ããã ãïŒå·Šå³ãå転ãããããšã«ãã£ãŠäžèŽãã䞊ã¹æ¹ãåºå¥ãããšããŸãïŒ |
OMC185 (SEGæ¯) | https://onlinemathcontest.com/contests/omc185 | https://onlinemathcontest.com/contests/omc185/tasks/6859 | D | OMC185(D) | 300 | 167 | 261 | [
{
"content": "ã$b=a+n$ ãšãããšïŒäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$(a+1)(n+1)=N+1$$\r\n$a\\ge1$ ã«æ°ãã€ããã°ïŒ$N+1$ ã® $2$ 以äžã®ä»»æã®çŽæ° $p$ ã«å¯Ÿã㊠$(a,n)=(p-1,(N+1)\\/p-1)$ ãäžåŒã®è§£ãšãªãïŒãŸãïŒè§£ã¯ããã§å°œããããŠããïŒä»¥äžããïŒåé¡ã®æ¡ä»¶ãæºãã $N$ 㯠$513$ 以äžã®çŽ æ°ãã $1$ ãåŒãããã®ã§ããããïŒæ±ããçã㯠$\\bf{97}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/6859"
}
] | ã$1$ ä»¥äž $512$ 以äžã®æŽæ° $N$ ã§ãã£ãŠïŒ$ab-a^2+b=N$ ãæºããæ£ã®æŽæ°ã®çµ $(a,b)$ ãã¡ããã© $1$ ã€ååšãããã®ã¯ããã€ãããŸããïŒ |
OMC185 (SEGæ¯) | https://onlinemathcontest.com/contests/omc185 | https://onlinemathcontest.com/contests/omc185/tasks/5390 | E | OMC185(E) | 300 | 190 | 270 | [
{
"content": "ã$n$ åã®ã°ã©ã $y=x,y=x^2,y=x^3,\\ldots,y=x^n$ ã«ãã£ãŠåå²ãããåæ°ã $a_n$ ãšãããšïŒ$a_1=2, a_2=5$ ãåããïŒãŸãïŒ$n\\geq3$ ã®ãšã $a_n=a_{n-1}+4$ ã§ããããšã以äžã®ããã«ç¢ºèªã§ããïŒ\r\n\r\n- $n$ ãå¶æ°ã®ãšã\\\r\n$y=x^n$ ã®ã°ã©ã㯠$(0,1)$ ãå«ãé åã $3$ ã€ã«ïŒ$(1,0)$ ãå«ãé åã $2$ ã€ã«ïŒ$(-1,0)$ ãå«ãé åã $2$ ã€ã«åå²ããïŒ\r\n\r\n- $n$ ãå¥æ°ã®ãšã\\\r\n$y=x^n$ ã®ã°ã©ã㯠$(0,1)$ ãå«ãé åã $2$ ã€ã«ïŒ$(1,0)$ ãå«ãé åã $3$ ã€ã«ïŒ$(-1,0)$ ãå«ãé åã $2$ ã€ã«åå²ããïŒ\r\n\r\nããã£ãŠïŒ$a_n=1293$ ãæºãã $n$ 㯠$\\mathbf{324}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/5390"
}
] | ã$n$ åã®ã°ã©ã $y=x,y=x^2,y=x^3,\ldots,y=x^n$ ã«ãã£ãŠ $xy$ å¹³é¢ã $1293$ åã®é åã«åå²ããããšãïŒæ£æŽæ° $n$ ã®å€ãæ±ããŠãã ããïŒ |
OMC185 (SEGæ¯) | https://onlinemathcontest.com/contests/omc185 | https://onlinemathcontest.com/contests/omc185/tasks/5475 | F | OMC185(F) | 400 | 33 | 84 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã® $\\angle{A}$ ã«å¯Ÿããåå¿ã $P$ ãšããïŒãã®ãšãïŒåè§åœ¢ $BPCI$ 㯠$PI$ ãçŽåŸãšããåã«å
æ¥ããïŒãŸãïŒãã®åã®äžå¿ïŒããªãã¡ç·å $PI$ ã®äžç¹ã $M$ ãšããïŒ\\\r\nãååšè§ã®å®çãã $\\angle{BPI}=\\angle{BCI},\\ \\angle{BMI}=2\\angle{BPI}$ ã§ããïŒ$I$ ãäžè§åœ¢ $ABC$ ã®å
å¿ã§ããããšããïŒ$2\\angle{BCI}=\\angle{ACB}$ ãæãç«ã€ïŒãã£ãŠïŒ$\\angle{ACB}=2\\angle{BCI}=2\\angle{BPI}=\\angle{BMI}=\\angle{BMA}$ïŒããªãã¡ïŒååšè§ã®å®çã®éããåè§åœ¢ $ABMC$ ã¯åã«å
æ¥ããïŒ \\\r\nã$AI:CD=5:4$ ããïŒ$AI=5x,\\ CD=4x$ ãšããïŒååšè§ã®å®çãã $\\angle{BPI}=\\angle{BCI}=\\angle{ACI}$ ã§ããïŒ\r\n- $\\angle{BAD}=\\angle{CAD}$ ã§ããããïŒäžè§åœ¢ ${APB}$ ãš ${ACI}$ ã¯çžäŒŒïŒ\r\n- $\\angle{CDI}=\\angle{PDB}$ ã§ããããïŒäžè§åœ¢ ${CDI}$ ãš ${PDB}$ ã¯çžäŒŒïŒ\r\n\r\nåŸã£ãŠïŒ\r\n$$PD:CD=PB:CI=AB:AI=1:x$$\r\nã§ããïŒ$CD=4x$ ã§ãããã $PD=4$ ã§ããïŒããã§ïŒå€è§ã®äºçåç·ã«é¢ããå®çãã$AB:BD=AP:PD$ ã§ããããïŒ\r\n$$BD\\times(AD+4)=4\\times5$$\r\nãæãç«ã€ïŒä»ïŒ$AD\\times BD=8$ ã§ããããïŒ$BD=3$ ãåããïŒåŸã£ãŠïŒ$AD=\\dfrac{8}{3}$ ããããïŒ\\\r\nããã£ãŠïŒ$ID=AD-AI=\\dfrac{8}{3}-5x$ ã§ããããïŒæ¹ã¹ãã®å®çãã\r\n$$BD\\times CD=3\\times 4x = 4\\left\\(\\frac{8}{3}-5x\\right\\) = DI\\times PD$$\r\nã§ããïŒããã解ãã° $x = \\dfrac13$ ãåŸãïŒãã£ãŠïŒ$AI=\\dfrac{5}{3},\\ CD=\\dfrac{4}{3},\\ DI=1$ ã§ããïŒåŸã£ãŠïŒ\r\n$$AC = CD\\times \\frac{AI}{DI} = \\frac{20}{9}$$\r\nã§ããïŒä»¥äžããïŒ$AB=5,\\ BC=\\dfrac{13}{3},\\ CA=\\dfrac{20}{9}$ ã§ããããïŒäžè§åœ¢ ${ABC}$ ã®é¢ç©ã¯Heronã®å
¬åŒããïŒ\r\n$$\\sqrt{\\frac{52}{9}\\left\\(\\frac{52}{9}-5\\right\\)\\left\\(\\frac{52}{9}-\\frac{13}{3}\\right\\)\\left\\(\\frac{52}{9}-\\frac{20}{9}\\right\\)}=\\frac{104\\sqrt{14}}{81}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $81+104+14=\\mathbf{199}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/5475"
},
{
"content": "ãOMC184(D) ã§èŠã\"Stewart ã®å®çã®ç³»\"ãçšããæ¹æ³ã§ãïŒåŒã¯ $AD^2=ABÃAC-BDÃCD$ ã§ãïŒïŒäœè«ã§ããïŒOMC184ã§TesterããïŒè§£èª¬ã詳现ã«èªã¿èŸŒãã ã®ã§ïŒæãã€ãã解æ³ã§ãïŒïŒ\r\n\r\n---\r\n\r\nã$BD=a$ ãšçœ®ãïŒè§äºçåç·ã®æ§è³ªãçšããŠïŒ$AI=5x$ïŒ$DI=ax$ ãšçœ®ããïŒãã®ããã«çœ®ããšïŒ$AI:CD=5:4$ ãã $CD=4x$ ã§ããïŒå床ïŒè§äºçåç·ã®æ§è³ªãã $AC=\\frac{20x}{a}$ ã§ããïŒå
è¿°ã® Stewart ã®å®çã®ç³»ããïŒ\r\n$$(5x+ax)^2=5Ã\\dfrac{20x}{a}-aÃ4x$$\r\nããŸãïŒ$ADÃBD=8$ ãã $(5x+ax)a=8$ïŒããšã¯ïŒé£ç«æ¹çšåŒã解ãã°ïŒäžèŸºã®é·ããæ±ãŸãïŒä»¥äžã¯å
¬åŒè§£èª¬ãåç
§ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc185/editorial/5475/318"
}
] | ãäžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšãïŒçŽç· $AI$ ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãããšïŒ
$$AB = 5,\quad AI:CD=5:4,\quad AD\times BD=8$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,c$ ãšå¹³æ¹å åãæããªãæ£æŽæ° $b$ ã«ãã£ãŠ $\dfrac{a\sqrt{b}}{c}$ ãšè¡šãããã®ã§ïŒ$a+b+c$ ã®å€ã解çããŠãã ããïŒ |
OMC184 | https://onlinemathcontest.com/contests/omc184 | https://onlinemathcontest.com/contests/omc184/tasks/1782 | A | OMC184(A) | 200 | 288 | 361 | [
{
"content": "ã$8008=2^3\\times 7\\times 11\\times 13$ ã«æ³šæããã°, åçŽ å æ°ã®åé
ãèããããšã§ $ {}_5 \\mathrm{ C }_2\\times3^3=\\textbf{270}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/1782"
}
] | ã$xyz=8008$ ãªãæ£æŽæ°ã®ïŒé åºä»ããïŒçµ $(x,y,z)$ ã¯ããã€ãããŸããïŒ |
OMC184 | https://onlinemathcontest.com/contests/omc184 | https://onlinemathcontest.com/contests/omc184/tasks/2773 | B | OMC184(B) | 200 | 301 | 334 | [
{
"content": "ã$n$ åæäœãæœããåŸã®æº¶æ¶²ã®æ¿åºŠã $a_n\\\\%$ ãšãã. $n-1$ åç®ã®æäœçµäºåŸ, 溶液㯠$50n+50\\rm{mL}$ ãã. ãããž $n$ åç®ã®æäœãæœããš, $n-1$ åç®ã®æäœçµäºæã®æº¶æ¶² $50n\\rm{mL}$ ãšçæ°Ž $100\\rm{mL}$ ãæ··ãã溶液ã§ãããã,\r\n$$a_n=\\displaystyle \\frac{50na_{n-1}}{50n+100}=\\frac{n}{n+2}a_{n-1}$$\r\n$a_0=1$ ã«çæããŠ, ãã®æŒžååŒãé 次é©çšããããšã§, \r\n$$a_n=\\displaystyle \\frac{n}{n+2} \\cdot \\displaystyle \\frac{n-1}{n+1} \\cdot \\cdots \\cdot \\displaystyle \\frac{2}{4} \\cdot \\displaystyle \\frac{1}{3} \\cdot 1=\\displaystyle \\frac{2}{(n+1)(n+2)}$$\r\nãããã£ãŠ, $a_n$ ã $1\\/2023$ 以äžãšãªãã«ã¯ä»¥äžã®æ¡ä»¶ãå¿
èŠã§ãã, ç¹ã«æ±ããå€ã¯ $\\bf{63}$ ã§ãã. \r\n$$(n+1)(n+2) \\geq 4046 \\implies n\\geq \\displaystyle \\frac{\\sqrt{16185}-3}{2}\\approx 62.1$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/2773"
},
{
"content": "ã $n$ åç®ã®æäœã§é£å¡©æ°Žãåãé€ããããšïŒæ°Žã®éã $\\frac{n}{n+1}$ ã«ãªãã®ã§ïŒé£å¡©ã $\\frac{n}{n+1}$ ã«ãªãïŒãã£ãŠïŒnåç®ã®é£å¡©ã®éã¯ïŒ $1 \\cdot \\frac{1}{2} \\cdot\\frac{2}{3} \\cdots \\frac{n}{n+1} =\\frac{1}{n+1}$ ã§ããïŒãŸãïŒ $n$ åç®ã®æäœã®ããšã®æ°Žã®é㯠$100+50n $ ãªã®ã§ïŒæ¿åºŠã¯ $\\frac{\\frac{1}{n+1}}{100+50n} \\cdot 100 = \\frac{1}{\\frac{(n+1)(n+2)}{2}}$ ãšãªãããšããããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/2773/317"
}
] | ãæ¿åºŠ $1\\%$ ã®é£å¡©æ°Ž $100\rm{mL}$ ãå
¥ã£ãå®¹åš $A$ ãããïŒãããžä»¥äžã®æäœã $n$ åç¹°ãè¿ãè¡ããŸã.
- å®¹åš $A$ ããé£å¡©æ°Žã $50\rm{mL}$ åãé€ãïŒãããã« $100\rm{mL}$ ã®çæ°Žãå
¥ããïŒ
ãã®ãšãé£å¡©æ°Žã®æ¿åºŠã $\displaystyle \frac{1}{2023}\\%$ 以äžã«ãªããŸããïŒ$n$ ãšããŠããåŸãæå°ã®æ£æŽæ°ãæ±ããŠãã ããïŒ\
ããã ãïŒããããã®æäœã®åŸã§ïŒå®¹åš $A$ ã«å
¥ã£ãé£å¡©æ°Žã®æ¿åºŠã¯äžæ§ã§ãããšããŸãïŒ |
OMC184 | https://onlinemathcontest.com/contests/omc184 | https://onlinemathcontest.com/contests/omc184/tasks/5363 | C | OMC184(C) | 300 | 202 | 218 | [
{
"content": "ã$1\\/7 = 0.\\dot{1}4285\\dot{7}$ ã«æ°ãã€ããã°, 以äžãåãã. \r\n$$\\begin{aligned}\r\n142857142857142861 \\times 7\r\n&= 10^{18} + 27\\\\\\\\\r\n&= (10^6 + 3)(10^{12} - 3\\times10^6 + 9)\\\\\\\\\r\n&= (10^6 + 3)((10^6+3)^2 - 3000^2)\\\\\\\\\r\n&= 1000003\\times 1003003\\times 997003\r\n\\end{aligned}$$\r\nãŸãïŒ$997003 = 7^2\\times 20347$ ã§ãããã, \r\n$$142857142857142861 = 7\\times 20347\\times 1000003\\times 1003003$$\r\nã§ãã. ãã以äžçŽ å æ°å解ã§ããªãããšãä¿èšŒãããŠããã®ã§, ãããæ±ããçãã§ãã. ç¹ã«, 解çãã¹ãå€ã¯ $\\bf{2023353}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/5363"
}
] | ã$142857142857142861$ ãçŽ å æ°å解ããŠãã ããïŒãã ãïŒãã®çµæã¯çžç°ãªã $3$ ã€ã® $7$ ã§ãªãçŽ æ° $p,q,r$ ãçšã㊠$7pqr$ ãšãªãã®ã§ïŒ$p+q+r$ ã解çããŠãã ããïŒ |
OMC184 | https://onlinemathcontest.com/contests/omc184 | https://onlinemathcontest.com/contests/omc184/tasks/2344 | D | OMC184(D) | 400 | 104 | 156 | [
{
"content": "ãç°¡åãªè§åºŠèšç®ã«ãã $AD$ ã¯è§ $CAE$ ãäºçåãããã, $CE=x$ ãšããã°\r\n$$DC=\\frac{7x}{10},\\quad DE=\\frac{3x}{10}$$\r\näžæ¹ã§, $AD^2$ ã«ã€ããŠæåäºå®ãšã㊠(Stewartã®å®çã®ç³»)\r\n$$AD^{2}=AC\\times AE-CD\\times DEïŒ84-\\frac{21x^{2}}{100}$$\r\nãŸã $EAD$ ãš $ECB$ ã®çžäŒŒãã $AE:AD=CE:CB$ ã§ãããã, äžã®è«žå€ã代å
¥ããŠæŽçããããšã§\r\n$$x\\sqrt{84-\\frac{21x^{2}}{100}}=30\\sqrt{7}$$\r\nãã®åŒã解ãããšã§ $x=10,10\\sqrt{3}$ ã® $2$ 解ãåŸã. ãã㧠$x=10$ ã®ãšã $E$ ã®äœçœ®é¢ä¿ã®æ¡ä»¶ã«é©åããªããã, $x=10\\sqrt{3}$ ã§ãã, $AD=\\sqrt{21}$ ããã«æ¹ã¹ãã®å®çãã $AB=9$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{30}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/2344"
},
{
"content": "ãå
¬åŒè§£èª¬ã® Stewart ã®å®çã®ç³»ãç¥ããªãã£ãå Žåã®æ¹æ³ã§ãïŒ\r\n\r\nã$CE=x$ ãšçœ®ãïŒè§äºçåç·ã®æ§è³ªãã $CD=\\dfrac{7}{10}x$ïŒ$DE=\\dfrac{3}{10}x$ïŒ\\\r\nããŸãïŒ$\\triangle ADE \\sim \\triangle CBE$ ããïŒ$6:\\dfrac{3}{10}x:AD=x:(6+AB):5 \\sqrt{7}$ïŒããããïŒ$AD=\\dfrac{30 \\sqrt{7}}{x}$ïŒ$AB=\\dfrac{1}{20}x^2-6$ïŒ\\\r\nããã¬ããŒã®å®çããïŒ$ADÃBC+ABÃCD=ACÃBD$ïŒãã®åŒã«ä»ãŸã§ã®åŒã代å
¥ããããšã§ïŒ\r\n$$\\dfrac{30 \\sqrt{7}}{x}Ã5\\sqrt{7}+\\left( \\dfrac{1}{20}x^2-6 \\right)Ã\\dfrac{7}{10}x=14Ã\\dfrac{7}{10}x$$\r\nã$200x$ åããŠæŽçããã°ïŒ$x^4-400x^2+30000=0$ ãåŸãïŒä»¥äžã¯å
¬åŒè§£èª¬ãåç
§ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/2344/309"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$ACïŒ14,\quad BC=5\sqrt{7},\quad BD=CD.$$
ããã«ïŒåçŽç· $BA$ ãšåçŽç· $CD$ ã亀ãã£ãã®ã§ãã®äº€ç¹ã $E$ ãšãããšããïŒ$AE=6$ ãæç«ããŸããïŒãã®ãšãïŒæ£æŽæ° $p,q$ ã«ãã£ãŠ $AB+AD=p+\sqrt{q}$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC184 | https://onlinemathcontest.com/contests/omc184 | https://onlinemathcontest.com/contests/omc184/tasks/6563 | E | OMC184(E) | 400 | 55 | 144 | [
{
"content": "ã$P(x)=a_1x+a_2x^2+a_3x^3+a_4x^4$ ãšããïŒãã®ãšãæ¡ä»¶ãæºããããšã¯ïŒä»»æã®å®æ°ã®çµ $(x,y)$ ã«å¯ŸããŠ\r\n$$\\dfrac{P(2x)+P(2y)}{2} \\geq P(x+y)ã...(1)$$\r\nãæãç«ã€ãšèšãæããããšãã§ããïŒ\r\n\r\nã$(1)$ ãš $P^{\\prime \\prime}(x) \\geq 0$ ãåå€ã§ããããšã瀺ããïŒä»ïŒ$n,m$ ã $m\\leq 2^n$ ãªãéè² æŽæ°ãšããã°\r\n$$\\frac{m}{2^n}P(x)+\\frac{2^n-m}{2^n}P(y) \\geq P \\Big(\\dfrac{mx+(2^n-m)y}{2^n} \\Big)$$\r\nãæãç«ã€ïŒä»»æã® $0$ ä»¥äž $1$ 以äžã®å®æ° $\\lambda$ ã«ã€ããŠïŒ$m\\/2^n$ ãéããªã $\\lambda$ ã«è¿ä»ããããšã§ïŒ$P$ ãé£ç¶ã§ããããšãã\r\n$$\\lambda P(x)+(1-\\lambda)P(y) \\geq P(\\lambda x+(1-\\lambda)y)$$\r\nãåããïŒãã£ãŠ $P$ ã¯äžã«åžãªé¢æ°ã§ããïŒç¹ã« $P^{\\prime \\prime}(x) \\geq 0$ ã§ããïŒ\r\n$$P^{\\prime \\prime}(x)=2a_2+6a_3x+12a_4x^2$$\r\nã§ããïŒ$x$ ã«ã€ããŠã®å€å¥åŒã¯ $36{a_3}^2-96a_2a_4$ ã§ããããïŒçµå±\r\n$$a_4 \\gt 0,ã3{a_3}^2 \\leq 8a_2a_4ã... (2)$$\r\nãæºãã $(a_2,a_3,a_4)$ ã®åæ°ãæ±ããã°è¯ãïŒ\\\r\nã$a_2$ ãè² ã§ãããšãïŒ$(2)$ ã¯æºããããïŒæ£ã§ãããšãïŒ$a_3$ ã®å€ã«ãã£ãŠå Žååãããããšã§ $128-2Ã(0+1+5+8)=100$ åãããšåããïŒä»¥äžããïŒæ±ããç㯠$8Ã100=\\mathbf{800}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/6563"
},
{
"content": "ãäžåŒã®å·ŠèŸºãå±éãããšïŒ\r\n$$\\begin{aligned}\r\n& a_2 (2(x^2+y^2)-(x+y)^2)+a_3(4(x^2+y^3)-(x+y)^3)+a_4(8(x^4+y^4)-(x+y)^4)\\\\\\\\\r\n& = a_2(x^2-2xy+y^2)+a_3(3x^3-3x^2y-3xy^2+3y^3)+a_4(7x^4-4x^3y-6x^2y^2-4xy^3+7y^4)\\\\\\\\\r\n& = a_2(x-y)^2+3a_3(x-y)^2(x+y)+a_4(x-y)^2(7x^2+10xy+7y^2)\\\\\\\\\r\n& =(x-y)^2\\lbrace a_2+3a_3(x+y)+a_4(7x^2+10xy+7y^2) \\rbrace\r\n\\end{aligned}$$\r\nã以äžã®èšç®ããïŒ$a_2+3a_3(x+y)+a_4(7x^2+10xy+7y^2)â§0$ ãä»»æã®å®æ° $(x,y)$ ã«ã€ããŠæãç«ãŠã°ããïŒ$(x,y)=(0,0)$ ã«ã€ããŠèããã° $a_2â§0$ ããããïŒ$x,y \\to \\infty$ ãèããã° $a_4â§0$ ã§ããããšããããïŒ\\\r\nã$|x+y|=t$ ãšçœ®ããšïŒ$xyâŠ\\frac{t^2}{4}$ ïŒåŸã£ãŠïŒ$7x^2+10xy+7y^2=7(x+y)^2-4xyâ§6t^2$ïŒ\\\r\nã以äžã®èšç®ããïŒ$6a_4t^2 \\pm 3a_3t+a_2$ ãä»»æã®å®æ° $t$ ã«ã€ã㊠$0$ 以äžã§ããã°ããïŒãã®ããã®å¿
èŠååæ¡ä»¶ã¯ïŒ$(3a_3)^2-24a_2a_4âŠ0$ ã§ããïŒ \\\r\nã以äžã¯å
¬åŒè§£èª¬ãåç
§ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/6563/311"
},
{
"content": "$X=x+y, Y=x-y$ ãšãããš, $X+Y=2x, X-Y=2y$ ãªã®ã§, \\\r\n - $2(x^2+y^2)-(x+y)^2=\\frac{(X+Y)^2+(X-Y)^2}{2}-X^2=Y^2$\r\n - $4(x^3+y^3)-(x+y)^3=\\frac{(X+Y)^3+(X-Y)^3}{2}-X^3=3XY^2$\r\n - $8(x^4+y^4)-(x+y)^4=\\frac{(X+Y)^4+(X-Y)^4}{2}-X^4=6X^2Y^2+Y^4$\r\n\r\n以äžãã, äžããããäžçåŒã¯, $t=Y^2$ ãšããŠ, $$t\\\\{a_4t+(6a_4X^2+3a_3X+a_2)\\\\}\\geq0$$\r\nãšå€åœ¢ã§ãã.\r\n\r\nããã§, ä»»æã®å®æ° $X$ ãšéè² å®æ° $t$ ã«å¯ŸããŠå¯Ÿå¿ããå®æ° $x,y$ ãååšãã. ãã£ãŠ, äžã®äžçåŒãä»»æã®å®æ° $x,y$ ã«å¯ŸããŠæãç«ã€ããšãš, $t\\gt0$ ã«ã€ããŠå¿
ã $$a_4t+(6a_4X^2+3a_3X+a_2)\\geq0$$ ã§ããããšã¯åå€ã§ãã, \r\n - $a_4\\geq0$ (åé¡æã®æ¡ä»¶ãã, $a_4\\gt0$)\r\n - $6a_4X^2+3a_3X+a_2\\geq0$\r\n\r\nãåæã«æºããã°ãã. \\\r\nåŸè
㯠$X$ ã«å¯Ÿããäºæ¬¡äžçåŒã§ãã. $a_4\\gt0$ ãã, å€å¥åŒ $D=(3a_3)^2-24a_2a_4$ ã $0$ 以äžãªããã. \\\r\n以äžãã, $a_4\\gt0, 3a_3^2-8a_2a_4\\leq0$ãåæã«æºãã $(a_2,a_3,a_4)$ ã®çµãæ°ãäžããã°ãã. 以äžã¯å
¬åŒè§£èª¬åç
§.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/6563/316"
}
] | ã次ã®æ¡ä»¶ãã¿ãããããªïŒ$-4$ ä»¥äž $4$ 以äžã® $0$ ã§ãªãæŽæ°ã®çµ $(a_1,a_2,a_3,a_4)$ ã¯ããã€ãããŸããïŒ
ãä»»æã®å®æ°ã®çµ $(x,y)$ ã«ã€ããŠïŒ
$$\sum_{k=1}^{4} a_k\bigl(2^{k-1}(x^{k}+y^{k})-(x+y)^{k}\bigr) \geq 0$$
ãæãç«ã€ïŒ |
OMC184 | https://onlinemathcontest.com/contests/omc184 | https://onlinemathcontest.com/contests/omc184/tasks/4552 | F | OMC184(F) | 600 | 28 | 72 | [
{
"content": "ã$7$ è¡ $7$ åãããã¹ç®ã®ç€é¢ã®, $i$ è¡ $j$ åç®ã«ãããã $7(i-1)+(j-1)$ ãæžã蟌ãããšãèãã. ãããšåé¡ã¯, ä»»æã®é»ãå¡ããã $4$ ã€ã®ãã¹ç®ã®äžå¿ããã¹ç®ã®å蟺ã«å¹³è¡ãªé·æ¹åœ¢ã®é ç¹ãšãªããªãããã«, ç€é¢ã®ãã¹ç®ã $N$ åé»ãå¡ãéãæ°ã«èšãæãããã. ãã以é, äžèšã®å¡ãæ¹ã§ãã¹ç®ã $N$ åé»ãå¡ãããç€é¢ã **è¯ãå¡ãæ¹** ãšåŒã¶. \r\n\r\nãè¯ãå¡ãæ¹ã«ãããŠå·Šåããé ã« $a\\_1, a\\_2, a\\_3, a\\_4, a\\_5, a\\_6, a\\_7$ åã®ãã¹ç®ãé»ãå¡ãããŠãããšãããš, ä»»æã® $2$ ã€ã®åã«ãããŠ, ä»»æã®é»ãå¡ããããã¹ç®ãããè¡ $2$ ã€ã®çµãéžãã ãšãã«ãã®çµãéè€ããããšã¯ãªãã®ã§, \r\n$${}\\_{a_1}\\mathrm{C}\\_{2} + {}\\_{a_2}\\mathrm{C}\\_{2} + {}\\_{a_3}\\mathrm{C}\\_{2} + {}\\_{a_4}\\mathrm{C}\\_{2} + {}\\_{a_5}\\mathrm{C}\\_{2} + {}\\_{a_6}\\mathrm{C}\\_{2} + {}\\_{a_7}\\mathrm{C}\\_{2} \\leq {}\\_{7}\\mathrm{C}\\_{2} =21$$\r\nããã¿ãã. ç¹ã« $a\\_1 + a\\_2 + a\\_3 + a\\_4 + a\\_5 + a\\_6 + a\\_7$ ãæ倧ã«ãããããªçµ $(a\\_1, a\\_2, a\\_3, a\\_4, a\\_5, a\\_6, a\\_7)$ 㯠$(3,3,3,3,3,3,3)$ ã«éãã, $N=21$ ã§ãã. \r\n\r\nãè¯ãå¡ãæ¹ãã©ããã¯ååã䞊ã³æ¿ããŠãäžå€ã®ãã, ååã **èŸæžé ** ã«äžŠã³æ¿ãã. ããã§åãã¹ç®ã«å¯ŸããŠã¹ã³ã¢ã, $i$ è¡ç®ã§ãããã€é»ãå¡ãããŠãããªã $2^{-i}$, ããã§ãªããªã $0$ ãšãããšãã«, èŸæžé ãåã® $7$ ãã¹ãã¹ãŠã®ã¹ã³ã¢ã®åèšãå·Šåããéé ã«äžŠã¶ç€é¢ãšå®çŸ©ãã. å·Šåããé çªã«é»ãå¡ããã¹ç®ã決å®ãã. $1$ åç®ãã $3$ åç®ã¯ãã¹ãŠ $1$ è¡ç®ã®ãã¹ç®ãé»ãå¡ãããŠããã®ã§, æ®ãã® $6$ è¡ãåå㧠$2$ è¡ãã€èŸæžé ãä¿ã£ãŠåãåãæ¹æ³ã¯ $15$ éãã§ãã. $4$ åç®ãã $5$ åç®ãŸã§ã¯ãã¹ãŠ $2$ è¡ç®ã®ãã¹ãé»ãå¡ãããŠããã®ã§, $4$ è¡ãåå㧠$2$ è¡ãã€èŸæžé ãä¿ã£ãŠåãåãæ¹æ³ã¯ $3$ éãã ã, ç¹ã«è¯ãå¡ãæ¹ã®ãã®ã¯ $2$ éãã§ãã. $6$ åç®ãã $7$ åç®ãŸã§ã¯èªåçã«æ±ºå®ãã. ãããã£ãŠ, è¯ãéåã®ç·æ°, ããªãã¡è¯ãå¡ãæ¹ã®ç·æ°ã¯, ååãèŸæžé ã«äžŠã³æ¿ããåã®ãã®ãå«ã $15\\cdot 2 \\cdot 7! = \\mathbf{151200}$ åååšãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/4552"
},
{
"content": "ã$N=3+3+3+3+3+3+3=21$ ã®ããšã®èšç®ã«ã€ããŠïŒèŸæžåŒã䜿ããªãæ¹éã§ãïŒéšåéå $T$ ãå®éã«æ§æããŸãïŒä»¥äžã®èª¬æãèªãéã¯ïŒ$7Ã7$ ã®è¡šãäœã£ãããã§å®éã«æ§æããªããèªãããšãæšå¥šããŸãïŒ\r\n\r\nã説æããããã®ããïŒéå $\\lbrace 0, 1, 2, \\cdots 48 \\rbrace$ ã $7$ é²æ³ã§èšãïŒ$\\lbrace 0, 1, 2, \\cdots 66 \\rbrace$ ãšè¡šèšããïŒãŸãïŒä»¥äžã®èª¬æã§ïŒ$p,q,r,s,t,u,v$ ã¯äžã®äœãæå³ãïŒ$P,Q,R,S,T,U$ ã¯åã®äœãæå³ããïŒåã®ãããã $6$ çš®é¡ãããªãã®ã¯ïŒ$0,1,\\cdots,6$ãããããïŒïŒ\\\r\nããŸãïŒ$1$ æ¡ã®æ°ã $3$ ã€ããïŒãããã $p,q,r$ ãšããïŒâ $_7 C_3$ éã\\\r\nãäžã®äœã $p$ ã§ãããã®ã $2$ ã€ããïŒãããã®åã®äœã $P,Q$ ãšããïŒæ°ãšããŠã¯ $Pp=7P+p$ ãš $Qp=7Q+p$ïŒïŒâ $_6 C_2$ éã\\\r\nãäžã®äœã $q$ ã§ãããã®ã $2$ ã€ããïŒåã®äœã $R,S$ ãšããïŒâ $_4 C_2$ éã\\\r\nãäžã®äœã $r$ ã§ãããã®ã¯æ®ãã® $T,U$ ã§ããïŒïŒãããŸã§ã§æ§æããæ°ã¯ $p,q,r,Pp,Qp,Rq,Sq,Tr,Ur$ïŒ\\\r\nãåã®äœã $P$ ã§ãããã®ãïŒ$p$ ã®ä»ã« $2$ ã€ããïŒ$q,r$ ã¯äœ¿ããªãç¹ã«æ³šæïŒ$s,t$ ãšããïŒâ $_4 C_2$ éã\\\r\nãåã®äœã $Q$ ã§ãããã®ãïŒ$p$ ã®ä»ã« $2$ ã€ããïŒ$q,r,s,t$ ã¯äœ¿ããªãïŒ$u,v$ ã§ããïŒïŒ$Ps,Pt,Qu,Qv$ ãå¢ããïŒ\\\r\nãåã®äœã $R$ ã§ãããã®ãïŒ$q$ ã®ä»ïŒ$s,t$ ã®ãã¡ããããäžæ¹ãšïŒ$u,v$ ã®ãã¡ããããäžæ¹ïŒâ$2^2$ éã\\\r\nãåã®äœã $S$ ã§ãããã®ã¯ïŒäžã§äœ¿ããªãã£ã $2$ ã€ã§ããïŒïŒäŸãšã㊠$Rs,Ru,St,Sv$ïŒ\\\r\nãåã®äœã $T,U$ ã§ãããã®ã¯ïŒæ®ã $2$ éãèããããïŒ\\\r\nã以äžããïŒ${}_7 C_3Ã{}_6 C_2Ã{}_4 C_2Ã{}_4 C_2Ã2^2Ã2$ ãèšç®ããã°ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc184/editorial/4552/312"
}
] | ãéå $\\{0,1,2,\ldots 48\\}$ ã®éšåéå $S$ ã次ã®æ¡ä»¶ãã¿ãããšãïŒããã **è¯ãéå** ãšãã¶ããšã«ããŸãïŒ
- éå $S$ ã® $4$ å
ãããªãéšåéå $T$ ãã©ã®ããã«ãšã£ãŠãïŒ$0$ ä»¥äž $6$ 以äžã®æŽæ° $a,b,c,d ~ ( a \neq b, c \neq d )$ ãçšã㊠$\\{7a+c, 7a+d, 7b+c, 7b+d\\}$ ãšè¡šãããšãã§ããªãïŒ
ãè¯ãéåã®èŠçŽ æ°ãšããŠããåŸãæ倧å€ã $N$ ãšãããšãïŒèŠçŽ æ°ã $N$ ã§ããè¯ãéåã¯ããã€ãããŸããïŒ |
OMC183 (SEGæ¯) | https://onlinemathcontest.com/contests/omc183 | https://onlinemathcontest.com/contests/omc183/tasks/4292 | A | OMC183(A) | 100 | 321 | 326 | [
{
"content": "ãæ¡ä»¶ãæºããæ°ã« $1$ ã足ããšïŒ$9$ ã§ã $6$ ã§ãå²ãåããæ°ïŒããªãã¡ $18$ ã®åæ°ãšãªãïŒãããã£ãŠïŒæ¡ä»¶ãã¿ããæ°ã¯æ£ã®æŽæ° $n$ ãçšã㊠$18n-1$ ãšè¡šãããšãã§ããã®ã§çã㯠$\\bf{89}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/4292"
}
] | ã $2$ æ¡ã®æ£ã®æŽæ° ($10$ ä»¥äž $99$ 以äžã®æŽæ°) ã§ãã£ãŠïŒ$9$ ã§å²ã£ãŠ $8$ ããŸãïŒ$6$ ã§å²ã£ãŠ $5$ ããŸããã®ã®ãã¡ïŒæ倧ã®ãã®ãæ±ããŠãã ããïŒ |
OMC183 (SEGæ¯) | https://onlinemathcontest.com/contests/omc183 | https://onlinemathcontest.com/contests/omc183/tasks/5220 | B | OMC183(B) | 200 | 289 | 307 | [
{
"content": "ãäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$(x-2)^2+(y-1)^2=50$$\r\nãã㧠$x, y$ ã¯æ£ã®æŽæ°ã§ããããïŒ$x-2\\geq -1, ~ y-1\\geq 0$ ã«æ³šæããã°ïŒ\\\r\n$$(x-2, y-1)=(-1,7),(1, 7),(7, 1),(5, 5)$$\r\nãé©ããçµã§ããïŒããªãã¡\r\n$$(x, y)=(1, 8),(3, 8),(9, 2),(7, 6).$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{92}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/5220"
}
] | ã以äžãã¿ããæ£ã®æŽæ°ã®çµ $(x,y)$ ãã¹ãŠã«ã€ããŠïŒ$xy$ ã®ç·åãæ±ããŠãã ããïŒ
$$x^2+y^2=4x+2y+45.$$ |
OMC183 (SEGæ¯) | https://onlinemathcontest.com/contests/omc183 | https://onlinemathcontest.com/contests/omc183/tasks/2162 | C | OMC183(C) | 200 | 243 | 289 | [
{
"content": "ã$\\dfrac{1^2}{82}, \\dfrac{2^2}{82}, \\dfrac{3^2}{82},\\cdots, \\dfrac{41^2}{82}$ ã«ãããŠã¯ïŒé£ãåãæ°ã®å·®ã¯ $1$ æªæºã§ããããïŒããããã®æŽæ°éšåã«ã¯ $\\bigg\\lfloor\\dfrac{41^2}{81}\\bigg\\rfloor=20$ 以äžã®éè² æŽæ°ããã¹ãŠå«ãŸããïŒäžæ¹ã§ïŒ$\\dfrac{41^2}{82}, \\dfrac{42^2}{82}, \\dfrac{43^2}{82},\\ldots, \\dfrac{1000^2}{82}$ ã«ãããŠã¯é£ãåãæ°ã®å·®ã¯ $1$ 以äžãªã®ã§ïŒãããã®æŽæ°éšåã¯ãã¹ãŠçžç°ãªãïŒä»¥äžããïŒæ±ããæŽæ°ã®çš®é¡æ°ã¯ $21+959=\\bf{980}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/2162"
}
] | $$\left\lfloor \frac{1^2}{82} \right\rfloor, ~ \left\lfloor \frac{2^2}{82} \right\rfloor, ~ \left\lfloor \frac{3^2}{82} \right\rfloor, ~ \ldots, ~ \left\lfloor \frac{1000^2}{82} \right\rfloor$$
ã«å«ãŸããçžç°ãªãæŽæ°å€ã¯äœçš®é¡ã§ããïŒ\
ããã ãïŒ$\lfloor x \rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMC183 (SEGæ¯) | https://onlinemathcontest.com/contests/omc183 | https://onlinemathcontest.com/contests/omc183/tasks/4102 | D | OMC183(D) | 300 | 166 | 224 | [
{
"content": "ãäžè¬ã« $2$ è¡ $n$ åã®ãã¹ç®ã«æ¡ä»¶ãæºããããã«å¡ãæ¹æ³ã®ç·æ°ã $a_{n}$ ãšããïŒ$n\\ge2$ ã®ãšãïŒæå·Šã® $2$ ãã¹ããšãã«å¡ããªãå Žåã®æ®ãã®å¡ãæ¹ã¯ $a_{n-1}$ éãã§ããããïŒæå·Šã® $2$ ãã¹ã®ãã¡äžåŽ $1$ ãã¹ãå¡ãæ¹æ³ã¯ïŒå¯Ÿç§°æ§ãã $(a_n-a_{n-1})\\/2$ éãã§ããïŒäžæ¹ã§ïŒæå·Šã® $2$ ãã¹ã®ãã¡äžåŽ $1$ ãã¹ãå¡ãå Žåã¯ïŒ$2$ åç®ã¯ $2$ ãã¹ããšãã«å¡ããªããïŒäžåŽ $1$ ãã¹ãå¡ããããããã§ããããïŒ$n\\ge3$ ã®ãšã\r\n$$\\dfrac{1}{2}(a_n-a_{n-1}) = a_{n-2} + \\dfrac{1}{2}(a_{n-1}-a_{n-2})\\$$\r\nããªãã¡\r\n$$a_n=2a_{n-1}+a_{n-2}$$\r\nãåŸãïŒããããïŒ$a_1 = 3, a_2 = 7$ ãšåãããŠé ã«èšç®ããããšã§ $a_{7}=\\bf{577}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/4102"
}
] | ã $2$ è¡ $7$ åã®ãã¹ç®ãããïŒãããã®ãã¹ã®ãã¡ããã€ããèµ€ãå¡ããŸãïŒ$0$ ãã¹ã§ãããïŒïŒãã®ãšãïŒèµ€ãå¡ããããã¹ãé£ãåããªããããªå¡ãæ¹ã¯äœéããããŸããïŒããªãïŒå転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ããŸãïŒ |
OMC183 (SEGæ¯) | https://onlinemathcontest.com/contests/omc183 | https://onlinemathcontest.com/contests/omc183/tasks/4732 | E | OMC183(E) | 300 | 91 | 115 | [
{
"content": "ã$n = 100$ ãšããïŒçžå çžä¹å¹³åã®äžçåŒãã\r\n$$\\begin{aligned}\r\nP(a,b,c)&=\\sqrt{ab}+\\sqrt{bc}+\\sqrt{ca}-(a+b+c^n)\\\\\\\\\r\n&\\leq\\dfrac{a+b}{2}+\\dfrac{b+c}{2}+\\dfrac{c+a}{2}-(a+b+c^n)\\\\\\\\\r\n&=c-c^n\r\n\\end{aligned}$$\r\nã§ããïŒçå·ã¯ $a=b=c$ ã®ãšãã®ã¿æç«ããïŒ\r\nãŸãå床çžå çžä¹å¹³åã®äžçåŒãã\r\n$$\r\nc - c^n\r\n= \\big(nc^n\\big(n^{-1\\/(n - 1)}\\big)^{n - 1}\\big)^{1\\/n} - c^n\r\n\\leq \\cfrac{nc^n + \\cfrac{n - 1}{n^{1\\/(n - 1)}}}{n} - c^n\r\n= \\dfrac{n-1}{n^{n\\/(n-1)}}$$\r\nã§ããïŒçå·ã¯ $c=n^{-1\\/(n-1)}$ ã®ãšãã®ã¿æç«ããïŒãªãïŒåŸ®åãçšããŠãåæ§ã®ããšã確èªã§ããïŒä»¥äžãã次ã確èªã§ããïŒ\r\n$$M=\\dfrac{n-1}{n^{n\\/(n-1)}},\\quad A=\\dfrac{1}{n^{1\\/(n-1)}}$$\r\nãã®ãšã $\\dfrac{M}{A}=\\dfrac{n-1}{n} = \\dfrac{99}{100}$ ã§ããããïŒè§£çãã¹ãå€ã¯ ${\\bf 199}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/4732"
},
{
"content": "ãå³å¯æ§ã«ã¯æ¬ ããŸããïŒæ倧å€ã®ååšãä»®å®ããŠè§£ãæ¹æ³ã§ãïŒ\r\n***\r\nã$P(a,b,c)$ ã $a,b,c$ ã§ããããå埮åãããš\r\n$$ \\frac{\\partial P}{\\partial a} = \\frac{\\sqrt{b}}{2 \\sqrt{a}} + \\frac{\\sqrt{c}}{2 \\sqrt{a}} - 1$$\r\n$$ \\frac{\\partial P}{\\partial b} = \\frac{\\sqrt{a}}{2 \\sqrt{b}} + \\frac{\\sqrt{c}}{2 \\sqrt{b}} - 1$$\r\n$$ \\frac{\\partial P}{\\partial c} = \\frac{\\sqrt{b}}{2 \\sqrt{c}} + \\frac{\\sqrt{a}}{2 \\sqrt{c}} - 100c^{99}$$\r\nãšãªãïŒããã§ïŒ$P(a,b,c)$ ã極倧å€ããšããšã $ \\displaystyle \\frac{\\partial P}{\\partial a} = \\frac{\\partial P}{\\partial b} = \\frac{\\partial P}{\\partial c} = 0$ ãæãç«ã€ïŒããã解ã㊠$a = b = c = 100^{-1\\/99}$ ãåŸãïŒ\\\r\nãããšã¯å
¬åŒè§£èª¬ãšåæ§ã« $M,A$ ãæ±ãŸãïŒçã㯠$\\mathbf{199}$ ãšãªãïŒ",
"text": "å埮åã«ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/4732/308"
},
{
"content": "åãæ¬çªäžã«ãã解æ³ã§ãïŒ\r\n***\r\n$$P(a,b,c)=-\\dfrac12\\lbrace(\\sqrt{a}-\\sqrt{b})^2+(\\sqrt{b}-\\sqrt{c})^2+(\\sqrt{c}-\\sqrt{a})^2\\rbrace+c-c^{100}$$\r\nãšå€åœ¢ã§ãïŒ$-\\dfrac12\\lbrace(\\sqrt{a}-\\sqrt{b})^2+(\\sqrt{b}-\\sqrt{c})^2+(\\sqrt{c}-\\sqrt{a})^2\\rbrace$ ã $0$ ã«ãïŒ$c-c^{100}$ ãæ倧åããããïŒãã㯠$c-c^{100}$ ãæ倧å€ãåã $c$ ã $\\alpha$ ãšãããšïŒ$P(\\alpha,\\alpha,\\alpha)$ ã§å®çŸå¯èœã§ããïŒ",
"text": "ç¥ã£ãŠãããšããŸã«äŸ¿å©ãªåŒå€åœ¢",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/4732/313"
}
] | ãæ£ã®å®æ° $a, b, c$ ã«ã€ããŠïŒ$P(a,b,c)$ ã以äžã§å®ããŸãïŒ
$$P(a,b,c)=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}-(a+b+c^{100})$$
ã$a,b,c$ ãæ£ã®å®æ°å
šäœãåããšãã® $P(a,b,c)$ ã®æ倧å€ã $M$ ãšãïŒ$P(a,b,c)=M$ ãªãçµ $(a,b,c)$ ãã¹ãŠã«ã€ããŠã® $a$ ã®ç·åã $A$ ãšãããšãïŒ$\dfrac{M}{A}$ ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC183 (SEGæ¯) | https://onlinemathcontest.com/contests/omc183 | https://onlinemathcontest.com/contests/omc183/tasks/2192 | F | OMC183(F) | 400 | 26 | 48 | [
{
"content": "ã$\\angle PAR=\\theta$ ãšãããšïŒäžè§åœ¢ $ARS$ ãšäžè§åœ¢ $APQ$ ãçžäŒŒã§ããããšãšïŒæ£åŒŠå®çãã以äžãåãã.\r\n$$RS=PQ\\cos \\theta,\\quad AB=\\frac{PQ}{\\sin \\theta}$$\r\nãããã£ãŠïŒ$\\cos\\theta\\sin\\theta = \\dfrac{2}{5}$ ã§ããããïŒ$\\tan\\theta = 2, \\dfrac{1}{2}$ ãåŸãïŒ\r\nãŸãïŒ\r\n$$\\angle PAB = \\angle PQB = 90^\\circ - \\angle AQP = 90^\\circ - \\angle ASR$$\r\nããçŽç· $AB$ ãš $RS$ ã¯çŽäº€ããã®ã§ïŒæ±ããé¢ç©ã¯\r\n$$\\frac{1}{2}\\times AB\\times RS=\\dfrac{PQ^2}{2\\tan\\theta} =\\dfrac{288}{\\tan\\theta}$$\r\n以äžããïŒæ±ããç·å㯠$288\\times\\left(2+\\dfrac{1}{2}\\right)=\\textbf{720}$ ã§ããïŒãªãïŒ$BP=7$ ã¯äœå°ãªæ¡ä»¶ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/2192"
},
{
"content": "$PR$ ãš $QS$ ã®äº€ç¹ã $H$ ãšãããšïŒ$H$ ã¯äžè§åœ¢ $APQ$ ã®åå¿ã§ãã. $\\angle PSQ=\\angle PRQ=90^{\\circ}$ ããïŒ$P, S, R, Q$ ã¯å
±åã ããïŒäžè§åœ¢ $ARS$ ãš $APQ$ ã¯çžäŒŒ. ããã«ïŒ$$\\angle ASH=\\angle ARH=90^{\\circ},ã\\angle AQB=\\angle APB=90^{\\circ}$$ ããïŒãã®çžäŒŒã«ãã㊠$H$ ãš $B$ ã¯å¯Ÿå¿ãã. ãã£ãŠïŒ$AH:RS=AB:PQ$ ã ããïŒ$AB:RS=5:2$ ãã $AB=5x, RS=2x, AH=\\dfrac{5}{12}x^2$ ãšããã. ããŸïŒäžè§åœ¢ $APQ$ ã®å€æ¥åã $\\Gamma$ïŒå€å¿ã $O$ ãšã ($O$ ã¯æããã«ç·å $AB$ ã®äžç¹ã§ãã)ïŒ$QO$ ãšäžè§åœ¢ $APQ$ ã®å€æ¥åã®äº€ç¹ã $X$ ãšãããšïŒãã㯠$H$ ã $AB$ ã®äžç¹ã§æãè¿ããç¹ã§ããããïŒ$$AH^2+PQ^2=XP^2+PQ^2=XQ^2=AB^2=25x^2$$ ã§ãã. ãã£ãŠïŒ$\\dfrac{25}{144}x^4+576=25x^2$ ã ããïŒããã解ã㊠$x^2=\\dfrac{576}{5}, \\dfrac{144}{5}$. ããŸïŒ$HS\\parallel BP, HR\\parallel BQ$ ããïŒä»¥äžãæç«ãã. \r\n$$|RASB|=|ASHR|+|SHB|+|RHB|=|ASHR|+|SHP|+|RHQ|=|APHQ|=\\dfrac{AHÃBC}{2}=5x^2$$\r\nãã£ãŠïŒ$RASB$ ã®é¢ç©ãšããŠããããå€ã®ç·å㯠$5Ã\\left(\\dfrac{576}{5}+\\dfrac{144}{5}\\right)=\\textbf{720}$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/2192/314"
},
{
"content": "ã$AB=5x,RS=2x$ ãšããïŒäžè§åœ¢ $APQ$ ã®åå¿ã $H$ïŒãã®å€æ¥åã®äžå¿ã $O$ïŒç·å $PQ$ ã®äžç¹ã $M$ïŒ$PO$ ãšå€æ¥åãšã®äº€ç¹ã $T(\\neq P)$ïŒ$AB$ ãš $PQ$ ã®äº€ç¹ã $U$ ãšããïŒ$P, Q, R, S$ ããã³ $A, B, P, Q$ ã¯ããããå
±åãã $\\angle ASR = \\angle AQP = \\angle ABP$ ãšãªãããïŒ$B, P, S, U$ ã¯å
±å㧠$\\angle AUS=\\angle APB = 90^{\\circ}$ ãšãªãïŒããã«åè§åœ¢ $ARBS$ ã®é¢ç©ã¯ $\\dfrac{1}{2} \\times AB \\times RS = 5x^2$ïŒãŸãïŒ$AH=2OM=TQ=\\sqrt{PT^2-PQ^2}=\\sqrt{25x^2-576}$ ã§ããïŒäžè§åœ¢ $ARS$ ãšäžè§åœ¢ $APQ$ ã®çžäŒŒæ¯ã¯ïŒãããã®å€æ¥åã®çŽåŸã®æ¯ã«çããããïŒ\r\n$$\\begin{aligned}\r\nRS:PQ=AH:AB &\\Leftrightarrow 2x:24=\\sqrt{25x^2-576}:5x\\\\\\\\\r\n&\\Leftrightarrow(5x^2)^2-720(5x^2)+82944=0\\\\\\\\\r\n\\end{aligned}$$\r\nãããã£ãŠïŒè§£ãšä¿æ°ã®é¢ä¿ããæ±ããã¹ãç·å㯠$\\bf{720}$ ãšãªã(å³å¯ã«ã¯ $2$ 解ãåé¡ã®æ¡ä»¶ã«é©ããŠããã確èªããªããã°ãªããªã)ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc183/editorial/2192/315"
}
] | ã$4$ ç¹ $A,B,P,Q$ 㯠$\angle APB = \angle AQB = 90^\circ$ ãã¿ããïŒ$P$ ãš $Q$ ã¯çŽç· $AB$ ã«é¢ããŠå察åŽã«ãããŸãïŒç¹ $P$ ããçŽç· $AQ$ ã«äžãããåç·ã®è¶³ã $R$ïŒç¹ $Q$ ããçŽç· $AP$ ã«äžãããåç·ã®è¶³ã $S$ ãšãããšïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$\angle PAQ \lt 90^\circ,\quad AB:RS=5:2,\quad BP = 7,\quad PQ=24$$
ãã®ãšãïŒåè§åœ¢ $RASB$ ã®é¢ç©ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC182 | https://onlinemathcontest.com/contests/omc182 | https://onlinemathcontest.com/contests/omc182/tasks/7890 | A | OMC182(A) | 200 | 243 | 270 | [
{
"content": "ãäžåŒã« $y=x-f(x)$ ã代å
¥ãããšïŒä»»æã®å®æ° $x$ ã«å¯Ÿã $$f(f(x)+(x-f(x)))=f(x)+{2}\\cdot{x}+{2}\\cdot{(x-f(x))}+4$$ ããªãã¡ïŒ$$f(x)=2x+2$$ ãæç«ãïŒç¢ºãã«ããã¯äžåŒãæºããããïŒ$f(2023)=\\mathbf{4048}$ ãšåããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/7890"
}
] | ãå®æ°ã«å¯ŸããŠå®çŸ©ããå®æ°å€ããšãé¢æ° $f$ ãïŒä»»æã®å®æ° $x$ , $y$ ã«å¯Ÿã㊠$$f(f(x)+y)=f(x)+2x+2y+4$$ ãã¿ãããšãïŒ$f(2023)$ ã®å€ã¯äžæã«å®ãŸãã®ã§ïŒãããæ±ããŠãã ãã. |
OMC182 | https://onlinemathcontest.com/contests/omc182 | https://onlinemathcontest.com/contests/omc182/tasks/4161 | B | OMC182(B) | 200 | 268 | 281 | [
{
"content": "ã$20$ 以äžã®çŽ æ°ã¯ $2,3,5,7,11,13,17,19$ ã® $8$ ã€ã§ããïŒ$3\\times17\\times19=969\\lt1000$ ã§ããããïŒ$N$ 㯠$2,3$ ãçŽæ°ã«æããªãïŒãã£ãŠ $N$ ã¯å¥æ°ã§ããïŒ$13\\times17\\times19=4199\\lt5000$ ãšåãããã°ïŒ$N$ ã®äžã®äœåã³åã®äœã¯ $1$ ãŸã㯠$3$ ã§ããïŒäžè¬ã«å¶æ°æ¡ã®åææ°ã $11$ ã®åæ°ã§ããããšã«ã泚æããã°ïŒ$N$ ã®çŽ å æ°ã®çµã¿åãã㯠$$(7,11,13),(7,11,19),(11,13,17),(11,17,19)$$\r\nã®ããããã§ããïŒãããã®ãã¡ç©ãåææ°ãšãªãã®ã¯ $(7,11,13),(11,17,19)$ ã®ã¿ã§ããïŒæ±ããçã㯠$\\bold{4554}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/4161"
}
] | ã$4$ æ¡ã®æ£ã®æŽæ° $N$ ã¯çžç°ãªã $20$ 以äžã®çŽ æ° $3$ ã€ã®ç©ã§è¡šãã**åææ°**ã§ãïŒ$N$ ãšããŠããããå€ã®ç·åãçããŠãã ããïŒ\
ããã ãïŒæ£æŽæ°ã**åææ°**ã§ãããšã¯ïŒäžã®äœã $0$ ã§ãªãïŒäžã®äœããéé ã«èªãã å Žåã§ãå
ã®æ°ãšäžèŽããããšãæããŸãïŒäŸãã° $1221$ ã $3883$ ã¯åææ°ã§ããïŒ$2023$ ã $1210$ ã¯åææ°ã§ã¯ãããŸããïŒ |
OMC182 | https://onlinemathcontest.com/contests/omc182 | https://onlinemathcontest.com/contests/omc182/tasks/6961 | C | OMC182(C) | 300 | 120 | 170 | [
{
"content": "ãå
šäœãïŒé ç¹ãæ£ $3n$ è§åœ¢ã®é ç¹ïŒèŸºïŒæåïŒãåé ç¹ãšãã®é ç¹ããæäœãäžåè¡ã£ãæã®ã³ã€ã³ã®è¡ãå
ã®é ç¹ãçµã¶æåã°ã©ããšã¿ãªãïŒãã®ã°ã©ããéè·¯ãæã€ã®ã¯æããã§ããïŒãã®éè·¯ã®å€§ããã®æå°å€ã¯ $n$ ã§ããããïŒæ¡ä»¶ãæºããé ç¹ã¯ãã®ãšãã®éè·¯äžã®ãã¹ãŠã®é ç¹ã®ã¿ã§ããïŒ \\\r\nãåŸã£ãŠïŒæ¡ä»¶ãæºããé ç¹ã¯ $\\bmod\\ 3$ ã§çããé ç¹ $n$ åã®çµã§ãªããã°ãªããïŒãããã®é ç¹ã«ã¯ãã¹ãŠ $3$ ãæžã蟌ãŸããŠããããšããããïŒ \\\r\nãããã§äžèšã®ããã«é ç¹ $n$ åã®çµãããªãéè·¯ãæã¡ïŒãã€ïŒä»ã«ãéè·¯ãæã€ãšãïŒãã®éè·¯ã¯é ç¹ãã¡ããã© $n$ åæã€ïŒ\r\nã<details><summary>蚌æ<\\/summary>\r\nããŸãïŒ $n$ åã®é ç¹ã®çµãããªãéè·¯ã®é ç¹ã®çµã $\\bmod\\ 3$ 㧠$0$ ãšçãã $n$ åã®é ç¹ã®çµãšããŠãäžè¬æ§ã倱ããªãïŒ \\\r\nãä»ã«ã $A_i(i \\equiv 1\\pmod3)$ ãå«ãéè·¯ãååšãããšãïŒ$A_i$ ããã®ã³ã€ã³ã®è¡å
㯠$A_{i+2}$ ããã㯠$A_{i+3}$ ãšãªããïŒãã®éè·¯ã«ã¯ïŒ$\\bmod\\ 3$ 㧠$0$ ãšçããé ç¹ãæããªãããïŒ$A_i$ ããã®ã³ã€ã³ã®è¡å
㯠$A_{i+3}$ ã§ããïŒ$A_{i+3}$ ãéè·¯ã«å±ãïŒ\\\r\nã以äžïŒåæ§ã«ç¹°ãè¿ãããšã§ïŒãã®éè·¯ã®é ç¹ã®çµã¯ $\\bmod\\ 3$ 㧠$1$ ãšçãã $n$ åã®é ç¹ã®çµã§ããããšããããïŒ\\\r\nããŸãïŒ $A_i(i \\equiv 1\\pmod3)$ ãå«ãŸãªãä»ã®éè·¯ãååšãããšãïŒãã®é路㯠$\\bmod\\ 3$ 㧠$0$ ãšçããé ç¹ãæããªãããïŒãã®é路㯠$\\bmod 3$ 㧠$2$ ãšçãã $n$ åã®é ç¹ã®çµãããªãããšããããïŒ\\\r\nããã£ãŠïŒãããã®å Žåãéè·¯ãæ§æããé ç¹ã®åæ°ã¯ $n$ åã§ããïŒïŒèšŒæçµïŒ\r\n<\\/details>\r\n\r\nãããã§ïŒé·ã $n$ ã®éè·¯ãã¡ããã©äºã€æã€æžã蟌ã¿æ¹ã¯ $3\\times2^{n}-3$ éãïŒã¡ããã©äžã€æã€ãããªæžã蟌ã¿æ¹ã¯ $1$ éãã§ãããã\r\n $$ \\begin{aligned} \r\n a_n &=3 \\times 2^{2n}-2 \\times (3 \\times 2^{n}-3)-3 \\times 1 \\\\\\\\\r\n &=3 \\times 4^{n}-6 \\times 2^{n}+3 \r\n \\end{aligned} $$\r\nã§ããïŒãããã¯ïŒé·ã $n$ ã®éè·¯ã®éžã³æ¹ $3$ éãã«ïŒéè·¯ã $1$ ã€ãã€ãããã $n$ é ç¹ã®æ±ºãæ¹ $(2^n-1)^2$ ãä¹ããããšã§ãåãè¡šåŒãåŸãïŒ \\\r\nããã£ãŠæ±ããã¹ãå€ã¯\r\n $$ \\begin{aligned} \r\n \\sum_{n=1}^{2023}a_n &=\\sum_{n=1}^{2023}(3 \\times 4^{n}-6 \\times 2^{n}+3) \\\\\\\\\r\n & \\equiv 3 \\times \\sum_{n=1}^{7}4^{n}-6 \\times \\sum_{n=1}^{14}2^{n}+3 \\times 2023\\\\\\\\\r\n &=3 \\times \\frac{4^{8}-4}{3}-6 \\times (2^{15}-2)+3 \\times 2023 \\\\\\\\\r\n & \\equiv -4+12+6069\\\\\\\\\r\n &=\\mathbf{6077} \\pmod{2^{16}}\r\n \\end{aligned} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/6961"
}
] | ã $n$ ãæ£æŽæ°ãšããŸãïŒæ£ $3n$ è§åœ¢ $A_1A_2A_3 \cdots\ A_ {3n} $ ã®åé ç¹ã« $2$ ãŸã㯠$3$ ãäžã€ãã€æžã蟌ãŸããŠããŸãïŒãã ãïŒ$A_1,A_2,A_3, \ldots\ ,A_ {3n} $ ã¯åæèšåãã«äžŠãã§ãããã®ãšããŸãïŒããŸïŒããé ç¹ã«äžã€ã³ã€ã³ã眮ããŠïŒä»¥äžã®æäœãç¹°ãè¿ããŸãïŒ
- ã³ã€ã³ã®çœ®ãããŠããé ç¹ã« $x$ ãæžãããŠãããšãïŒåæèšåãã« $x$ åé£ã®é ç¹ã«ã³ã€ã³ãåããïŒ
ã以äžã®æ¡ä»¶ãã¿ããé ç¹ãã¡ããã© $n$ åãšãªããããªïŒé ç¹ã®æ°åã®æžã蟌ãŸãæ¹ã $a_n$ éãã§ãããšããŸãïŒ
- æåã«ãã®é ç¹ã«ã³ã€ã³ã眮ãïŒæäœãååãªåæ°è¡ãããšã«ãã£ãŠïŒã³ã€ã³ãæåã«çœ®ããé ç¹ã«æ»ãããšãã§ããïŒ
ã $\sum\limits_{n=1}^{2023} a_n$ ã $2^ {16} $ ã§å²ã£ãããŸããæ±ããŠãã ãã ïŒ
<details><summary>ã³ã€ã³ã®åããæ¹ã®äŸ<\/summary>
ãããšãã° $n=2$ ã®ãšãïŒ $A_1,A_2,A_3,A_4,A_5,A_6$ ã«æžãããŠããæŽæ°ããããã $2,3,2,3,2,3$ ã§ãããšãããšïŒã³ã€ã³ã¯ä»¥äžã®ããã«ç§»åããŸãïŒ
- æåã«ã³ã€ã³ã $A_1$ ã«çœ®ããšïŒã³ã€ã³ã¯ $A_1,A_3,A_5,A_1,A_3, \ldots$ ã®ããã«å·¡åããïŒ
- æåã«ã³ã€ã³ã $A_2$ ã«çœ®ããšïŒã³ã€ã³ã¯ $A_2,A_5,A_1,A_3,A_5, \ldots$ ã®ããã«å·¡åããïŒ
<\/details> |
OMC182 | https://onlinemathcontest.com/contests/omc182 | https://onlinemathcontest.com/contests/omc182/tasks/7040 | D | OMC182(D) | 300 | 121 | 153 | [
{
"content": "ã$x^2f(x,y)$ 㯠$y^2$ ãå æ°ã«æã¡ïŒããã«äº€ä»£åŒã§ãããã $y-x$ ãå æ°ã«æã€ïŒãããã $f(x,y)$ ã¯å€é
åŒ $g(x,y)$ ãçšã㊠$y^2(y-x)g(x,y)$ ãšè¡šããïŒããã« $g(x,y)$ 㯠$2$ 次ã®å¯Ÿç§°åŒã§ããããïŒå®æ° $a,b,c,d$ ãçšããŠ\r\n$$g(x,y)=a(x^2+y^2)+bxy+c(x+y)+d$$\r\nãšè¡šãããšãã§ããïŒãã®ãšã $f(x,y)$ ã® $y^5,xy^4,y^4$ ã®ä¿æ°ã¯ãããã $a,b-a,c$ ã§ããããïŒåã®æ¡ä»¶ãšåãã㊠$a=1,b=c=3$ ãåŸãïŒãŸã $g(2,3)=111$ ãåãããã $d=65$ ã§ããïŒ\\\r\nã以äžããïŒ\r\n$$f(x,y)=y^2(y-x)(x^2+y^2+3xy+3x+3y+65)$$\r\nã§ããããïŒæ±ããçã㯠$f(5, 7) = \\mathbf{27440}$ ã§ããïŒ\r\n\r\n<details> <summary> 亀代åŒã«ã€ããŠ\r\n<\\/summary>\r\nããã $2$ å€æ°å€é
åŒ $u(x,y)$ ã\r\n$$u(x,y)= -u(y,x)$$\r\nãã¿ãããšãïŒ$u$ ã**亀代åŒ**ãšããïŒãã®ãããªäº€ä»£åŒã¯ $u(x,x)=0$\r\nãã¿ãããŠããããïŒ$x$ ã® $1$ å€æ°å€é
åŒãšã¿ãã°ïŒå æ°å®çãã $x-y$ ãå æ°ã«æã€ããšãåããïŒãããã£ãŠãã $2$ å€æ°å€é
åŒ $v(x, y)$ ã«ãã $u(x, y) = (x-y) v(x, y)$ ãšããããïŒãã®ãšã\r\n$$ (x-y) v(x, y) = u(x, y) = -u(y, x) = - (y-x) v(y, x) $$\r\nã§ããã®ã§ïŒ$v(x, y) = v(y, x)$ïŒããªãã¡ $v$ ã察称åŒã§ããããšãåŸãïŒ\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/7040"
}
] | ã次ã®æ¡ä»¶ããã¹ãŠã¿ããïŒ$x,y$ ã«ã€ããŠã® $5$ 次å€é
åŒ $f(x,y)$ ã¯äžæã«ååšããŸãïŒ
- $x^2f(x,y)+y^2f(y,x)=0$ïŒ
- $f(x,y)$ ã® $y^5,xy^4,y^4$ ã®ä¿æ°ã¯ãããã $1,2,3$ ã§ããïŒ
- $f(2,3)=999$ïŒ
ããã®ãšãïŒ$f(5, 7)$ ã®å€ãæ±ããŠäžããïŒ
<details> <summary> $2$ å€æ°å€é
åŒã®æ¬¡æ°ã«ã€ããŠ<\/summary>
ã以äžã«ïŒ$x,y$ ã«ã€ããŠã®å€é
åŒãšãã®æ¬¡æ°ã®äŸã瀺ããŸãïŒ
- $6x^2+xy-3y+2$ïŒã$2$ 次
- $5xy^2-xy$ïŒã$3$ 次
- $x^3y+y^4+20xy^2+23x$ïŒã$4$ 次
<\/details> |
OMC182 | https://onlinemathcontest.com/contests/omc182 | https://onlinemathcontest.com/contests/omc182/tasks/2762 | E | OMC182(E) | 500 | 26 | 45 | [
{
"content": "ã$â BDC=â BEC=90^\\circ$ ãã $4$ ç¹ $B,C,D,E$ ã¯åäžååšäžã«ããããïŒ$â DBE=â DCE$ ã§ããïŒããã« $â DFB=â CGE$ ã§ããããïŒ$4$ ç¹ $D,E,F,G$ ã¯åäžååšäžã«ããïŒ$P$ ã¯ãã®åã®äžå¿ã§ããïŒãã£ãŠïŒ\r\n$$\\begin{aligned}â BPC&=â BAC+â ABP+â ACP\\\\\\\\\r\n&=â BAC+\\frac{1}{2}â ABD+\\frac{1}{2}â ACE\\\\\\\\\r\n&=â BAD+â ABD\\\\\\\\\r\n&=90^\\circ \\end{aligned}$$\r\nãšãªãïŒ$P$ ã¯ç·å $BC$ ãçŽåŸãšããååšäžã«ããïŒãããã $BC=2PQ=40$ ã§ããïŒãŸã $â ABD=\\dfrac{1}{2}â EQD$ ãšãªãããïŒ\r\n$$\\sinâ BAC=\\sinâ QED=\\frac{\\sqrt{20^2-\\left( \\dfrac{9}{2} \\right)^2}}{20}=\\frac{\\sqrt{1519}}{40}$$\r\nãšãªãïŒãã£ãŠïŒæ£åŒŠå®çããäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã¯ $\\dfrac{BC}{2\\sinâ BAC}=\\dfrac{800}{\\sqrt{1519}}$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $800^2 + 1519 = \\bm{641519}$ ã§ããïŒ\r\n\r\nããªãïŒåé¡æã§äžããããŠãã $AQ = 23$ ã®æ¡ä»¶ã¯ïŒãã®åé¡ã解çããã«ããã£ãŠã¯å¿
èŠãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/2762"
},
{
"content": "ã$5$ ç¹ $B$ïŒ$C$ïŒ$D$ïŒ$E$ïŒ$P$ ãåäžååšäžã«ããããšã«æ°ã¥ããªãã£ãå Žåã®è§£æ³ã§ãïŒ\\\r\nãç¹ $Q$ äžå¿ã®åäžã« $4$ ç¹ $B$ïŒ$C$ïŒ$D$ïŒ$E$ ãããïŒç¹ $P$ äžå¿ã®åäžã« $4$ ç¹ $D$ïŒ$E$ïŒ$F$ïŒ$G$ ãããããšã¯åæãšããŸãïŒå
¬åŒè§£èª¬åç
§ïŒïŒ\r\n\r\nã$\\triangle{ABC} \\sim \\triangle{ADE}$ ã§ããïŒçžäŒŒæ¯ã¯ $1:\\cos A$ïŒ$BC=\\dfrac{9}{\\cos A}$ïŒããã«æ£åŒŠå®çããïŒ$\\triangle ABC$ ã®å€æ¥åã®ååŸã¯ $\\dfrac{9}{2\\sin A\\cos A}$ïŒãã£ãŠïŒ$\\sin A$ ãæ±ããããšãç®çãšãªãïŒ\\\r\nã$2$ ã€ã®åã®äº€ç¹ã $D$ïŒ$E$ ã§ããããšããïŒ$DE \\perp PQ$ïŒãŸãïŒ$PD=PE$ïŒ$QD=QE$ïŒä»¥äžã®è°è«ã«ã¯å
šãç¡é¢ä¿ã ãïŒãã®ãããªåè§åœ¢ãããåãšããïŒïŒãã®åè§åœ¢ã«ã€ããŠã¯ïŒ$DE=9$ïŒ$PQ=20$ ãšé·ããããã£ãŠããããïŒåè§åœ¢ $DPEQ$ ã®è§åºŠã $\\angle A$ ãçšããŠè¡šãïŒãããã $\\sin A$ ãæ±ãããïŒ\\\r\nã$\\angle ABD=90^{\\circ}-A$ ã§ããïŒ$BD=BF$ ãã $\\angle BFD=45^{\\circ}+\\frac{A}{2}$ïŒååšè§ã®å®çãã $\\angle DPE=90^{\\circ}+A$ïŒ\\\r\nã$QB=QE$ ãã $\\angle BQE=180^{\\circ}-2\\angle B$ïŒ$QC=QD$ ãã $\\angle CQD=180^{\\circ}-2\\angle C$ïŒãããããïŒ$\\angle DQE=180^{\\circ}-2A$ïŒ\\\r\nããããã $\\angle PDE$ïŒ$\\angle QDE$ ãæ±ããããšã§ïŒæ¬¡ã®åŒãåŸãïŒ$9 \\tan (45^{\\circ}-\\frac{A}{2})+9 \\tan A=40$\\\r\nãå æ³å®çãçšããŠïŒ$\\dfrac{1-\\tan \\frac{A}{2}}{1+\\tan \\frac{A}{2}}+\\dfrac{2 \\tan \\frac{A}{2}}{1-\\tan ^2 \\frac{A}{2}}=\\dfrac{40}{9}$ ïŒä»¥äžïŒ$\\tan \\frac{A}{2}$ ãèšç®ãïŒãããã $\\sin A$ çãæ±ããã°ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/2762/306"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒç¹ $B$ ãäžå¿ãšãç·å $AC$ (䞡端ãé€ã) ã«ç¹ $D$ ã§æ¥ããåãšç·å $AB$ ã®äº€ç¹ã $F$ïŒç¹ $C$ ãäžå¿ãšãç·å $AB$ (䞡端ãé€ã) ã«ç¹ $E$ ã§æ¥ããåãšç·å $AC$ ã®äº€ç¹ã $G$ ãšããŸãïŒããã«ïŒç·å $EF$ ããã³ç·å $DG$ ããããã®åçŽäºçåç·ã®äº€ç¹ã $P$ ãšãïŒç·å $BC$ ã®äžç¹ã $Q$ ãšãããšïŒ
$$DE = 9, \quad PQ=20, \quad AQ = 23$$
ãæç«ããŸããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b} \pi$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC182 | https://onlinemathcontest.com/contests/omc182 | https://onlinemathcontest.com/contests/omc182/tasks/9471 | F | OMC182(F) | 600 | 16 | 52 | [
{
"content": "ã $d$ ã $n$ ã®æ£ã®çŽæ°ãšããïŒ$\\gcd(k,n)=d$ ãšãªãå¿
èŠååæ¡ä»¶ã¯ïŒ $k$ ã $d$ ã®åæ°ã〠$\\gcd \\left( \\dfrac kd, \\dfrac nd \\right) = 1$ ãšãªãããšã§ããïŒãããã£ãŠïŒ$\\gcd(k,n)$ ãåºå®ããŠæ°ãäžãããšïŒ\r\n$$\\begin{aligned}\r\nf(n) &= \\sum_{d \\mid n}d\\times\\phi\\bigg(\\frac{n}{d}\\bigg) \\\\\\\\\r\n&= \\sum_{d\\mid n}\\frac{n}{d}\\times\\phi(d) \\\\\\\\\r\n&= n\\sum_{d\\mid n}\\dfrac{\\phi(d)}{d}\r\n\\end{aligned}$$\r\nãåŸãïŒããã§ïŒ $g(d)=\\dfrac{\\phi(d)}{d}$ ã¯ä¹æ³çé¢æ°ïŒä»»æã®äºãã«çŽ ãªæ£æŽæ° $\\ell, m$ ã«å¯Ÿã㊠$g(\\ell m)=g(\\ell)g(m)$ ãæãç«ã€é¢æ°ïŒã§ããããïŒ\r\n$$\\begin{aligned}\r\nn\\sum_{d\\mid n}\\frac{\\phi(d)}{d}\r\n&= n\\prod_{p|n}\\sum_{k=0}^{\\mathrm{ord}_ p(n)}\\frac{\\phi(p^k)}{p^k} \\\\\\\\\r\n&= n\\prod_{p|n}\\left(1+\\sum_{k=1}^{\\mathrm{ord}_ p(n)}\\frac{p-1}{p}\\right) \\\\\\\\\r\n&= n\\prod_{p|n}\\frac{(p-1)\\mathrm{ord}_ p(n)+p}{p} \\\\\\\\\r\n&= \\prod_{p|n} p^{\\mathrm{ord}_ p(n)-1}\\big((p-1)\\mathrm{ord}_ p(n)+p\\big)\r\n\\end{aligned}$$\r\nãšãªãïŒãã㧠$p$ ãå¥çŽ æ°ã®ãšãïŒ$ p^{\\mathrm{ord}_ p(n)-1}\\big((p-1)\\mathrm{ord}_ p(n)+p\\big)$ ã¯å¥æ°ã«ãªãããïŒ\r\n\r\n$$\\mathrm{ord}_ 2(f(n))=\\mathrm{ord}_ 2(\\mathrm{ord}_ 2(n)+2)+\\mathrm{ord}_ 2(n)-1$$\r\n\r\nãšãªãïŒã㟠$e=\\mathrm{ord}_ 2(n)+2$ ãšãããšåé¡æã®æ¡ä»¶ã¯\r\n\r\n$$\\mathrm{ord}_ 2(e)+e=2^{2023}+2059$$\r\n\r\nãšåå€ã§ããïŒ$e\\leq2^{2023}$ ã®ãšãïŒ$\\mathrm{ord}_ 2(e)+e\\le2023+2^{2023}$ ããäžé©ã§ããïŒ$e\\gt2^{2023}$ ã®ãšãïŒ$e=2^{2023}+2059-t$ïŒ $t$ 㯠$2059$ æªæºã®éè² æŽæ°ïŒãšãããšïŒ$\\mathrm{ord}_ 2(2059-t)=t$ ãã $t=0,1,3,11$ïŒããªãã¡ $e=2^{2023}+2048+k$ïŒ $k=0,8,10,11$ ïŒã®ãšãé©ããããšããããïŒ\\\r\nã以äžããïŒ$\\mathrm{ord}_ 2(f(n))=2^{2023}+2056$ ã®å¿
èŠååæ¡ä»¶ã¯ $\\mathrm{ord}_ 2(n)=2^{2023}+2046+k$ïŒ $k=0,8,10,11$ ïŒãæãç«ã€ããšã§ããïŒãããæºããæ£æŽæ° $n$ ã¯åšæçã§ããããšã«çæããŠïŒ$10000$ çªç®ã«å°ããæ£æŽæ° $n$ 㯠$19891\\times2^{2^{2023}+2046}$ ãšæ±ãŸãïŒãã£ãŠïŒæ±ããã¹ãå€ã¯ $19891+2^{2023}+2046\\equiv\\mathbf{876}\\pmod{1009}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/9471"
},
{
"content": "ã$\\mathrm{ord}_2(f(n))$ ã®æ±ãæ¹ã«ã€ããŠã§ãïŒ\\\r\nãæ°åŠçã«å¥œãŸããæ¹æ³ã§ã¯ãªãïŒå³å¯æ§ã«æ¬ ããïŒã®ã§ããïŒãã®æã®æŽæ°è«ã®åé¡ã¯å
¬åŒè§£èª¬ã®ããã«ä¹æ³çé¢æ°ã絡ãå¯èœæ§ãé«ãã®ã§ïŒ$n$ ã®çŽ å æ°ã $1$ åã®å ŽåïŒçŽ å æ°ã $2$ åã®å ŽåãèããŠïŒããããåž°çŽçã«æšæž¬ããããšãå¯èœã§ãïŒä»¥äžïŒå®éã«èšç®ããŠã¿ãŸãïŒ\\\r\nã$n=p^x$ ãšãããšïŒ\r\n$$\\begin{aligned}\r\nf(n) &= 1Ãn \\left( 1-\\dfrac{1}{p}\\right)+pÃn \\left( \\dfrac{1}{p}-\\dfrac{1}{p^2}\\right)+p^2Ãn \\left( \\dfrac{1}{p^2}-\\dfrac{1}{p^3}\\right)+ \\cdots +p^{x-1}Ãn\\left( \\dfrac{1}{p^{x-1}}-\\dfrac{1}{p^x}\\right)+p^x \\\\\\\\\r\n& = n \\left\\lbrace \\left( 1-\\dfrac{1}{p}\\right)x+1 \\right\\rbrace\r\n\\end{aligned}$$\r\nã$n=p^x q^y$ ãšãããšïŒãããããé£ããã§ãïŒïŒ\r\n\r\n$$\\begin{aligned}\r\nf(n) & = \\sum_{iâŠx-1,jâŠy-1} p^i q^jÃn \\left( \\dfrac{1}{p^i}-\\dfrac{1}{p^{i+1}}\\right)\\left( \\dfrac{1}{q^j}-\\dfrac{1}{q^{j+1}}\\right) \\\\\\\\\r\n& + \\sum_{i=x,jâŠy-1} p^x q^jÃn \\cdot \\dfrac{1}{p^x}\\left( \\dfrac{1}{q^j}-\\dfrac{1}{q^{j+1}}\\right) +\\sum_{iâŠx-1,j=y} p^i q^yÃn \\cdot \\dfrac{1}{q^y}\\left( \\dfrac{1}{p^i}-\\dfrac{1}{p^{i+1}}\\right) +p^xq^y\\\\\\\\\r\n& = xyn\\left( 1-\\dfrac{1}{p}\\right)\\left( 1-\\dfrac{1}{q}\\right)+yn\\left( 1-\\dfrac{1}{q}\\right)+xn\\left( 1-\\dfrac{1}{p}\\right)+n\\\\\\\\\r\n& = n\\left\\lbrace \\left( 1-\\dfrac{1}{p}\\right)x+1 \\right\\rbrace\\left\\lbrace \\left( 1-\\dfrac{1}{q}\\right)y+1 \\right\\rbrace\r\n\\end{aligned}$$ \r\nã以äžã®çµæããïŒ$n=p_1^{x_1} p_2^{x_2} \\cdots$ ã§ããã°ïŒ$f(n)=n\\left\\lbrace \\left( 1-\\dfrac{1}{p_1}\\right)x_1+1 \\right\\rbrace\\left\\lbrace \\left( 1-\\dfrac{1}{p_2}\\right)x_2+1 \\right\\rbrace \\cdots$ ã§ãããšæšæž¬ã§ããŸãïŒ\\\r\nãå
¬åŒè§£èª¬ãšã¯èŠãç®ãå
šãéããŸããïŒäžåŒã $\\prod\\limits_{p|n}p^{\\mathrm{ord}_p(n)-1}((p-1)\\mathrm{ord}_p(n)+p)$ ãšäžèŽããŠããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/9471/307"
},
{
"content": "ãä¹æ³çé¢æ°ã«é¢ããç¥èããªããŠãã以äžã®ããã«ããŠè§£ãããšãã§ããã\r\nã $n={p_1}^{q_1}{p_2}^{q_2}\\cdots {p_m}^{q_m}$ ã«ãããŠïŒ $\\mathrm{gcd}(k,n)=\\mathrm{gcd}(k,{p_1}^{q_1})\\mathrm{gcd}(k,{p_2}^{q_2})\\cdots \\mathrm{gcd}(k,{p_m}^{q_m})$ ã§ããïŒãŸãïŒäžåœå°äœå®çããïŒ $1$ ä»¥äž $n$ 以äžã®æŽæ° $i$ ã¯ïŒä»¥äžãæºãã $m$ åã®æŽæ°ã®çµãšäžå¯Ÿäžå¯Ÿå¿ã§ããïŒ$$A_i=({a_i}\\_{1},{a_i}\\_{2},\\cdots,{a_i}\\_{m})(0\\leq a_j \\leq {p\\_{j-1}}^{q\\_{j-1}},i \\equiv {a_i}_s \\pmod {{p_s}^{q_s}})$$\r\nãããã§ïŒ $\\mathrm{gcd}(k,{p_s}^{q_s})=\\mathrm{gcd}(k \\pmod {{p_s}^{q_s}},{p_s}^{q_s})=\\mathrm{gcd}({a_k}\\_s,{p_s}^{q_s})$ ãšãªãã®ã§ïŒ\r\n\r\n $\\mathrm{gcd}(k,n)=\\mathrm{gcd}({a_k}\\_1,{p_1}^{q_1})\\mathrm{gcd}({a_k}\\_2,{p_2}^{q_2})\\cdots \\mathrm{gcd}({a_k}\\_m,{p_m}^{q_m})$ ãšæžãæããããïŒãã£ãŠïŒ $a_k\\_s$ ã«ïŒ $0$ ä»¥äž ${p_s}^{q_s}$ 以äžã®æ°ãå
šãŠåãåæ°çŸããããšããïŒ\r\n\r\n $f(n)=\\sum\\limits\\_{k=1}^{n} \\mathrm{gcd}(k,n) $\r\n\r\n $= (\\mathrm{gcd}(0,{p_1}^{q_1})+\\mathrm{gcd}(1,{p_1}^{q_1})+\\cdots +\\mathrm{gcd}({p_1}^{q_1}-1,{p_1}^{q_1})) \\cdots (\\mathrm{gcd}(0,{p_m}^{q_m})+\\mathrm{gcd}(1,{p_m}^{q_m})+\\cdots +\\mathrm{gcd}({p_m}^{q_m}-1,{p_m}^{q_m})) $\r\n\r\n$=\\prod\\limits\\_{x=1}^{m} ((q_x+1)p_x-q_x){p_x}^{q_x-1}$ ãšãªãïŒ\r\n\r\nããã¯æ¬è§£èª¬ã® $\\prod\\limits\\_{p|n} p^{\\mathrm{ord}_p (n)-1}((p-1)\\mathrm{ord}_p (n) +p)$ ãšåå€ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc182/editorial/9471/310"
}
] | ãæ£ã®æŽæ° $n$ ã«å¯ŸãïŒæ£ã®æŽæ° $f(n)$ ã
$$f(n)=\sum_{k=1}^{n}\gcd(k,n)$$
ã«ããå®çŸ©ããŸãïŒãã®ãšãïŒ
$$\mathrm{ord}_2(f(n))=2^{2023}+2056$$
ãæºããæ£ã®æŽæ° $n$ ã®ãã¡ $10000$ çªç®ã«å°ãããã®ã $M$ ãšããŸãïŒ$M$ ã¯æ£ã®å¥æ° $a$ ãšéè² æŽæ° $b$ ãçšã㊠$a\times2^b$ ãšäžæã«è¡šããã®ã§ïŒ$a+b$ ãçŽ æ° $1009$ ã§å²ã£ãããŸããæ±ããŠãã ããïŒ \
ããã ãïŒæ£ã®æŽæ° $\ell, m$ ã«å¯ŸãïŒ$\gcd(\ell, m)$ 㯠$\ell$ ãš $m$ ã®æ倧å
¬çŽæ°ãïŒ$\mathrm{ord}_p(m)$ 㯠$m$ ãçŽ æ° $p$ ã§å²ãåããæ倧ã®åæ°ãããããè¡šããŸãïŒ |
OMC181 (æ°åŠãŽãŒã«ãã³æ¯ïŒ | https://onlinemathcontest.com/contests/omc181 | https://onlinemathcontest.com/contests/omc181/tasks/9637 | A | OMC181(A) | 100 | 463 | 485 | [
{
"content": "ã$1$ ä»¥äž $9$ 以äžã®æ£ã®æŽæ° $x_1, \\ldots, x_n$ ã $x_1 x_2 \\cdots x_n = 9!$ ãæºãããŠãããšãïŒ\r\n$$ N = x_1 + 10 x_2 + \\cdots + 10^{n-1} x_n $$\r\nãšããŠããããæå°ã®å€ãæ±ããã°ããïŒ$9! = 2^7 \\cdot 3^4 \\cdot 5 \\cdot 7$ ã§ããã®ã§ïŒ$5$ ãš $7$ 㯠$N$ ã®æ¡ã«å«ãŸããïŒãã㧠$n \\le 6$ ãšä»®å®ãããšïŒ\r\n$$9! = x_1 x_2 \\cdots x_n \\le 5 \\cdot 7 \\cdot 9^4$$\r\nãã $128 \\le 81$ ãåŸããïŒããã¯äžé©ã§ããïŒãã£ãŠ $n \\ge 7$ ãšãªãïŒ\\\r\nã$n = 7$ ã®å ŽåãïŒ$N$ ãå°ããæ¹ããèããïŒ$x_7 = 1$ ã®ãšãïŒ$N^\\prime = x_1 + 10 x_2 + \\cdots + 10^5 x_6$ ã $6$ æ¡ãã€åäœã®ç©ã $9!$ ãšãªãæ£ã®æŽæ°ãšãªããïŒãã㯠$n \\ge 7$ ã«ççŸããïŒ$x_7 = 2$ ã®ãšãïŒ$x_1 x_2 \\cdots x_6 = 2^6 \\cdot 3^4 \\cdot 5 \\cdot 7$ ãã $(x_1, x_2, \\ldots, x_6)$ 㯠$(5, 7, 8, 8, 9, 9)$ ã®äžŠã³æ¿ããšãªãããšããããïŒãã®ãã¡ $N$ ãæå°ãšãªãã®ã¯ $N = \\mathbf{2578899}$ ã®ãšãã§ããïŒ\\\r\nããªãïŒ$n=7$ ã〠$x_7 \\ge 3$ ããã³ $n \\ge 8$ ã®å Žåã¯ïŒ$N \\ge 2578899$ ãšãªãã®ã§èããå¿
èŠã¯ãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/9637"
}
] | ãåé²æ³è¡šèšã§åäœã®æ°ã®ç©ã $9!$ ãšãªããããªïŒæå°ã®æ£ã®æŽæ°ãæ±ããŠãã ããïŒ |
OMC181 (æ°åŠãŽãŒã«ãã³æ¯ïŒ | https://onlinemathcontest.com/contests/omc181 | https://onlinemathcontest.com/contests/omc181/tasks/3427 | B | OMC181(B) | 200 | 338 | 452 | [
{
"content": "ã$(a, b, c)$ ãæºããæ¡ä»¶ã¯ïŒ\r\n$$\r\n\\begin{aligned}\r\n0 &= a^3 + b^3 + c^3 - 3abc \\\\\\\\\r\n&= (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \\\\\\\\\r\n&= \\frac{1}{2}(a + b + c)((a - b)^2 + (b - c)^2 + (c - a)^2)\r\n\\end{aligned}\r\n$$\r\nãšåå€ïŒãã£ãŠïŒ$a + b + c = 0$ ãŸã㯠$(a - b)^2 + (b - c)^2 + (c - a)^2 = 0$ ãæç«ããïŒåŸã£ãŠïŒä»¥äžã®å Žååãããæ±ããçã㯠$37 + 7 - 1 = \\bf{43}$ ã§ããïŒ\r\n\r\n- $a + b + c = 0$ ã§ããå Žå\\\r\nãã®å Žåã® $(a, b, c)$ ã®çµã®æ°ã¯ïŒ$|a + b| \\le 3$ ãæºããçµ $(a, b)$ ã®æ°ãšäžèŽããïŒ$a$ ãåºå®ãããšã $b$ ã®å¿
èŠååæ¡ä»¶ã¯ $\\max(-a - 3, -3) \\le b \\le \\min(3 - a, 3)$ ã§ããããïŒãã®ãã㪠$b$ 㯠$7 - |a|$ åååšããïŒåŸã£ãŠãã®å Žåã®æ±ãã $(a, b, c)$ ã®çµã®æ°ã¯\r\n\r\n$$\r\n7 + 2\\sum_{k = 1}^{3}(7 - k) = 37.\r\n$$\r\n\r\n- $(a - b)^2 + (b - c)^2 + (c - a)^2 = 0$ ã§ããå Žå\\\r\næããã« $a = b = c$ ãšåå€ã§ããããïŒãã®å Žåã® $(a, b, c)$ ã®çµã¯ $7$ çµïŒ\r\n\r\n- $a + b + c = (a - b)^2 + (b - c)^2 + (c - a)^2 = 0$ ã§ããå Žå\\\r\n$a = b = c$ ã〠$a + b + c = 0$ ã§ããããïŒãã®å Žåã® $(a, b, c)$ ã®çµã¯ $(0, 0, 0)$ ã® $1$ çµïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3427"
}
] | ã$-3$ ä»¥äž $3$ 以äžã®æŽæ°ã®ïŒé åºä»ããïŒçµ $(a, b, c)$ ã§ãã£ãŠïŒ
$$a^3 + b^3 + c^3 = 3abc$$
ãã¿ãããã®ã¯ããã€ãããŸããïŒ |
OMC181 (æ°åŠãŽãŒã«ãã³æ¯ïŒ | https://onlinemathcontest.com/contests/omc181 | https://onlinemathcontest.com/contests/omc181/tasks/3197 | C | OMC181(C) | 300 | 171 | 286 | [
{
"content": "ãäºäººãååã®éè·¯ãåèšã§ $k$ åéã£ããšãããšãïŒæããã« $k$ ã¯å¶æ°ã§ããïŒãŸãïŒãã®ãã¡å·ŠåŽãã $2i-1$ æ¬ç®ãš $2i$ æ¬ç®ã®ååã®éè·¯ã䜿ã£ã人ã¯åãã§ããïŒååã®éè·¯ã®äœ¿ãå Žæã®æ±ºãæ¹ã¯ ${}\\_{10}\\mathrm{C}\\_{k}$ éãïŒå·ŠåŽãã $1,3,\\ldots,k\\/2-1$ æ¬ç®ã®ååã®éè·¯ã䜿ã人ã®æ±ºãæ¹ã¯ãããã $2$ éãããããïŒæ±ããç·æ°ã¯\r\n$$ {}\\_{10}\\mathrm{C}\\_{0}\\times 2^0 + {}\\_{10}\\mathrm{C}\\_{2}\\times 2^1 + \\cdots + {}\\_{10}\\mathrm{C}\\_{8}\\times 2^4 + {}\\_{10}\\mathrm{C}\\_{10}\\times 2^5 = \\bf{3363}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3197"
},
{
"content": "ãäžè¬ã« $2\\times n$ ã®é·æ¹åœ¢ã§äºäººãå·Šããå³ã«è¡ãéé ã®æ°ã $a_n$ ãšããŸãïŒããªãã¡æ±ãããã®ã¯ $a_9$ ã§ãïŒ\\\r\n挞ååŒã䜿ã£ãŠè§£ããŸãããïŒ\r\n\r\nã»äºäººãæåã«ã©ã¡ããå³ã«ç§»åãããªãã°æ®ãã®éé 㯠$a_{n-1}$ ã ããããŸãïŒ\\\r\nã»å°é寺ãããåæã§äžã«è¡ãïŒ $1\\leq k\\leq n-1$ åå³ã«è¡ã£ãåŸã§äžã«ç§»åãããšæ®ãã®éé 㯠$a_{n-k-1}$ ã ããããŸãïŒ( $a_0=1$ ãšããŸã)\\\r\nã»è¹æ²¢ãããåæã§äžã«è¡ãïŒ $1\\leq k\\leq n-1$ åå³ã«è¡ã£ãåŸã§äžã«ç§»åãããšæ®ãã®éé 㯠$a_{n-k-1}$ ã ããããŸãïŒ\\\r\nã»å°é寺ãããåæã§äžã«è¡ãïŒ $n$ åå³ã«è¡ã£ãåŸã§äžã«ç§»åãããšæ®ãã®éé 㯠$1$ ã ããããŸãïŒ\\\r\nã»è¹æ²¢ãããåæã§äžã«è¡ãïŒ $n$ åå³ã«è¡ã£ãåŸã§äžã«ç§»åãããšæ®ãã®éé 㯠$1$ ã ããããŸãïŒ\r\n\r\nãããã£ãŠæ¬¡ã®æŒžååŒãåŸãããŸãïŒ\r\n$$a_n=a_{n-1}+2(a_{n-2}+\\cdots+a_0)+2$$\r\nãããš $n$ ã $n+1$ ãšããåŒã®å·®ããšã£ãŠæ¬¡ãåŸãŸãïŒ\r\n$$a_{n+1}=2a_n+a_{n-1}ã(n=2,3,...)$$ \r\n $a_1=3,a_2=7$ ãªã®ã§ãã®æŒžååŒãçšã㊠$a_3=17,a_4=41,a_5=99,a_6=239,a_7=577,a_8=1393,a_9=\\mathbf{3363}$ ãåŸãŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3197/300"
},
{
"content": "æ±è¥¿ã®éãããããåããåéïŒäžå€®éïŒåéãšããïŒ\\\r\nååã®éã $n+1$ æ¬ãããšãïŒå°éç°ãšè¹æ²¢ãæ±è¥¿ã®éã®ãã¡æåŸã«éãã®ãããããåéãšåéã§ããå Žåã®æ°ã $a_n$ ïŒåéãšäžå€®éã§ããå Žåã®æ°ã $b_n$ ïŒäžå€®éãšåéã§ããå Žåã®æ°ã $c_n$ ãšããïŒ\\\r\n察称æ§ãã $b_n=c_n$ ã§ããïŒ\\\r\nå°éç°ãšè¹æ²¢ã¯åãååã®éãéããªãã®ã§ïŒ\r\n$$a_{n+1}=a_n+b_n+c_n=a_n+2b_n$$ $$b_{n+1}=a_n+b_n$$ $$a_1=1ïŒb_1=1$$\r\næ±ãããã®ã¯ $a_9+2b_9$ ãªã®ã§ããšã¯é 匵ããŸãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3197/303"
},
{
"content": "ãäžæ®µã«ããæ±è¥¿æ¹åã® $9$ æ¬ã®éã«å¯ŸãïŒå°éç°ãéãéã $x$ ãšãïŒè¹æ²¢ãéãéã $y$ ãšãïŒäºäººãšãéããªãéã $z$ ãšãããšïŒ$x$ ãš $y$ ã¯é£ãåã£ãŠã¯ãªããïŒéã«ïŒäžæ®µã«ããæ±è¥¿æ¹åã® $9$ æ¬ã®éã«å¯ŸãïŒ$x$ ãš $y$ ãé£ãåããªãããã« $x,y,z$ ãæ¯ãåããããšã§ïŒäºäººã®çµè·¯ããã äžã€ã«å®ãŸãïŒ \r\nãã£ãŠïŒåé¡ã¯ã $x,y,z$ ãèš $n$ å䞊ã¹ãæ¹æ³ã®ãã¡ $x$ ãš $y$ ãé£ãåããªããããªãã®ã®ç·æ°ã $a_n$ ãšãããšãïŒ$a_9$ ãæ±ããããšããåé¡ã«åž°çãããïŒ \r\n æ¡ä»¶ãæºãã $n+2$ æåã®æååã«ãããŠïŒ$z$ ããå§ãŸããã®ã¯ $a_{n+1}$ éãããïŒ$x,z$ ããå§ãŸããã®ã¯ $a_n$ éãããïŒ$x,x$ ã $y,y$ ã $y,z$ ããå§ãŸããã®ã¯(æ¡ä»¶ãæºãã $n+1$ æåã®æååã«ãã㊠$x$ ããã¯ããŸããã®ã®å·Šã« $x$ ãããã $y$ ããã¯ããŸããã®ã®å·Šã« $y$ ãããã $z$ ããã¯ããŸããã®ã®å·Šã« $y$ ãããæäœãèããŠ) $a_{n+1}$ éãïŒ \r\n以äžããïŒ$a_{n+2}=2a_{n+1}+a_n$ ãšãªãïŒããšã¯ natu_math ããã®ãŠãŒã¶ãŒè§£èª¬ãšåæ§ã«ã㊠$a_9=\\textbf{3363}$ ãåŸãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3197/304"
}
] | ã以äžã®ãããªïŒæ±è¥¿ã« $3$ æ¬ïŒååã« $10$ æ¬ã®éè·¯ãèµ°ã£ãŠããçºãããïŒå°éç°ãšè¹æ²¢ã®äºäººã¯ãã®çºã«äœãã§ããŸãïŒå°éç°ã¯å°ç¹ $A$ ã«äœãã§ããïŒå°ç¹ $A^{\prime}$ ã«ããåŠæ ¡ã«éã£ãŠããŸãïŒè¹æ²¢ã¯å°ç¹ $B$ ã«äœãã§ããïŒå°ç¹ $B^{\prime}$ ã«ããåŠæ ¡ã«éã£ãŠããŸãïŒäºäººã¯ãã€ãããããåãéåŠè·¯ã䜿ã£ãŠããŸãïŒãã®éïŒ äžåºŠæ¥ãéãåŒãè¿ãããïŒåãéãäºåºŠéãããšã¯ãããŸããïŒ\
ãå°éç°ã¯è¹æ²¢ãã©ã€ãã«èŠããŠããïŒéåŠäžã«äŒããããããŸããïŒäºäººã®éåŠè·¯ã®çµã¿åããã§ãã£ãŠïŒå
±æç¹ãååšããªããã®ã¯äœéããããŸããïŒ
![figure 1](\/images\/OANu7xqVfimPlbalJTHSsuw4T0pBZhh3kDGIkc3o) |
OMC181 (æ°åŠãŽãŒã«ãã³æ¯ïŒ | https://onlinemathcontest.com/contests/omc181 | https://onlinemathcontest.com/contests/omc181/tasks/3610 | D | OMC181(D) | 300 | 94 | 137 | [
{
"content": "ãç·å $BE$ ã®äžç¹ã $K$ ãšãïŒ$N$ ã«é¢ã㊠$K$ ãšå¯Ÿç§°ãªç¹ã $L$ ãšããïŒåè§åœ¢ $KBDL$ ãš $KBCM$ ã¯å¹³è¡å蟺圢ãªã®ã§ïŒäžè§åœ¢ $KML$ ãšäžè§åœ¢ $BCD$ ã¯ååã§ããïŒç¹ã« $\\angle KML = 90^\\circ$ïŒãããš $N$ ãç·å $KL$ ã®äžç¹ã§ããããšããïŒ$N$ ã¯äžè§åœ¢ $KLM$ ã®å€å¿ã§ããïŒç¹ã« $MN = NK$ïŒä»¥äžããïŒ\r\n$$MN^2 = NK^2 = \\bigg(\\frac{AD}{2}\\bigg)^2 + \\bigg(\\frac{AB}{2}\\bigg)^2 = \\textbf{69593}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3610"
},
{
"content": "ãåè§åœ¢ $ABCD$ ã®å€å¿ã $O$ ãšããïŒäžè§åœ¢ $DBE$ ã§äžç¹é£çµå®çããïŒ$\\overrightarrow{NO}=\\dfrac{1}{2}\\overrightarrow{EB}=\\dfrac{1}{2}\\overrightarrow{FC}=\\overrightarrow{MC}$ ãšãªãã®ã§ïŒåè§åœ¢ $OCMN$ ã¯å¹³è¡åèŸºåœ¢ïŒ \r\nãã£ãŠïŒ$NM=OC=\\dfrac{BD}{2}$ ãšãªãïŒ$MN^2=\\dfrac{{AB}^2+{AD}^2}{4}=\\textbf{69593}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/3610/302"
}
] | ãåè§åœ¢ $ABCD$ ã $\angle A = \angle C = 90^\circ$ ãã¿ãããŠããŸãïŒèŸº $AB$ äžïŒç«¯ç¹ãé€ãïŒã«ç¹ $E$ ãããïŒåè§åœ¢ $EBCF$ ãå¹³è¡å蟺圢ãšãªããããªç¹ $F$ ããšããŸãïŒç·å $CF, DE$ ã®äžç¹ããããã $M, N$ ãšãããšãïŒ
$$AD = 314, \quad AE = 159, \quad BE = 265, \quad BC = 358$$
ãæãç«ã¡ãŸããïŒç·å $MN$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC181 (æ°åŠãŽãŒã«ãã³æ¯ïŒ | https://onlinemathcontest.com/contests/omc181 | https://onlinemathcontest.com/contests/omc181/tasks/7977 | E | OMC181(E) | 300 | 125 | 186 | [
{
"content": "ã$(n_1, n_2, \\ldots, n_{11})$ ãæ¡ä»¶ãæºããå¿
èŠååæ¡ä»¶ã¯ïŒãã¹ãŠ $1110 = 2 \\times 3 \\times 5 \\times 37 $ ã®çŽæ°ã§ããïŒãã®äžã§å $p \\in \\\\{2, 3, 5, 37\\\\}$ ã«å¯ŸãïŒä»»æã® $1 \\leq i \\leq 10$ ãªãæŽæ° $i$ ã«ã€ããŠä»¥äžãæãç«ã€ããšã§ããããšã確èªã§ããïŒ\r\n- $n_i$ ãš $n_{i+1}$ ã®ãã¡å°ãªããšãäžæ¹ã¯ $p$ ã§å²ãåããïŒ\r\n\r\nããããã£ãŠïŒ$n_1, n_2, \\ldots, n_k$ ã $p$ ã§ãå²ãåãããããå²ãåããªããã決ããæ¹æ³ã¯ïŒ\r\n$n_1, n_2, \\ldots, n_k$ ãé ã«ïŒ$p$ã§å²ãåãããªãã° $P$ïŒå²ãåããªããªãã° $Q$ ãšçœ®ãæã㊠$k$ æåã®æååãã€ãããšãïŒ$Q$ ã $2$ ã€é£ç¶ããªããããªæååã®åæ° $X_k$ ã«å¯Ÿå¿ããïŒãŸãïŒå $p \\in \\\\{2, 3, 5, 37\\\\}$ ã«å¯ŸãïŒ$p$ ã§å²ãåãããå²ãåããªããå®ããããšã§ $1110$ ã®çŽæ°ãäžæã«å®ãŸãã®ã§ïŒæ±ããçµã®åæ°ã¯ $X^4_{11}$ ã«çããïŒ\\\r\nã$X_1 = 2, X_2 = 3$ ãæºããïŒ$k \\geq 3$ ã®ãšãã¯äžçªå³ã« $P, Q$ ãé
眮ããå Žåã®åæ°ããããã $X_{k-1}, X_{k-2}$ ã§ããããšãåããã®ã§ïŒ$X_k = X_{k-1} + X_{k-2}$ ãæãç«ã€ïŒä»¥äžã§ $X_{11} = 233$ ãå°ããã®ã§ïŒæ¡ä»¶ãæºããçµã¯å
šéšã§ $\\mathbf{2947295521}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/7977"
}
] | ãæ£æŽæ° $11$ åã®çµ $(n_1, n_2, \ldots, n_{11})$ ã§ãã£ãŠïŒä»¥äžãã¿ãããã®ã¯å
šéšã§äœéããããŸããïŒ
- ä»»æã® $1 \leq i \leq 10$ ãªãæŽæ° $i$ ã«ã€ããŠïŒ$n_i$ ãš $n_{i+1}$ ã®æå°å
¬åæ°ã¯ $1110$ ã§ããïŒ |
OMC181 (æ°åŠãŽãŒã«ãã³æ¯ïŒ | https://onlinemathcontest.com/contests/omc181 | https://onlinemathcontest.com/contests/omc181/tasks/7327 | F | OMC181(F) | 400 | 52 | 81 | [
{
"content": "ã$11$ 以äžã®æ£æŽæ° $n$ ã«å¯Ÿã $T_n$ ã\r\n$$T_n = \\sum_{k = n}^{11} a_k$$\r\nãšå®ãããšïŒ$\\displaystyle A = \\prod_{n=1}^{11} T_n$ ãšè¡šãããšãã§ããïŒäžæ¹ã§\r\n$$\\sum_{n=1}^{11} n^2 a_n = \\sum_{n=1}^{11} (2n - 1)T_n$$\r\nãæãç«ã€ã®ã§ïŒ\r\n$$N = \\prod_{n=1}^{11} (2n - 1) = 3^5 \\times 5^2 \\times 7^2 \\times 11 \\times 13 \\times 17 \\times 19$$\r\nãšãããšïŒçžå å¹³åã»çžä¹å¹³åã®äžçåŒãã\r\n$$\\prod_{n=1}^{11} T_n = \\frac{1}{N} \\prod_{n=1}^{11} (2n - 1)T_n \\leq \\frac{1}{N} \\left ( \\frac{1}{11} \\sum_{n=1}^{11} (2n - 1)T_n \\right )^{11} = \\frac{1}{N} \\left ( \\frac{1110}{11} \\right )^{11}$$\r\nãæãç«ã€ïŒãŸãïŒãã®äžçåŒã®çå·æç«æ¡ä»¶ $T_1 = 3T_2 = \\cdots = (2n - 1)T_n = \\cdots = 21T_{11}$ ãã¿ãããã㪠$a_1, ..., a_{11}$ ã¯ç¢ºãã«ååšããïŒ\r\n<details><summary>æ§æäŸ<\\/summary>\r\nå
·äœçã« $a_1, ..., a_{11}$ ã以äžã®ããã«å®ããã°ããïŒ\r\n$$\r\n\\begin{aligned}\r\na_n = \\frac{2220}{11(4n^2 - 1)}\\ (n = 1,\\ldots, 10),\\qquad a_{11} = \\frac{370}{77}\r\n\\end{aligned}\r\n$$\r\n<\\/details>\r\n\r\nãããã«æ±ããæ倧å€ã¯\r\n$$\\frac{1}{N} \\left ( \\frac{1110}{11} \\right )^{11} = \\frac{2^{11} \\times 3^6 \\times 5^9 \\times 37^{11}}{7^2 \\times 11^{12} \\times 13 \\times 17 \\times 19}$$\r\nã§ããïŒè§£çãã¹ãå€ã¯\r\n$$(1 + 1)^3(2 + 1)(6 + 1)(9 + 1)(11 + 1)^2(12 + 1) = \\mathbf{3144960}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc181/editorial/7327"
}
] | ã$11$ åã®æ£ã®å®æ° $a_1, \ldots, a_{11}$ ã«å¯ŸããŠïŒæ£ã®å®æ° $A$ ã以äžã§å®ããŸãïŒ
- $i=1,2,\ldots,11$ ãããã㧠$i \leq n_i \leq 11$ ãã¿ãããã㪠$11$ åã®æŽæ°ã®çµ $(n_1, \ldots , n_{11})$ 㯠$11!$ éããããïŒããããã¹ãŠã«å¯Ÿãã $a_{n_1}a_{n_2}\cdots a_{n_{11}}$ ã®ç·åã $A$ ãšããïŒ
ãããŸïŒ$a_1, \ldots, a_{11}$ ã
$$\sum_{n=1}^{11} n^2 a_n = 1110$$
ãã¿ãããšãïŒ$A$ ãšããŠããããæ倧å€ã¯äºãã«çŽ ãªæ£æŽæ° $p, q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šããã®ã§ïŒç© $pq$ ããã€æ£ã®çŽæ°ã®åæ°ã解çããŠãã ããïŒ |
OMC180 (for experts) | https://onlinemathcontest.com/contests/omc180 | https://onlinemathcontest.com/contests/omc180/tasks/4494 | A | OMC180(A) | 200 | 192 | 234 | [
{
"content": "ã$y=a(x-a)$ ãš $y=b(x-b)$ ã®äº€ç¹ã¯ $(a+b,ab)$ ã§ããããïŒ$ab=n$ ãæºãããããªçµ $1\\leq a \\lt b\\leq 2023$ ãã¡ããã© $7$ åååšãããããªæå°ã®æ£ã®æŽæ° $n$ ãæ±ããã°ããïŒ$n\\leq 2023$ ã®ãšãïŒãã㯠$n$ ãæ£ã®çŽæ°ã $14$ åãŸã㯠$15$ åãã€ããšãšåå€ã§ããïŒãããæºããæå°ã® $n$ 㯠$2^4Ã3^2=\\textbf{144}$ ã§ãããšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/4494"
}
] | ã$xy$ å¹³é¢äžã«ïŒä»¥äžã®ååŒã§è¡šããã $2023$ æ¬ã®çŽç·ããããŸãïŒ
$$y=x-1, \quad y=2(x-2), \quad y = 3(x-3), \quad \ldots, \quad y=2023(x-2023)$$
ãããã®çŽç·ã®ãã¡ $2$ æ¬ä»¥äžãåæã«éããããªç¹ãïŒçŽç· $y=n$ äžã«ã¡ããã© $7$ åååšãããããªïŒæå°ã®æ£ã®æŽæ° $n$ ãæ±ããŠãã ããïŒ |
OMC180 (for experts) | https://onlinemathcontest.com/contests/omc180 | https://onlinemathcontest.com/contests/omc180/tasks/4338 | B | OMC180(B) | 400 | 104 | 131 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšããïŒäžå¹³æ¹ã®å®çãã $\\angle PQR = 90^\\circ$ ã§ããã®ã§ïŒç°¡åãªèšç®ã«ãã \r\n$$\\angle ABC =\\angle BAP = \\angle BCR = 45^\\circ$$\r\nãåããïŒåŸã£ãŠïŒäžè§åœ¢ $APB$ ãšäžè§åœ¢ $CPH$ãçŽè§äºç蟺äžè§åœ¢ã§ããããïŒäžè§åœ¢ $ACP$ ãšäžè§åœ¢ $BHP$ ã¯ååã§ããïŒåæ§ã«ããŠäžè§åœ¢ $ACR$ ãšäžè§åœ¢ $HBR$ ãååã§ããïŒãŸãïŒ$D$ ãš $H$ ã¯ç·å $AC$ ã«é¢ããŠå¯Ÿç§°ã§ããããšãšåãããŠïŒæ±ãããã®ã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒ \r\n$$\r\n\\begin{aligned}\r\n|ABCD| &= |ABC| + |ADC| \\\\\\\\\r\n&= |ABC| + |AHC| \\\\\\\\\r\n&= |ACP| + |ACR| + |HPB| + |HRB| \\\\\\\\\r\n&= 2(|APC| + |ARC|)\r\n\\end{aligned}\r\n$$\r\nããã§ïŒäžè§åœ¢ $CPQ$ ãšäžè§åœ¢ $RPB$ ã¯çžäŒŒã§ãããã\r\n$$|APC| = \\frac{1}{2}\\times CP\\times AP = \\frac{1}{2}\\times CP\\times PB = \\frac12\\times QP\\times RP = \\frac{175}{2}$$\r\nã§ããïŒåæ§ã«ããŠ\r\n$$|ARC| = \\frac{1}{2}\\times QR\\times PR = 300$$\r\nãåããïŒä»¥äžããæ±ããé¢ç©ã¯ $\\bf{775}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/4338"
},
{
"content": "ãäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšãã. $$\\angle CRB=\\angle CQB=90^{\\circ},ã\\angle HQC=\\angle CPH=90^{\\circ}$$ ãã $R, Q, B, C$ ãš $Q, H, P, C$ ã¯ããããå
±åãªã®ã§ïŒ$$\\angle RQH=\\angle RCB=\\angle HCP=\\angle HQP,ã\\angle RBQ=\\angle RCQ=\\angle HCQ=\\angle HPQ$$ ããïŒäžè§åœ¢ $HPQ$ ãš $RBQ$ ã¯çžäŒŒ. ãã£ãŠïŒ$QHÃQB=QPÃQR=168$. ãŸãïŒ$\\angle PQR=90^{\\circ}$ ãäžå¹³æ¹ã®å®çã®éããåŸãããïŒ$$\\angle RBP=90^{\\circ}-\\angle BCR=90^{\\circ}-\\angle BQR=90^{\\circ}-\\angle PQR\\/2=45^{\\circ}.$$\r\nãã£ãŠïŒ$PR=BH\\sin 45^{\\circ}$ ããïŒ$BH=25\\sqrt 2$. ãããš $QHÃQB=QRÃQP=168$ ããïŒ$QH=3\\sqrt 2$. ãŸãïŒäžè§åœ¢ $AHC$ ãšäžè§åœ¢ $ADC$ ã¯ååãªã®ã§ïŒ$QD=3\\sqrt 2$. ããã«ïŒ$\\angle BAH=\\angle HCB=45^{\\circ}$ ããïŒ$RA=RH, RC=RB$ ã ããïŒäžè§åœ¢ $RAC$ ãšäžè§åœ¢ $RHB$ ã¯åå. ãã£ãŠïŒ$AC=HB=25\\sqrt 2$. ãããã£ãŠïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯ïŒ$ACÃBD\\/2=25\\sqrt 2Ã31\\sqrt 2\\/2=\\textbf{775}$.",
"text": "èšç®ã¯ããéããæãã€ãããããïŒãªè§£æ³",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/4338/294"
}
] | ãåã«å
æ¥ãïŒ$2$ æ¬ã®å¯Ÿè§ç·ãçŽäº€ããåè§åœ¢ $ABCD$ ããããŸãïŒ$A$ ããçŽç· $BC$ïŒ$B$ ããçŽç· $CA$ïŒ$C$ ããçŽç· $AB$ ã«äžãããåç·ã®è¶³ããããã $P,Q,R$ ãšããŸãïŒ
$$PQ=7, \quad QR=24, \quad RP=25, \quad \angle ABC \lt 90^\circ$$
ã§ãããšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC180 (for experts) | https://onlinemathcontest.com/contests/omc180 | https://onlinemathcontest.com/contests/omc180/tasks/3888 | C | OMC180(C) | 400 | 172 | 191 | [
{
"content": "ã$1$ ä»¥äž $22$ 以äžã®æŽæ°ãããªãçµ $(a,b)$ ã«ã€ããŠïŒ$ab$ ã $23$ ã§å²ã£ãäœãã $A$ ã«å±ãããã®ãš $B$ ã«å±ãããã®ã¯åæ°ååšããïŒãŸãïŒ$1$ ä»¥äž $22$ 以äžã®æŽæ°ãããªãçµ $(a,b)$ ã«ã€ããŠïŒ$a$ ãš $b$ ã®å±ããéåãç°ãªããã®ãšåããã®ãåæ°ååšããïŒããã«ïŒ$A$ ã®ä»»æã®å
$a$ ãš $B$ ã®ä»»æã®å
$b$ ã«ã€ã㊠$ab$ ã $23$ ã§å²ã£ãäœãã $A$ ã«å±ããããšãšïŒå±ããéåãåãã§ããä»»æã®æŽæ° $a,b$ ã«ã€ã㊠$ab$ ã $23$ ã§å²ã£ãäœãã $B$ ã«å±ããããšã¯åå€ã§ããïŒãã£ãŠïŒä»»æã® $1$ ä»¥äž $22$ 以äžã®æŽæ° $a$ ã«ã€ã㊠$a^2$ ã $23$ ã§å²ã£ãäœãã $B$ ã«å±ããïŒãã®ããšãã\r\n$$B=\\\\{ 1,2,3,4,6,8,9,12,13,16,18\\\\}$$ \r\nãšåããïŒãã®æïŒ$B$ ã®åå
ã $23$ ã®å¹³æ¹å°äœã§ $A$ ããã以å€ã§ããããšããæ¡ä»¶ãæºããããšãåããïŒåŸã£ãŠè§£çãã¹ãå€ã¯ $$12\\times 13 \\times 16 \\times 18=\\mathbf{44928}$$ ã§ããïŒ\r\n\r\n<details>\r\n<summary>解çååã®è£è¶³<\\/summary>\r\n\r\nã以äžã§ã¯ $a, b \\in \\\\{ 1, 2, \\ldots, 22 \\\\} $ ãšããïŒåé¡ã®æ¡ä»¶ããïŒ$ \\\\{ (a, b) \\mid a \\in A, b \\in B \\\\}$ ããã³ $ \\\\{ (a, b) \\mid a \\in B, b \\in A \\\\}$ ã¯å
±ééšåãæããªã $ \\\\{ (a, b) \\mid ab \\bmod 23 \\in A \\\\} $ ã®éšåéåã§ããïŒ\r\n$$ \\\\# \\\\{ (a, b) \\mid ab \\bmod 23 \\in A \\\\} \\ge \\\\# \\\\{ (a, b) \\mid a \\in A, b \\in B \\\\} + \\\\# \\\\{ (a, b) \\mid a \\in B, b \\in A \\\\} = \\frac{22^2}{2} \\tag{â} $$\r\nãæãç«ã€ïŒäžæ¹ã§ïŒå $x = 1, 2, \\ldots, 22$ ã«ã€ã㊠$ab \\equiv x \\pmod{23}$ ãªã $(a, b)$ ã®åæ°ã¯ $x$ ã«ããã $22$ åãªã®ã§ïŒ\r\n$$ \\\\# \\\\{(a, b) \\mid ab \\bmod 23 \\in A \\\\} = \\\\# \\\\{ (a, b) \\mid ab \\bmod 23 \\in B \\\\} = \\frac{22^2}{2} $$ \r\nãšãªãïŒãããã£ãŠ $(â)$ ã¯çå·ãæç«ãïŒ\r\n$$ \\\\{ (a, b) \\mid ab \\bmod 23 \\in A \\\\} = \\\\{ (a, b) \\mid a \\in A, b \\in B \\\\} \\cup \\\\{ (a, b) \\mid a \\in B, b \\in A \\\\} $$\r\nãšãªãïŒããã®è£éåããšããš (æ£ç¢ºã«ã¯ïŒäžã®è§£ã§ã¯ $ab \\bmod 23 \\in B$ ãšãªã $(a, b)$ ã®åæ°ãäžããæããããšã§ä»¥äžã®åŒãåŸãŠãã)ïŒ\r\n$$ \\\\{ (a, b) \\mid ab \\bmod 23 \\in B \\\\} = \\\\{ (a, b) \\mid a, b \\in A \\\\} \\cup \\\\{ (a, b) \\mid a, b \\in B \\\\} $$\r\nãšãªãïŒä»»æã® $(a, a)$ ã¯ãã®éåã«å«ãŸããããïŒ$a^2 \\bmod 23 \\in B$ïŒããªãã¡ $B$ ã«ã¯ãã¹ãŠã®å¹³æ¹å°äœãå«ãŸããããšããããïŒ\r\n<\\/details>\r\n\r\n<details>\r\n<summary>å¥è§£ (ç¥è§£)<\\/summary>\r\nã${} \\bmod 23$ ã®åå§æ ¹ $r$ ããšãïŒãã®ãšã $A = \\\\{ r^{c_1}, \\ldots, r^{c_{11}} \\\\}, B = \\\\{ r^{d_1}, \\ldots, r^{d_{11}} \\\\}$ ãšè¡šããã®ã§ïŒ$C = \\\\{ c_1, \\ldots, c_{11} \\\\}, D = \\\\{ d_1, \\ldots, d_{11} \\\\}$ ãšããïŒãã®ãšãåé¡ã®æ¡ä»¶ããïŒ\r\n$$C \\cap D = \\empty, \\quad C \\cup D = \\\\{ 0, 1, \\ldots, 21 \\\\}$$\r\nããã³ä»»æã® $i, j \\in \\\\{ 1, 2, \\ldots, 11\\\\}$ ã«ã€ã㊠$(c_i + d_j) \\bmod 22 \\in C$ ãæãç«ã€ïŒèçæ³ã«ãã $0 \\in D, 1\\in C$ ããããïŒ$D$ ã®å
$d$ ã§ãã£ãŠ $22$ ãšäºãã«çŽ ãªãã®ãååšãããšãïŒ$1+d, 1+2d, 1+3d, \\ldots \\in C$ ãšãªã $|C| = 11$ ã«ççŸããããïŒ\r\n$$ D \\subset \\\\{0, 2, 4, \\ldots, 20 \\\\} \\cup \\\\{ 11 \\\\} $$\r\nãšãªãïŒãããã«ãã $2$ ãš $6$ ã®äžæ¹ã¯ $D$ ã«å«ãŸããã®ã§ïŒããã $1$ ã«å ããŠããããšã§\r\n$$ C = \\\\{ 1, 3, 5, \\ldots, 21 \\\\}, \\quad D = \\\\{ 0, 2, 4, \\ldots, 20 \\\\} $$\r\nãåŸãïŒãã㯠$D$ ã ${} \\bmod 23$ ã§ã®å¹³æ¹å°äœã®ã¿ãããªãéåã§ããããšãæå³ãã ( $r = 5$ ã«å¯ŸããŠå
·äœçã«èšç®ããŠããã)ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/3888"
},
{
"content": "ããŸãïŒé 匵ããš$1$ã$B$ã«ïŒ$22$ã$A$ã«å±ããããšãåãããŸãïŒ$1$ã$A$ã«ãªãã®ã§ïŒ$\\bmod 23$ã§ã®éå
ã®çµïŒ$(2,12),(3,8),(4,6)\\dots$ãªã©ïŒãããããåãéåã«ããããšããé 匵ã£ãŠããºã«ãããïŒã¡ãã£ãšã ãéãã§ãïŒãšè§£ããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/3888/297"
}
] | ã$1$ ä»¥äž $22$ 以äžã®æŽæ°ãããªãèŠçŽ æ° $11$ ã®éå $A$ ãš $B$ ã§ãã£ãŠïŒæ¬¡ã® $2$ æ¡ä»¶ãã¿ãããã®ã¯äžæã«å®ãŸããŸãïŒ
- $A \cap B = \empty$
- ä»»æã® $a \in A$ ãš $b \in B$ ã«ã€ããŠïŒ$ab$ ã $23$ ã§å²ã£ãããŸã㯠$A$ ã«å±ããïŒ
ããã® $A, B$ ã«ã€ããŠïŒ$B$ ã® $10$ 以äžã®å
ã®ç·ç©ãæ±ããŠãã ããïŒ |
OMC180 (for experts) | https://onlinemathcontest.com/contests/omc180 | https://onlinemathcontest.com/contests/omc180/tasks/7032 | D | OMC180(D) | 600 | 22 | 54 | [
{
"content": "ãéšååæ°å解ããããšã§ïŒæ±ããå€ã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$\\sum_{i=1}^{10}\\frac{1}{a_i^6+a_i^5}=-\\sum_{i=1}^{10} \\frac{1}{a_i+1} + \\sum^{10}_{i=1} \\left( \\frac{1}{a_i}-\\frac{1}{a_i^2}+\\frac{1}{a_i^3}-\\frac{1}{a_i^4}+\\frac{1}{a_i^5} \\right)$$\r\n\r\nãã㧠$f(x)=x^{10}+x^9+x^8+x^7+x^6+x^5+2x^4+4x^3+8x^2+16x+32$ ãšããã°ïŒ$\\displaystyle \\sum_{i=1}^{10} \\frac{1}{a_i+1}$ 㯠$f(x-1)=0$ ã®è§£ã®éæ°ã®ç·åãšçããïŒãã®å€ã¯è§£ãšä¿æ°ã®é¢ä¿ãçšããŠç°¡åã«æ±ããããšãåºæ¥ãïŒ\r\n$$\r\n\\sum_{i=1}^{10} \\frac{1}{a_i+1}=-\\frac{(f(x-1)ã®1次ã®ä¿æ°)}{(f(x-1)ã®0次ã®ä¿æ°)}=-\\frac{1}{22}\r\n$$\r\n\r\n\r\nãšããã§ïŒ$\\displaystyle t=\\frac{2}{x} $ ãšããã° $f(x)=0$ ã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$\\frac{1024}{t^{10}}+\\frac{512}{t^9}+\\frac{256}{t^8}+\\frac{128}{t^7}+\\frac{64}{t^6}+\\frac{32}{t^5}+\\frac{32}{t^4}+\\frac{32}{t^3}+\\frac{32}{t^2}+\\frac{32}{t}+32=0$$\r\nãã®äž¡èŸºã $\\displaystyle \\frac{t^{10}}{32}$ åãããšïŒ\r\n$$ t^{10}+t^9+t^8+t^7+t^6+t^5+2t^4+4t^3+8t^2+16t+32=0 $$\r\nãšãªãã®ã§ïŒ$x$ ãæ¹çšåŒã®è§£ã§ããäºãš $\\displaystyle \\frac{2}{x}$ ã解ã§ããäºã¯åå€ã§ããïŒ$f(x)=\\dfrac{2}{x}$ ã¯åå°ã§ããããïŒéå $\\displaystyle \\left\\\\{\\frac{2}{a_1},\\frac{2}{a_2},\\dots,\\frac{2}{a_{10}}\\right\\\\}$ 㯠$\\\\{a_1,a_2,\\dots,a_{10}\\\\}$ ãšçããïŒãã£ãŠïŒ\r\n$$\r\n\\sum_{i=1}^{10} \\left( \\frac{1}{a_i}-\\frac{1}{a_i^2}+\\frac{1}{a_i^3}-\\frac{1}{a_i^4}+\\frac{1}{a_i^5} \\right) =\\sum_{i=1}^{10} \\left( \\frac{a_i}{2}-\\frac{a_i^2}{4}+\\frac{a_i^3}{8}-\\frac{a_i^4}{16}+\\frac{a_i^5}{32} \\right)\r\n$$\r\nãšå€åœ¢ã§ããïŒ\r\n$5$ 次以äžã®å¯Ÿç§°åŒã®å€ã«ã€ããŠïŒä¿æ°ã® $4$ 次以äžã®éšåã¯å¹²æžããªãããšããïŒ\r\n$$g(x)=x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1$$\r\nã®æ ¹ã $b_1,b_2,...,b_{10}$ ãšãããšïŒ\r\n$$\r\n\\sum_{i=1}^{10} \\left( \\frac{a_i}{2}-\\frac{a_i^2}{4}+\\frac{a_i^3}{8}-\\frac{a_i^4}{16}+\\frac{a_i^5} {32} \\right) =\\sum_{i=1}^{10} \\left( \\frac{b_i}{2}-\\frac{b_i^2}{4}+\\frac{b_i^3}{8}-\\frac{b_i^4}{16}+\\frac{b_i^5}{32} \\right)\r\n$$\r\n$$\r\n=\\frac{-1}{2}-\\frac{-1}{4}+\\frac{-1}{8}-\\frac{-1}{16}+\\frac{-1}{32}=\\frac{11}{32}\r\n$$\r\nãåŸãïŒãã㧠$\\\\{ b_1, b_2, \\dots, b_{10} \\\\} = \\left\\\\{ \\exp \\left(\\dfrac{2n\\pi i}{11} \\right) \\mathrel{}\\middle|\\mathrel{} n = 1, 2, \\dots, 10 \\right\\\\}$ã§ããããšãçšããïŒãããã£ãŠæ±ããå€ã¯ $\\displaystyle \\frac{1}{22}-\\frac{11}{32}=-\\frac{105}{352}$ ã§ããïŒçããã¹ãå€ã¯ $105\\times 352 = \\mathbf{36960}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/7032"
},
{
"content": "ããŸã\r\n$$ z^{10} + z^9 + z^8 + z^7 + z^6 + z^5 + 2z^4 + 4z^3 + 8z^2 + 16z + 32 = \\left(z + 1\\right) \\left(z^9 + z^7 + z^5 + 2z^3 + 2z^2 + 6z + 10\\right) + 22 $$\r\nãã\r\n$$ \\sum\\_{i=1}^{10}\\frac1{a\\_i^6 + a\\_i^5} = -\\frac1{22}\\sum_{i=1}^{10} \\left(a\\_i^4 + a\\_i^2 + 1 + \\frac2{a\\_i^2} + \\frac2{a\\_i^3} + \\frac6{a\\_i^4} + \\frac{10}{a\\_i^5}\\right)\\mathclose{}. $$\r\n次ã«\r\n$$ \\left(z - 1\\right) \\left(z - 2\\right) \\left(z^{10} + z^9 + z^8 + z^7 + z^6 + z^5 + 2z^4 + 4z^3 + 8z^2 + 16z + 32\\right) = z^{12} - 2z^{11} + z^6 - 64z + 64 \\eqqcolon f(z) $$\r\nã§ãã£ãŠïŒ$f(0) \\ne 0$ ãã€\r\n$$ \\frac{f(z)}{z^6} = z^6 - 2z^5 + 1 - 2 \\left(\\frac2z\\right)^5 + \\left(\\frac2z\\right)^6 $$\r\nãã $\\rule[-12pt]{0pt}{0pt}f(z) = 0 \\\\;\\Longrightarrow\\\\; f\\mathopen{}\\left(\\dfrac2z\\right) = 0$ïŒ \r\nãã£ãŠïŒè§£ãšä¿æ°ã®é¢ä¿ãšåãããããšã§ $n = 1, \\ldots, 5$ ã®ãšã\r\n$$ \\sum\\_{f(z) = 0}z^n = \\left(\\sum\\_{f(z) = 0}z\\right)^n = 2^n,\\qquad \\sum\\_{f(z) = 0}\\frac1{z^n} = \\frac1{2^n}\\sum\\_{f(z) = 0}\\left(\\frac2z\\right)^n = \\frac1{2^n}\\sum\\_{f(z) = 0}z^n = 1, $$\r\n$$ \\begin{aligned}\r\n\\therefore&\\sum_{i=1}^{10} \\left(a\\_i^4 + a\\_i^2 + 1 + \\frac2{a\\_i^2} + \\frac2{a\\_i^3} + \\frac6{a\\_i^4} + \\frac{10}{a\\_i^5}\\right)\\\\\\\\\r\n&\\mathopen{}= \\sum\\_{f(z) = 0} \\left(z^4 + z^2 + 1 + \\frac2{z^2} + \\frac2{z^3} + \\frac6{z^4} + \\frac{10}{z^5}\\right) - \\sum\\_{z = 1, 2} \\left(z^4 + z^2 + 1 + \\frac2{z^2} + \\frac2{z^3} + \\frac6{z^4} + \\frac{10}{z^5}\\right)\\\\\\\\\r\n&\\mathopen{}= 10 - \\left(1 + 1 + \\frac2{2^2} + \\frac2{2^3} + \\frac6{2^4} + \\frac{10}{2^5}\\right) = \\frac{105}{16}.\r\n\\end{aligned} $$\r\nãããã\r\n$$ \\sum\\_{i=1}^{10}\\frac1{a\\_i^6 + a\\_i^5} = -\\frac1{22} \\times \\frac{105}{16} = -\\frac{105}{352} $$\r\nã§ããããïŒæ±ããå€ã¯ $\\bm{36960}$ïŒ",
"text": "çºæ³ã®éšåãèšç®ã§",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/7032/298"
},
{
"content": "ãäžåŒã¯ $x=0$ ã解ã«æããªãããšã«æ³šæããŠäžåŒã¯äž¡èŸºã $x^5$ ã§å²ã£ãåŒã§ãã$$x^5+\\dfrac{32}{x^5}+x^4+\\dfrac{16}{x^4}+x^3+\\dfrac{8}{x^3}+x^2+\\dfrac{4}{x^2}+x+\\dfrac{2}{x}+1=0\\cdots(1)$$ãšåå€ã§ããïŒ \r\nããã§ïŒ$t=x+\\dfrac{2}{x},x_n=x^n+\\dfrac{2^n}{x^n}$ ãšãããšïŒ$x_{n+2}=tx_{n+1}-2x_n$ ããïŒ$$x_2=t^2-4,x_3=t^3-6t,x_4=t^4-8t^2+8,x_5=t^5-10t^3+20t,x_6=t^6-12t^4+36t^2-16\\cdots(2)$$ã§ããããïŒ$(1)\\Leftrightarrow t^5+t^4-9t^3-7t^2+15t+5=0\\cdots(3)$ ãšãªãïŒ \r\n$(3)$ ã® $5$ 解ã $t_1,t_2,\\ldots,t_5$ ãšããïŒ$t_i=x+\\dfrac{2}{x}\\Leftrightarrow x^2-t_ix+2=0$ ã® $2$ 解ã $a_i,b_i$ ãšãããš $$\\dfrac{1}{{a_i}^6+{a_i}^5}+\\dfrac{1}{{b_i}^6+{b_i}^5}=\\dfrac{{a_i}^6+{b_i}^6+{a_i}^5+{b_i}^5}{{a_i}^5{b_i}^5(a_ib_i+a_i+b_i+1)}=\\dfrac{{t_i}^6+{t_i}^5-12{t_i}^4-10{t_i}^3+36{t_i}^2+20t_i-16}{32(t_i+3)}\\cdots(4)$$ãšãªãïŒ(${a_i}^6+{b_i}^6,{a_i}^5+{b_i}^5$ 㯠$t_i=a_i+\\dfrac{2}{a_i},{a_i}^n+{b_i}^n={a_i}^n+\\dfrac{2^n}{{a_i}^n}$ ã§ããããšãã $(2)$ ãå©çšããŠæ±ããïŒ) \r\n$t=t_i$ 㧠$(3)$ ã¯æãç«ã€ã®ã§ïŒ \r\n\r\n$$\\begin{aligned}\r\n& \\phantom{=} {t_i}^6+{t_i}^5-12{t_i}^4-10{t_i}^3+36{t_i}^2+20t_i-16 \\\\\\\\\r\n& = t_i({t_i}^5+{t_i}^4-9{t_i}^3-7{t_i}^2+15t_i+5)-3{t_i}^4-3{t_i}^3+21{t_i}^2+15t_i-16 \\\\\\\\\r\n& = -3{t_i}^4-3{t_i}^3+21{t_i}^2+15t_i-16 \\\\\\\\\r\n& = (t_i+3)(-3{t_i}^3+6{t_i}^2+3t_i+6)-34\r\n\\end{aligned}$$\r\nã§ããïŒ$(4)=\\dfrac{1}{32}\\Bigl(-3{t_i}^3+6{t_i}^2+3t_i+6-\\dfrac{34}{t_i+3}\\Bigr)$ ãšãªãïŒ$i=1,2,\\ldots,5$ ã®ãšãã®ãã®åŒã®å€ã®ç·åãæ±ããã°ããïŒ \r\n 解ãšä¿æ°ã®é¢ä¿ããïŒ\r\n$$\\begin{aligned}\r\n& A=t_1+t_2+\\cdots+t_5=-1 \\\\\\\\\r\n& B=t_1t_2+t_1t_3+\\cdots+t_4t_5=-9 \\\\\\\\\r\n& C=t_1t_2t_3+t_1t_2t_4+\\cdots+t_3t_4t_5=7\r\n\\end{aligned}$$ã§ããïŒ\r\n$$\\begin{aligned}\r\n& D={t_1}^2+{t_2}^2+\\cdots+{t_5}^2=A^2-2B=19 \\\\\\\\\r\n& E={t_1}^2t_2+{t_1}^2t_3+\\cdots+{t_5}^2t_4=AB-3C=-12 \\\\\\\\\r\n& F={t_1}^3+{t_2}^3+\\cdots+{t_5}^3=AD-E=-7\r\n\\end{aligned}$$ãšãªãïŒ \r\nãŸãïŒ$f(t)=t^5+t^4-9t^3-7t^2+15t+5=(t-t_1)(t-t_2)\\cdots(t-t_5)$ ããïŒ$$f^{\\prime}(t)=5t^4+4t^3-27t^2-14t+15=(t-t_2)(t-t_3)(t-t_4)(t-t_5)+\\cdots+(t-t_1)(t-t_2)(t-t_3)(t-t_4)$$ ãªã®ã§ïŒ$$G=\\dfrac{1}{t_1+3}+\\dfrac{1}{t_2+3}+\\cdots+\\dfrac{1}{t_5+3}=-\\dfrac{f^{\\prime}(-3)}{f(-3)}=\\dfrac{111}{22}$$ãšãªãïŒ \r\n以äžããïŒæ±ããå€ã¯$\\dfrac{1}{32}(-3F+6D+3A+30-34G)=-\\dfrac{105}{352}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\textbf{36960}$ïŒ",
"text": "çžåæ¹çšåŒã®äºçš®",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/7032/299"
}
] | ã$x$ ã® $10$ 次æ¹çšåŒ
$$x^{10}+x^9+x^8+x^7+x^6+x^5+2x^4+4x^3+8x^2+16x+32=0$$
ã¯çžç°ãªã $10$ åã®è€çŽ æ°è§£ããã¡ãŸãïŒãããã $x=a_1,a_2,\ldots,a_{10}$ ãšãããšãïŒ
$$\sum^{10}_{i=1}\frac{1}{a_i^6+a_i^5}$$
ã®å€ãæ±ããŠãã ããïŒ\
ããã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$ \displaystyle-\frac{a}{b}$ ãšè¡šããã®ã§ïŒ$a \times b$ ã®å€ã解çããŠãã ããïŒ |
OMC180 (for experts) | https://onlinemathcontest.com/contests/omc180 | https://onlinemathcontest.com/contests/omc180/tasks/4112 | E | OMC180(E) | 700 | 30 | 48 | [
{
"content": "ã$36$ åã®å®æ° $(s_1,s_2, \\ldots,s_{36})$ ãå€æ°ãšãã以äžã®é£ç«æ¹çšåŒã $P$ ãšãã¶ïŒ\r\n$$ s_{b_1}+s_{c_1}=1, \\quad s_{b_2}+s_{c_2}=2 ,\\quad \\ldots,\\quad s_{b_{35}}+s_{c_{35}}=35 $$\r\näžè¬è«ãšããŠïŒé£ç« $n$ å
äžæ¬¡æ¹çšåŒã®è§£ãäžæã«å®ãŸãã«ã¯ïŒå°ãªããšã $n$ æ¬ã®åŒãå¿
èŠã§ããïŒãããã£ãŠïŒ$P$ ã«åŒã $1$ æ¬å ããããšã§å¯äžè§£ãçãŸããããšããïŒ$P$ ã®äžã«éå°ãªåŒïŒãããã¯ççŸããåŒã¯ååšããŠã¯ãªããªãïŒ\\\r\nã$1,2,\\ldots, 36$ ãé ç¹ãšãïŒ$b_i,c_i$ ã®éã«èŸºã匵ã£ãç¡åã°ã©ã $Q$ ãèããïŒé ç¹ $x$ ãå«ãé£çµæåãæšã§ãããšãïŒ$s_x$ ã®å€ãã©ã®ããã«å®ããŠãïŒèŸºã«æ²¿ã£ãŠæ®ãã®å€ãççŸãªãå®ããããšãåºæ¥ãããïŒ$P$ ã«ãã㊠$s_x$ ã®å€ã¯äžæã«å®ãŸããªãïŒããŸïŒ$Q$ ã¯èŸºæ°ãé ç¹æ°ããå°ãªãããïŒæšã®é£çµæåãååšããããšã«æ³šæããïŒ\\\r\nãããã§ïŒæšã®é£çµæåã $2$ ã€ä»¥äžååšãããšãïŒ$Q$ ã«ã©ã®ããã«èŸºã $1$ æ¬è¿œå ããŠãïŒæšã®é£çµæåã $1$ ã€ä»¥äžååšãããŸãŸã«ãªãïŒããã¯ïŒ$P$ ã« $s_x-s_y=z$ ã®åœ¢åŒã®åŒãã©ã®ããã«è¿œå ããŠãïŒå¯äžè§£ã«ãªãåŸãªãããšãæå³ããïŒãããã£ãŠïŒ$Q$ ã¯é£çµæåã®ãã¡ïŒæšãã¡ããã© $1$ ã€ãã€ïŒä»¥äžïŒåã«**æš**ãšããã°ãã®é£çµæåãããïŒïŒãŸãïŒæšã§ãªãé£çµæåã¯ïŒãããã蟺ãšé ç¹ã®æ°ãåãã§ãªããã°ãªããªãããïŒãã¹ãŠéè·¯ã§ããïŒ\\\r\nãããéè·¯ã®é·ããå¶æ° $2n$ ã®ãšãïŒå«ãŸããé ç¹ãé ã« $q_1, q_2 ,\\ldots, q_{2n}$ ãšãããšïŒ\r\n$$\r\n(s_{q_1}+s_{q_2})-(s_{q_2}+s_{q_3})+(s_{q_3}+s_{q_4})\\cdots +(s_{q_{2n-1}}+s_{q_{2n}})=s_{q_1}+s_{q_{2n}}\r\n$$\r\nããïŒ$P$ ã«ãã㊠$s_{q_1}+s_{q_{2n}}=z$ ã¯éå°ãŸãã¯ççŸããåŒãšãªãïŒããªãã¡ïŒå¶æ°é·ã®éè·¯ã¯ååšããªãïŒ\\\r\nãéã«éè·¯ã®é·ããå¥æ° $2n+1$ ã®ãšãïŒå«ãŸããé ç¹ãé ã« $q_1, q_2 ,\\ldots, q_{2n+1}$ ãšãããšïŒ\r\n$$\r\n(s_{q_1}+s_{q_2})-(s_{q_2}+s_{q_3})+(s_{q_3}+s_{q_4})\\cdots -(s_{q_{2n}}+s_{q_{2n+1}})+(s_{q_{2n+1}}+s_{q_{1}})=2s_{q_1}\r\n$$\r\nãªã©ã«ãã£ãŠïŒ$P$ ã«ãã㊠$s_{q_i}$ ã®å€ã¯ãã¹ãŠççŸãªãäžæã«å®ãŸãïŒãã£ãŠ,\r\n$$M=36-(\\text{æšã®é ç¹æ°})ïŒ$$\r\nãããŠïŒ$P$ ã« $s_x+s_y=36$ ãä»ã足ãããšãïŒ$P$ ãå¯äžè§£ããã€ãã㪠$(x,y)$ ã®æ¡ä»¶ã«ã€ããŠèããïŒ$x,y$ ã®ããããã¯æšã«å«ãŸããŠããªããã°ãªããïŒããããäžæ¹ã®ã¿ãæšã«å«ãŸããŠããå Žåã¯æããã«é©ããïŒ\\\r\nã以äžïŒ$x,y$ ããšãã«æšã«å«ãŸããŠããå Žåã«ã€ããŠèããïŒåºæ¬çã«ã¯äžãšåæ§ã§ããïŒ\r\n\r\n- é ç¹ $x,y$ ã®è·é¢ãå¶æ°ã§ããå Žå \\\r\nã$x,y$ éã®ãã¹ã«å«ãŸããé ç¹ãé ã« $q_1(=x), q_2 ,\\cdots q_{2n+1}(=y)$ ãšãããšïŒ\r\n$$\r\n(s_{q_1}+s_{q_2})-(s_{q_2}+s_{q_3})+(s_{q_3}+s_{q_4})\\cdots -(s_{q_{2n}}+s_{q_{2n+1}})=s_{q_1}-s_{q_{2n+1}}=s_x-s_y\r\n$$\r\nãšãªãïŒ$s_x-s_y=36$ ã¯éå°ãŸãã¯ççŸããåŒãšãªãããäžé©ïŒ\r\n- é ç¹ $x,y$ ã®è·é¢ãå¥æ°ã§ããå Žå \\\r\nã$x,y$ éã®ãã¹ã«å«ãŸããé ç¹ãé ã« $q_1(=x), q_2 ,\\cdots q_{2n}(=y)$ ãšãããšïŒ\r\n$$\r\n(s_{q_1}+s_{q_2})-(s_{q_2}+s_{q_3})+(s_{q_3}+s_{q_4})\\cdots +(s_{q_{2n-1}}+s_{q_{2n}})+(s_{q_1}-s_{q_{2n}})=2s_{q_1}\r\n$$\r\nãªã©ã«ãã£ãŠïŒ$P$ ã«ãã㊠$s_{q_i}$ ã®å€ã¯ãã¹ãŠççŸãªãäžæã«å®ãŸãïŒ\r\n\r\nãããŠïŒãããèžãŸããŠæšã®é ç¹ãèµ€ãšéã®äºè²ã§å¡ãïŒããã§ïŒåãè²ã®é ç¹ã蟺ã§é£ãåããªãããã«ããïŒããã¯å¯èœã§ããïŒæšã¯äºéšã°ã©ãã§ããïŒïŒãã®ãšãïŒ$2$ é ç¹éã®è·é¢ãå¶æ°ã§ããããšãšïŒåè²ã§ããããšã¯åå€ã§ããïŒèµ€ïŒéã§å¡ãããé ç¹ã®æ°ããããã $V,W$ ãšãããšïŒ$(x,y)$ ãšããŠ**äžé©**ãªçµã¯ $M^2+V^2+W^2$ åã§ããïŒ\\\r\nãéã«ïŒ$V,W\\gt 0$ ã®ãšãïŒèµ€ïŒéã§å¡ãããé ç¹ããããã $V,W$ åã®æšãæ§ç¯ã§ããïŒãã£ãŠïŒ\r\n$$M+V+W=36,\\quad M^2+V^2+W^2=36^2-736=560$$\r\nã®ãšã $M$ ãšããŠããåŸãå€ã® $3$ ä¹åãæ±ããã°è¯ãïŒãã㯠$4^3 + 12^3 + 20^3 = \\mathbf{9792}$ ãšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/4112"
}
] | ã $1$ ä»¥äž $36$ 以äžã®æŽæ°ãããªãæ°å $b_1, b_2, \ldots, b_{35}$ ãš $c_1, c_2, \ldots, c_{35}$ ã¯æ¬¡ã®æ¡ä»¶ãã¿ãããŸãïŒ
- $36$ åã®å®æ° $(a_1,a_2, \ldots,a_{36})$ ãå€æ°ãšããé£ç«æ¹çšåŒ
$$ a_{b_1}+a_{c_1}=1, \quad a_{b_2}+a_{c_2}=2 ,\quad \ldots,\quad a_{b_{35}}+a_{c_{35}}=35,\quad a_{x}-a_{y}=36 $$
ãäžæã«è§£ããã€ãããªïŒ$1$ ä»¥äž $36$ 以äžã®æŽæ°ã®çµ $(x,y)$ ãã¡ããã© $736$ åååšããïŒ
ãããŸïŒ$36$ åã®å®æ° $(s_1,s_2, \ldots,s_{36})$ ãå€æ°ãšããé£ç«æ¹çšåŒ
$$ s_{b_1}+s_{c_1}=1, \quad s_{b_2}+s_{c_2}=2 ,\quad \ldots,\quad s_{b_{35}}+s_{c_{35}}=35 $$
ã«ãããŠïŒ$s_t$ ã®å€ãäžæã«å®ãŸããã㪠$t$ $(1\leq t\leq36)$ ã¯ã¡ããã© $M$ åååšããŸããïŒ$M$ ãšããŠããããæ£æŽæ°å€ãã¹ãŠã® $3$ ä¹åãæ±ããŠãã ããïŒ |
OMC180 (for experts) | https://onlinemathcontest.com/contests/omc180 | https://onlinemathcontest.com/contests/omc180/tasks/5512 | F | OMC180(F) | 800 | 3 | 23 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€æ¥åã $\\omega$ ãšãïŒåçŽç· $FE,EF$ ãš $\\omega$ ã®äº€ç¹ããããã $Y,Z$ ãšããïŒ\\\r\nã$A$ ãäžå¿ãšããååŸ $\\sqrt{AD\\times AH}$ ã®åã«ããå転ã«ãã£ãŠïŒ$\\omega$ ãšçŽç· $EF$ ã¯äºãã«ç§»ãåãã®ã§ïŒ$Y,Z$ ã¯äžå€ã§ããïŒãŸãïŒ$\\angle APH = \\angle ADP$ ãã $AP^2 = AD\\times AH$ ã§ããã®ã§ $P$ ããã®å転ã«ãã£ãŠå€ãããªãïŒãããã£ãŠïŒ$AP = AY = AZ$ ã§ããïŒããã«ïŒäžè§åœ¢ $BCH$ ã®å€æ¥åã¯äžè§åœ¢ $ABC$ ã®ä¹ç¹åã«ç§»ãïŒ$P$ ã¯äžå€ã§ããããïŒ$P$ ã¯äžè§åœ¢ $ABC$ ã®ä¹ç¹åäžã«ããïŒäžè§åœ¢ã®ä¹ç¹åãšå€æ¥åã®çžäŒŒã®äžå¿ã¯åå¿ã§ããïŒãã®çžäŒŒæ¯ã¯ $1 : 2$ ã§ããã®ã§ïŒåçŽç· $HD$ ãš $\\omega$ ã®äº€ç¹ã $T$ ãšãããšïŒçŽç· $DP$ ãš $TX$ ã¯å¹³è¡ã§ããïŒ$HP = PX = 4$ ã§ããïŒãã£ãŠïŒ\r\n$$\\angle APX = 180^\\circ - \\angle APH = 180^\\circ - \\angle ADP = 180^\\circ - \\angle ATX = \\angle AYX$$\r\nãåŸãïŒããã«ïŒ$AP = AY$ ã§ããããšã䜵ããã°ïŒäžè§åœ¢ $APX$ ãšäžè§åœ¢ $AYX$ ã¯ååã§ããïŒç¹ã«ïŒ$\\angle AXP = \\angle AXY$ ã§ããããïŒçŽç· $XP$ ãš $\\omega$ ã® $X$ ã§ãªãæ¹ã®äº€ç¹ã $Z^\\prime$ ãšãããšïŒ$AZ^\\prime = AY = AZ$ ãæç«ããïŒãããã£ãŠ $Z= Z^\\prime$ ã§ããïŒãã£ãŠïŒ\r\n$$\\begin{aligned}\r\n \\angle ZCT\r\n&= \\angle ZXT\\\\\\\\\r\n&= \\angle HPD\\\\\\\\\r\n&= \\angle DPE - \\angle EPH\\\\\\\\\r\n&= (180^\\circ - \\angle DFE) - \\angle AGE\\\\\\\\\r\n&= \\big(180^\\circ - (180^\\circ - 2\\angle ACB)\\big) - (\\angle BAD + \\angle AFE)\\\\\\\\\r\n&= 2\\angle ACB - (90^\\circ - \\angle ABC + \\angle ACB)\\\\\\\\\r\n&= 90^\\circ - \\angle BAC\\\\\\\\\r\n&= \\angle ACH\r\n\\end{aligned}$$\r\nã§ããïŒãŸãïŒ$\\angle TZC = \\angle HAC, TC = HC$ ãæç«ããã®ã§ïŒäžè§åœ¢ $AHC$ ãš $ZTC$ ã¯ååã§ããïŒç¹ã«ïŒ$AH = TZ$ ã§ããïŒ\\\r\nãããã§ïŒäžè§åœ¢ $AHP$ ãš $APD$ ã¯çžäŒŒã§ããããïŒ$AH : AP = AP : AD = 4 : 5$ ã§ããïŒãããã£ãŠïŒ$AH : AP : DH = 16 : 20 : 9$ ã§ããïŒãŸãïŒ$DH = DT$ ã $AH = TZ$ ã§ãã£ãããšã«æ°ãã€ããã°ïŒäžè§åœ¢ $AHX$ ãš $ZHT$ ã¯çžäŒŒã§ããã®ã§\r\n$$AX = \\frac{HX\\times TZ}{HT} = \\frac{64}{9}$$\r\nãåŸãïŒããã§ïŒ$AP = 20x$ ãšãããšïŒäžç·å®çãã以äžãæç«ããïŒ\r\n$$(16x)^2 + \\bigg(\\frac{64}{9}\\bigg)^2 = 2((20x)^2 + 4^2)$$\r\nãããã£ãŠïŒ$x^2 = \\dfrac{47}{1377}$ ãåŸãããïŒ$AP^2 = 400x^2 = \\dfrac{18800}{1377}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{20177}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc180/editorial/5512"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšããŸãïŒ$A, B, C$ ãã察蟺ã«äžãããåç·ã®è¶³ããããã $D, E, F$ ãšãïŒçŽç· $AD$ ãšçŽç· $EF$ ã®äº€ç¹ã $G$ ãšããŸãïŒäžè§åœ¢ $EGH$ ã®å€æ¥åãšäžè§åœ¢ $BCH$ ã®å€æ¥å㯠$H$ ã§ãªãç¹ $P$ ã§äº€ããïŒåçŽç· $HP$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥å㯠$X$ ã§äº€ãããŸããïŒããã«ïŒ
$$PX=4,\quad PD=5,\quad \angle APH=\angle ADP$$
ãæç«ãããšãïŒç·å $AP$ ã®é·ãã®äºä¹ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC179 (for beginners) | https://onlinemathcontest.com/contests/omc179 | https://onlinemathcontest.com/contests/omc179/tasks/5392 | A | OMC179(A) | 100 | 363 | 363 | [
{
"content": "$$ad=\\frac{abÃcd}{bc}=\\frac{300}{20}=\\mathbf{15}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/5392"
}
] | ãæ£ã®å®æ° $a,b,c,d$ ã
$$ab=10,\quad bc=20,\quad cd=30$$
ãã¿ãããŠãããšãïŒ$ad$ ã®å€ãæ±ããŠãã ããïŒ |
OMC179 (for beginners) | https://onlinemathcontest.com/contests/omc179 | https://onlinemathcontest.com/contests/omc179/tasks/5951 | B | OMC179(B) | 100 | 300 | 324 | [
{
"content": "ã$3$ ç¹ $A,B,D$ ãš $3$ ç¹ $B,C,D$ ã«ã€ããŠïŒããããäžè§äžçåŒã«ãã以äžãåŸãïŒ\r\n\r\n$$5 \\leq BD \\leq 9, \\qquad 2 \\leq BD \\leq 8$$\r\n\r\nãããã£ãŠïŒ $5 \\leq BD \\leq 8$ ãšãªãïŒå®éïŒåé¡ã®æ¡ä»¶ãæºãããªããïŒ $BD=5,BD=8$ ãšãªãããã«ã§ããã®ã§ïŒæ±ããå€ã¯ $5+8= \\mathbf{13} $ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/5951"
}
] | ãå¹³é¢äžã« $4$ ç¹ $A,B,C,D$ ãããïŒä»¥äžãã¿ãããŠããŸãïŒ
$$AB=2, \quad BC=3, \quad CD=5, \quad DA=7.$$
ãã®ãšãïŒç·å $BD$ ã®é·ããšããŠããããæå°ã®å€ $m$ ããã³æ倧ã®å€ $M$ ãååšããã®ã§ïŒ$m+M$ ã解çããŠãã ããïŒ |
OMC179 (for beginners) | https://onlinemathcontest.com/contests/omc179 | https://onlinemathcontest.com/contests/omc179/tasks/3093 | C | OMC179(C) | 200 | 329 | 353 | [
{
"content": "ã$0.475$ ä»¥äž $0.485$ æªæºã®æçæ°ã®ãã¡ïŒåæ¯ãæå°ã®ãã®ãæ±ããã°ããïŒ\\\r\nãåæ¯ãå¶æ° $2k$ ã®ãšãïŒ$0.5$ æªæºã§æ倧ã®ãã® $(k-1)\\/2k$ ã $0.475$ 以äžã§ããå¿
èŠãããããšããïŒ$k\\geq 20$ ãå¿
èŠã§ããïŒåæ§ã«ïŒåæ¯ãå¥æ° $2k+1$ ã®ãšãïŒ$0.5$ æªæºã§æ倧ã®ãã® $k\\/(2k+1)$ ã $0.475$ 以äžã§ããå¿
èŠãããããšããïŒ$k\\geq 10$ ãå¿
èŠã§ããïŒéã« $10\\/21\\approx0.4762$ ã¯æ¡ä»¶ãã¿ããããïŒæ±ããå€ã¯ $\\textbf{21}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/3093"
}
] | ã$N$ 人ã®åŠçã«OMCãç¥ã£ãŠãããã¢ã³ã±ãŒãããŸããïŒãã®çµæãç¥ã£ãŠããããšçãã人ã®å²åãïŒçŸåçã§å°æ°ç¬¬äžäœã§åæšäºå
¥ããŠè¡šçŸãããšïŒ$48\\,\\%$ ã§ããïŒãã®ãšãïŒ$N$ ãšããŠããåŸãæå°ã®æ£æŽæ°å€ãæ±ããŠãã ããïŒ |
OMC179 (for beginners) | https://onlinemathcontest.com/contests/omc179 | https://onlinemathcontest.com/contests/omc179/tasks/5946 | D | OMC179(D) | 300 | 154 | 202 | [
{
"content": "ãäžåŒã $f(x)$ ãšãããšïŒåè§ã®å
¬åŒãçšããŠïŒ\r\n$$f(x)\r\n= \\frac{1}{4}(1 + \\cos x)^2 + \\frac{1}{1 + \\cos x}\r\n= \\frac{1}{4}(1 + \\cos x)^2 + \\frac{1}{2(1 + \\cos x)} + \\frac{1}{2(1 + \\cos x)}$$\r\nãšå€åœ¢ã§ããïŒåŸã£ãŠïŒ$1 + \\cos x \\gt 0$ ã§ããããïŒçžå çžä¹å¹³åã®äžçåŒãã\r\n$$f(x)\r\n\\ge 3\\bigg(\\frac{1}{4}(1 + \\cos x)^2\\times \\frac{1}{2(1 + \\cos x)}\\times \\frac{1}{2(1 + \\cos x)}\\bigg)^{1\\/3}\r\n= \\bigg(\\frac{27}{16}\\bigg)^{1\\/3}$$\r\nã§ããïŒçå·ã¯ $\\cos x = 2^{1\\/3} - 1$ ã®ãšãã«æç«ããïŒä»¥äžããïŒ$P(x) = x^3 - \\dfrac{27}{16}$ ã§ããããïŒ$P(100) = \\dfrac{15999973}{16}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{15999989}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/5946"
}
] | ãå®æ° $x$ ã $0 \lt x \lt \pi$ ã®ç¯å²ãåããšãïŒ
$$\frac{1}{8} (\cos 2x + 4 \cos x + 3) + \frac{2 - 2\cos x}{1 - \cos 2x}$$
ã®ãšãããæå°å€ $m$ ãšïŒ$m$ ã®æå°å€é
åŒ $P$ ãååšããŸãïŒ$P(100)$ ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ
<details><summary>æå°å€é
åŒãšã¯<\/summary>
ã$m$ ãæ ¹ã«ãã€æçæ°ä¿æ°å€é
åŒã®ãã¡ïŒæ¬¡æ°ãæå°ã§ããïŒãã€æé«æ¬¡ã®ä¿æ°ã $1$ ã§ãããã®ãïŒãã®ãããªãã®ã¯äžæã«ååšããïŒïŒ $m$ ã®**æå°å€é
åŒ**ãšãã¶ïŒ
<\/details> |
OMC179 (for beginners) | https://onlinemathcontest.com/contests/omc179 | https://onlinemathcontest.com/contests/omc179/tasks/5563 | E | OMC179(E) | 400 | 57 | 155 | [
{
"content": "$$0\\leq a_{1,1} \\lt a_{2,1} \\lt \\cdots \\lt a_{i,1} \\lt a_{i,2} \\lt \\cdots \\lt a_{i,j}$$ \r\nãã, $i+j-2 \\leq a_{i,j}$ ã§ããïŒãŸãïŒ\r\n$$13 \\ge a_{7,7} \\gt a_{6,7} \\gt \\cdots \\gt a_{i,7} \\gt a_{i,6} \\gt \\cdots \\gt a_{i,j}$$\r\nããïŒ$a_{i,j} \\leq i+j-1$ ã§ããïŒãã£ãŠïŒ$b_{i,j}=a_{i,j}-(i+j-2)$ ãšãããšïŒ$b_{i,j}$ 㯠$0$ ãŸã㯠$1$ ã§ããïŒããã§ïŒ$b_{i,j} = 1$ ãªã $(i,j)$ ã«å¯Ÿãäžãã $i$ è¡ç®ïŒå·Šãã $j$ åç®ã®ãã¹ãé»ãå¡ãïŒãã以å€ã®ãã¹ãçœãå¡ãããšãèããïŒãã®ãšãïŒé»ã®ãã¹ã®äžã€å³ã®ãã¹ïŒäžã€äžã®ãã¹ã¯å¿
ãé»ã®ãã¹ã§ããããïŒé»ã®ãã¹ãšçœã®ãã¹ã®å¢çç·ã¯ïŒãã¹ç®ã®å·Šäžã®é ç¹ããå³äžã®é ç¹ãžãã¹ã®å¢çãéã£ãŠããæççµè·¯ãšãªãïŒéã«ïŒé»ã®ãã¹ãšçœã®ãã¹ã®ãã¹ç®ã®å¢çç·ããã®ããã«ãªã£ãŠãããšãïŒæããã«äžã€ç®ã®æ¡ä»¶ãæºããïŒåŸã£ãŠïŒäžã€ç®ã®æ¡ä»¶ãæºããæ°ã®æžãæ¹ã¯ ${}\\_{14}\\mathrm{C}\\_{7}$ éãã§ããïŒ\\\r\nãäžã€ç®ã®æ¡ä»¶ãæºãããŠããæžã蟌ã¿æ¹ã«å¯ŸãïŒãã¹ç®ã $180^\\circ$ å転ãããåŸïŒåãã¹ã«ã€ããŠæžãããŠããæ°ã $k$ ãªã $13 - k$ ã«æžãæãããšããæäœãè¡ããšïŒæäœåŸã«åŸãããæžãæ¹ãïŒã€ç®ã®æ¡ä»¶ãæºããïŒæäœååŸã§ãã¹ç®ã«æžãããŠããæ°ã®ç·åã®å¶å¥ã¯ç°ãªãïŒåŸã£ãŠïŒäžã€ç®ã®æ¡ä»¶ãæºããæžã蟌ã¿æ¹ã®ãã¡ã¡ããã©ååãäºã€ç®ã®æ¡ä»¶ãæºããã®ã§ïŒæ±ããçã㯠$\\dfrac{{}\\_{14}\\mathrm{C}\\_{7}}{2} = \\bf{1716}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/5563"
},
{
"content": "ã圢åŒçã¹ãçŽæ°ãçšãã解æ³ã§ãïŒ\r\n\r\n\r\nãå
¬åŒè§£èª¬ãšåæ§ã«ãã¹ç®ãçœé»ã«å¡ãåãããšãïŒ $c_i=ïŒi+1è¡ç®ã«ããé»ãã¹ã®æ°ïŒ-ïŒiè¡ç®ã«ããé»ãã¹ã®æ°ïŒ$ ãšããïŒïŒãã ã $c_0=ïŒ1è¡ç®ã«ããé»ãã¹ã®æ°ïŒ,c_7=7-ïŒ7è¡ç®ã«ããé»ãã¹ã®æ°ïŒ$ ãšããïŒ \\\r\nãå
¬åŒè§£èª¬ããïŒ $c_0,âŠ,c_7$ ã¯éè² æŽæ°ã§ããïŒç·å㯠$7$ ã§ããïŒé»ãã¹ã®åæ°ã¯ $7c_0+6c_1+âŠ+c_6$ åã§ïŒæ¡ä»¶ããããã¯å¥æ°ïŒ \\\r\nããŸãïŒéè² æŽæ°ã®çµ $(c_0,c_1,âŠ,c_7)$ ãšåãã¹ã®æ°ã®å²ãåœãŠæ¹ã¯äžå¯Ÿäžå¯Ÿå¿ããŠããããšããïŒäžèšãæºããçµ $(c_0,c_1,âŠ,c_7)$ ã®åæ°ãæ°ããã°ããïŒ \\\r\nãããã§ïŒ $7c_0+6c_1+âŠ+c_6$ ãå¥æ°ãšããæ¡ä»¶ã¯ $c_0+c_2+c_4+c_6$ ãå¥æ°ã§ããããšã«çããïŒ \\\r\nããããã£ãŠïŒ $f(x,y)=\\left(\\dfrac{1}{1-xy}\\right)^4\\left(\\dfrac{1}{1-x}\\right)^4$ ãšãããšïŒæ±ããã¹ãå€ã¯ïŒ $f(x,y)$ ã® $x$ ã®æ¬¡æ°ã $7$ 㧠$y$ ã®æ¬¡æ°ãå¥æ°ã§ããé
ã®ä¿æ°ã®ç·åã§ããïŒããã¯ä»¥äžã®ããã«æ±ããããïŒ\r\n\r\n$$\\begin{aligned}\r\n[x^7]\\dfrac{1}{2}(f(x,1)-f(x,-1))&=[x^7]\\dfrac{1}{2}\\left\\lbrace\\dfrac{1}{(1-x)^8}-\\dfrac{1}{(1-x)^4(1+x)^4}\\right\\rbrace \\\\\\\\\r\n&=\\dfrac{1}{2}(_{14}\\mathrm{C}_7-0) \\\\\\\\\r\n&=\\mathbf{1716}\r\n\\end{aligned}$$\r\n\r\nããã ãïŒä»¥äžã®åŒãçšããïŒ\r\n$$\\dfrac{1}{(1-x)^n}=\\sum_{i=0}^{\\infty}\\binom{i+n-1}{n-1}x^i$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/5563/295"
}
] | ã$7\times7$ ã®ãã¹ç®ã®åãã¹ã«æŽæ°ãäžã€ãã€æžã蟌ã¿ãŸãïŒãã ãïŒæžã蟌ãæ°ã¯ $0$ ä»¥äž $13$ 以äžã§ããïŒæžã蟌ãŸããªãæ°ããã£ãŠãïŒè€æ°ã®ãã¹ã«æžã蟌ãŸããæ°ããã£ãŠãè¯ããã®ãšããŸãïŒäžãã $i$ è¡ç®ïŒå·Šãã $j$ åç®ã«ãããã¹ã«æžãããæ°ã $a_{i,j}$ ã§è¡šããšãïŒä»¥äžããã¹ãŠã¿ããæžã蟌ã¿æ¹ã¯äœéããããŸããïŒ
- $k=1,2,\ldots,7$ ããããã«ã€ããŠïŒä»¥äžããšãã«æãç«ã€ïŒ
$$a_{k,1} \lt a_{k,2} \lt \cdots \lt a_{k,7},\quad a_{1,k} \lt a_{2,k} \lt \cdots \lt a_{7,k}.$$
- ãã¹ãŠã®ãã¹ã«æžãããæ°ã®ç·åã¯å¥æ°ã§ããïŒ |
OMC179 (for beginners) | https://onlinemathcontest.com/contests/omc179 | https://onlinemathcontest.com/contests/omc179/tasks/6934 | F | OMC179(F) | 400 | 44 | 123 | [
{
"content": "ã$x=q+r, y=r+p, z=p+q$ ãšããã°ïŒæ¡ä»¶åŒã¯\r\n$$q^2+qr+r^2=\\frac{25}{4},\\quad r^2+rp+p^2=\\frac{49}{4},\\quad p^2+pq+q^2=16$$\r\nãšçœ®ãæããããïŒããã§ïŒ$X$ ãäžå¿ãšããäžèŸº $\\sqrt3$ ã®æ£äžè§åœ¢ $ABC$ ã«å¯ŸããŠïŒ\r\n$$\\overrightarrow{XP} = p\\overrightarrow{XA},\\quad \r\n\\overrightarrow{XQ} = q\\overrightarrow{XB},\\quad \r\n\\overrightarrow{XR} = r\\overrightarrow{XC}$$\r\nãšãªãããã« $3$ ç¹ $P, Q, R$ ããšããšïŒ$QR=5\\/2, RP = 7\\/2, PQ=4$ ãšãªãïŒãŸãïŒçŽç· $QR$ ã«ã€ããŠç¹ $P$ ãšå察åŽã«ç¹ $S$ ãïŒäžè§åœ¢ $QRS$ ãæ£äžè§åœ¢ãšãªãããã«åãã°ïŒ\r\n$$p+q+r=XP+XQ+XR=PS$$\r\nãšãªãïŒ$\\angle PQR =60^\\circ,QS=QR=5\\/2$ ã§ããããïŒ\r\n$$PS=\\sqrt{PQ^2 + QS^2 + PQ\\times QS} = \\frac {\\sqrt{129}} 2$$ ãšãªãã®ã§ïŒ$x+y+z=2(p+q+r)=\\sqrt{129}$ ã§ããããïŒæ±ããå€ã¯ $\\mathbf {129}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/6934"
},
{
"content": "1ã€ãã®åŒ\r\n$$(y-z)^2+3x^2=25$$\r\n\r\n2ã€ãã®åŒ\r\n$$(z-x)^2+3y^2=49$$\r\n\r\n3ã€ãã®åŒ\r\n$$(x-y)^2+3z^2=64$$\r\n\r\n1ã€ãã®åŒãã2ã€ãã®åŒãåŒããš\r\n$$(y-z)^2+3x^2-(z-x)^2-3y^2=25-49=-24$$\r\nå®ã¯å æ°å解ã§ãã.\r\n$$2(x+y+z)(x-y)=-24$$\r\n$$(x+y+z)(x-y)=-12$$\r\n\r\nä»ã®ãã¢ã«ã€ããŠãåæ§ã«ãããš\r\n$$(x+y+z)(y-z)=-\\dfrac{15}{2}$$\r\n$$(x+y+z)(z-x)=\\dfrac{39}{2}$$\r\n\r\nããã§,$x+y+z=k$ãšãã.\r\n\r\n$k^2$ãæ±ããã°OK\r\n\r\n\r\n$$x-y=-\\dfrac{12}{k},y-z=-\\dfrac{15}{2k},z-x=\\dfrac{39}{2k}$$\r\n\r\næåã®åŒããã¹ãŠè¶³ã\r\n\r\n$$(x-y)^2+(y-z)^2+(z-x)^2+3(x^2+y^2+z^2)=25+49+64=138$$\r\n\r\nãã®ãšã,ç°¡åãªèšç®ãã,巊蟺ã¯\r\n\r\n$$(x+y+z)^2+2(y-z)^2+2(z-x)^2+2(z-x)^2$$\r\n\r\nãšçããããšãåãã.\r\n\r\nãã£ãŠ,\r\n\r\n$$k^2+\\dfrac{576}{2k^2}+\\dfrac{225}{2k^2}+\\dfrac{1521}{2k^2}=138$$\r\n\r\nãŸãšãããš\r\n\r\n$$k^2+\\dfrac{1161}{k^2}=138$$\r\n\r\n$$k^4-138k^2+1161=0$$\r\n\r\n$1161=3^3\\times 43$ã«æ³šæãããš\r\n\r\n$$(k^2-9)(k^2-129)=0$$\r\n\r\nããã§,$k^2=9$ã§ãããªãã°,\r\n\r\n$$(x^2+y^2+z^2)+2(xy+yz+zx)=9$$\r\n$$5(x^2+y^2+z^2)-2(xy+yz+zx)=138$$\r\nã§ãããã,\r\n$$x^2+y^2+z^2=\\dfrac{49}{2},xy+yz+zx=-\\dfrac{31}{4}\\lt 0$$\r\nãšãªã£ãŠ,$x,y,z$ãæ£ã®å®æ°ã§ããããšã«ççŸ.\r\n\r\nãã£ãŠ,$k^2=129$ã§ãªããŠã¯ãããªã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc179/editorial/6934/296"
}
] | ãæ£ã®å®æ° $x,y,z$ ã¯
$$ (y-z)^2+3x^2=25,\quad (z-x)^2+3y^2=49,\quad (x-y)^2+3z^2=64$$
ãã¿ãããŠããŸãïŒãã®ãšãïŒ$(x+y+z)^2$ ã®å€ã解çããŠãã ããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9379 | A | ç¢äžæ¯2023(A) | 100 | 180 | 210 | [
{
"content": "ã$1$ æ¡ã®æ£æŽæ°ã®ç·å㯠$45$ ã§ããïŒãŸãïŒ$m$ ä»¥äž $n$ 以äžã®æŽæ°ã®ç·å㯠$4$ 以äžã® $2$ ã¹ãã«ãªãããªãããïŒ$9,\\\\, 25,\\\\, 27,\\\\, 36$ ã«ãªããã®ãèããã°ããïŒå¹³åå€ã«æ³šç®ããããšã§ïŒä»®å®ãæºããçµ $(m, n)$ ã¯\r\n$$ (4, 5),\\quad (2, 4),\\quad (3, 7),\\quad (2, 7),\\quad (1, 8) $$\r\nã§ããããšãåããïŒæ±ããç·å㯠$\\bm{1041}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9379"
}
] | ã$10$ é²æ³ã§ $1$ æ¡ã®æ£æŽæ°ã®çµ $(m, n)$ ã§ãã£ãŠïŒ$m \lt n$ ãã¿ããïŒ$m$ ä»¥äž $n$ 以äžã®æŽæ°ã®ç·åã环ä¹æ°ã«ãªããã®ãã¹ãŠã«ã€ããŠïŒ$n^m$ ã®ç·åãæ±ããŠãã ããïŒ
<details><summary>环ä¹æ°ãšã¯<\/summary>
ã**环ä¹æ°**ãšã¯ïŒãããæ£æŽæ° $a$ ãš $2$ 以äžã®æŽæ° $k$ ãååšããŠïŒ$a^k$ ãšè¡šããæ°ãããããŸãïŒ
<\/details> |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9392 | B | ç¢äžæ¯2023(B) | 100 | 175 | 179 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€æ¥åã $\\Gamma$ ãšãïŒçŽç· $AD$ ãš $\\Gamma$ ã®äº€ç¹ã $D^{\\prime}\\ (\\neq A)$ïŒçŽç· $AE$ ãš $\\Gamma$ ã®äº€ç¹ã $E^{\\prime}\\ (\\neq A)$ ãšããïŒè§åºŠè¿œè·¡ã«ãã $D,\\ D^{\\prime},\\ E,\\ E^{\\prime}$ ã¯åäžååšäžã«ããããšããããïŒãããã£ãŠïŒ\r\n$$\r\nAB=AC=a,\\quad AD=x,\\quad DD^{\\prime}=x^{\\prime},\\quad AE=y,\\quad EE^{\\prime}=y^{\\prime}\r\n$$\r\nãšããã°ïŒæ¹ã¹ãã®å®çããã³äžå¹³æ¹ã®å®çãªã©ããïŒä»¥äžãæç«ããïŒ\r\n$$\r\n\\begin{cases}\r\n x^2+y^2 &=23^2\\\\\\\\\r\n a^2 &= x\\left(x+x^{\\prime}\\right)=y\\left(y+y^{\\prime}\\right)\\\\\\\\\r\n xx^{\\prime} &= 24\\times 32\\\\\\\\\r\n yy^{\\prime} &= 9 \\times 47\r\n\\end{cases}\r\n$$\r\nããã解ãããšã§ $x^2=92,\\ y^2=437$ ãåŸãã®ã§ïŒ$a^2=\\bm{860}$ ã§ããïŒ\r\n ---\r\n**å¥è§£.**ã$DE$ ã®äžç¹ã $M$ ãšãããš\r\n$$ AM = \\frac{23}2,\\quad BM = 9 + \\frac{23}2 = \\frac{41}2,\\quad CM = 24 + \\frac{23}2 \r\n= \\frac{71}2 $$\r\nã§ããããïŒStewart ã®å®çããïŒæ±ããå€ã¯\r\n$$ \\left(\\frac{23}2\\right)^2 + \\frac{41}2 \\times \\frac{71}2 = \\bm{860}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9392"
},
{
"content": "[æ¹é $1$ ] äºç蟺äžè§åœ¢ã¯ãŸã£ã·ãã€ã«&ããããçŽè§äžè§åœ¢ã®çžäŒŒã§è§£æ±º \r\n\r\n$A$ ãã $BC$ ã«äžãããåç·ã®è¶³ã $H$ ãšããïŒ$BH=CH=28$ ããïŒ$DH=19,EH=4$ ãšãªãïŒ \r\nããã§ïŒè§åºŠè¿œè·¡ã«ãã $\\triangle{DHA}$ ãš $\\triangle{AHE}$ ã¯çžäŒŒãšãããïŒ \r\n\r\nãã£ãŠïŒ ${AH}^2=DH\\times EH=76$ ããïŒ${AB}^2={BH}^2+{AH}^2=28^2+76=\\textbf{860}$ \r\n\r\n[æ¹é $2$ ]æ¹ã¹ãã®å€ãå©çšããŠè£å©ç·ãåŒããã«è§£æ±º \r\n\r\näžå¿ $A$ ã§ååŸ $AB=AC=r$ ã®å $\\omega$ ã«å¯Ÿããç¹ $P$ ã®æ¹ã¹ãã®å€ã $Pow_{\\omega}(P)$ ã§è¡šãããšã«ããïŒ \r\n$-Pow_{\\omega}(D)=r^2-{AD}^2=9\\times47$ \r\n$-Pow_{\\omega}(E)=r^2-{AE}^2=32\\times24$ \r\n${AD}^2+{AE}^2=23^2$ \r\nããïŒ$3$ åŒã足ãåãã㊠$2$ ã§å²ãããšã§ïŒ$r^2=\\textbf{860}$ ãåŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9392/291"
}
] | ã$AB=AC$ ãªãäžè§åœ¢ $ABC$ ããããŸãïŒèŸº $BC$ äžã«ç¹ $D,E$ ãïŒ$B,D,E,C$ ããã®é ã§äžŠã¶ããã«ãšã£ããšããïŒä»¥äžãæç«ããŸããïŒ
$$
BD=9,\quad DE = 23, \quad EC=24,\quad \angle DAE=90^\circ.
$$
ãã®ãšãïŒèŸº $AB$ ã®é·ãã® $2$ ä¹ã解çããŠãã ããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9393 | C | ç¢äžæ¯2023(C) | 100 | 100 | 144 | [
{
"content": "ãåååŒã®æ³ã¯ $9$ ãšããïŒ\\\r\nãæ£æŽæ° $n$ ã«ã€ããŠïŒãã®æ¡åã $S(n)$ ã§è¡šãããšã«ãããšïŒ$n \\equiv S(n)$ ãæç«ããïŒ$A,\\ Y$ ã«å
¥ããæ°åã $a,\\ y$ïŒäœ¿ããªãæ°åã $x_1\\lt x_2$ ãšãããšïŒ$\\text{YAGAMIFES}$ ã« $1$ æ¡ã®æ°åãå
¥ããŠåºæ¥ãæ°åã $9$ ã®åæ°ã«ãªãããã«ã¯ïŒ\r\n$$\r\n45+a-x_1-x_2\\equiv x_1+x_2-a \\equiv 0\r\n$$\r\nãå¿
èŠãããïŒããã§ïŒãã $x_1$ ã $0$ ãŸã㯠$9$ ã§ãã£ããšãããšïŒ$x_2 \\equiv a$ ã〠$x_2, a$ ããããã $1$ æ¡ã®æŽæ°ã§ããããšãã $x_2=a$ ãšãªã£ãŠããŸããïŒããã¯äžé©ã§ããïŒåæ§ãªããšã¯ $x_2$ ã«ã€ããŠããããããïŒ$x_1,x_2$ ã¯ãããã $1$ ä»¥äž $8$ 以äžã®æŽæ°ã§ããïŒä»¥äžïŒ$x_1+x_2=k$ ãšããïŒ$3\\leq k \\leq 15$ ã«çæããïŒ\r\n - $k \\not \\equiv 0$ ã®ãšã\\\r\n$k\\equiv a$ ãªã $a\\ (a\\neq x_1, x_2)$ ããã $1$ ã€ååšããïŒå$k$ã«å¯ŸãïŒ$x_1<x_2$ ã〠$x_1+x_2=k$ ãæºãããããªçµ$(x_1,x_2)$ã®æ°ã¯ïŒ$3 \\leq k \\lt 9$ ã®ãšã $\\left\\lfloor (k-1)\\/2 \\right\\rfloor$éãïŒ$9 \\lt k\\leq 15$ ã®ãšã $\\left\\lfloor (17-k)\\/2 \\right\\rfloor$éãååšãïŒåèšã§ $24$ éãããïŒããã $24$ éãã®å Žåã®ãããã«ãããŠãïŒ$\\text A$ 以å€ã® $7$ ã€ã®ã¢ã«ãã¡ãããã«ïŒ$0$ ãå«ãïŒ$7$ ã€ã® $1$ æ¡ã®æ°åãããŠã¯ããå¿
èŠãããïŒãã®å Žåã®æ°ã¯ $y \\neq 0$ ãéã¿ããš $6\\times 6!$ éãã§ããïŒ\r\n - $k=9$ ã®ãšã\\\r\n$a=0$ ãŸã㯠$9$ ãé©ããïŒãŸãïŒ$x_1\\lt x_2$ ã〠$x_1+x_2=9$ ãæºãããããªçµ $(x_1,x_2)$ ã®æ°ã¯ $4$ éãååšããïŒ$\\text A$ 以å€ã® $7$ ã€ã®ã¢ã«ãã¡ãããã« $7$ ã€ã®äžæ¡ã®æ°åãããŠã¯ããå Žåã®æ°ã¯ $a=9$ ã®ãšã $6\\times 6!$ éãïŒ$a=0$ ã®ãšã $7!$ éãååšããïŒ\r\n\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $24\\times 6 \\times 6! + 4\\times (6\\times 6!+7!) = \\bm{141120}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9393"
}
] | ãé·ã $9$ ã®æåå $\text{YAGAMIFES}$ 㯠$8$ çš®é¡ã®ã¢ã«ãã¡ãããã§æ§æãããŠããŸãïŒåã¢ã«ãã¡ãããã« $0$ ãã $9$ ã®æ°åã $1$ ã€ãã€å
¥ã㊠$9$ æ¡ã®æ£æŽæ°ãã€ãããŸãïŒãã ãïŒ$\text Y$ ã« $0$ ãå
¥ããŠã¯ãããŸããïŒïŒåãã¢ã«ãã¡ãããã«ã¯åãæ°åãïŒç°ãªãã¢ã«ãã¡ãããã«ã¯ç°ãªãæ°åãå
¥ãããšãïŒåŸãããæ£æŽæ°ã $9$ ã®åæ°ã«ãªããããªæ¹æ³ã¯äœéããããŸããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9394 | D | ç¢äžæ¯2023(D) | 100 | 60 | 76 | [
{
"content": "ã$\\triangle{ABC}$ ã®åå¿ã $H$ïŒå€æ¥åã $\\Gamma$ ãšããïŒç°¡åãªè§åºŠè¿œè·¡ããåè§åœ¢ $HBDC$ ãå¹³è¡å蟺圢ã§ããããšããããã®ã§ïŒ$D$ 㯠$\\Gamma$ äžã«ååšãïŒ$AD$ 㯠$\\Gamma$ ã®çŽåŸã§ããïŒåæ§ãªããšã $E,F$ ã«ã€ããŠããããïŒ\\\r\nã$\\triangle{ABC}$ ã®é¢ç©ã $S$ ãšãããšïŒ$R_1, R_2, R_3$ ã®é¢ç©ã¯ãã¹ãŠ $2S$ ã§ããïŒãŸãïŒ$\\triangle{ABF}\\equiv \\triangle{DEC}$ ãªã©ããããããïŒ\r\n$$\r\nx+y+z+S= \\operatorname{Area}(R_2) = 2S \\Longrightarrow\\ x+y+z=S\r\n$$\r\nãåŸãïŒããã«ïŒ$\\triangle{BDE},\\ \\triangle{CEF},\\ \\triangle{AFD}$ ã«ã€ããŠä»¥äžãæãç«ã€ïŒ\r\n$$\r\n\\begin{cases}\r\n\\operatorname{Area}(\\triangle{BDE}) = S - x = 23\\\\\\\\\r\n\\operatorname{Area}(\\triangle{CEF}) = S - y = 24\\\\\\\\\r\n\\operatorname{Area}(\\triangle{AFD}) = S - z = 25\r\n\\end{cases}.\r\n$$\r\nãããã解ãããšã§ïŒ$x=13,\\ y=12,\\ z=11$ ãåŸãããïŒåçãã¹ãå€ã¯ $\\textbf{1716}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9394"
}
] | ãéè§äžè§åœ¢ $ABC$ ãããïŒ$3$ ã€ã®é·æ¹åœ¢ $R_1,R_2,R_3$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
- é·æ¹åœ¢ $R_1$ ã®ããäžèŸºã¯ç·å $CA$ ã§ããïŒãã®åããåã蟺ã¯ç¹ $B$ ãéãïŒ
- é·æ¹åœ¢ $R_2$ ã®ããäžèŸºã¯ç·å $AB$ ã§ããïŒãã®åããåã蟺ã¯ç¹ $C$ ãéãïŒ
- é·æ¹åœ¢ $R_3$ ã®ããäžèŸºã¯ç·å $BC$ ã§ããïŒãã®åããåã蟺ã¯ç¹ $A$ ãéãïŒ
ãããã«ïŒ$R_1, R_2$ äž¡æ¹ã®èŸºäžã«ãã£ãŠïŒãããã®é·æ¹åœ¢ã®é ç¹ã§ããªãç¹ããã $1$ ã€ååšããã®ã§ïŒãããç¹ $D$ ãšããŸãïŒåæ§ã« $R_2,R_3$ ã«å¯ŸããŠç¹ $E$ ãïŒ$R_3,R_1$ ã«å¯ŸããŠç¹ $F$ ãããããå®ãããšïŒä»¥äžãæç«ããŸããïŒ
$$
\operatorname{Area}(\triangle{BDE})=23,\quad \operatorname{Area}(\triangle{CEF})=24,\quad \operatorname{Area}(\triangle{AFD})=25.
$$
ãã®ãšãïŒ
$$
\operatorname{Area}(\triangle{ABF})=x,\quad \operatorname{Area}(\triangle{BCD})=y, \quad \operatorname{Area}(\triangle{CAE})=z
$$
ãªãå®æ° $x,y,z$ ã«ã€ããŠïŒãããã®ç© $xyz$ ã解çããŠãã ããïŒ\
ããã ãïŒ$\operatorname{Area}(\triangle{XYZ})$ 㧠$\triangle{XYZ}$ ã®é¢ç©ãè¡šããã®ãšããŸãïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9395 | E | ç¢äžæ¯2023(E) | 100 | 9 | 37 | [
{
"content": "ããŸãã¯ããã«ïŒæ°å $\\\\{F_n\\\\}$ ã«é¢ããŠæãç«ã€äžçåŒã瀺ããŠããïŒ$F_0=0$ ãšããïŒ\r\n\r\n---\r\n\r\n**è£é¡.** $n\\geq 3$ ã«å¯Ÿã $F_1+F_2+\\cdots+F_n \\lt 2(F_n+F_{n-2})$ïŒ\\\r\n**蚌æ.** $F_1+F_2+\\cdots+F_{n-1} = F_{n+1}-1$ ã«çæãããšïŒç€ºãã¹ãäžçåŒã¯ $F_{n+1}-1\\lt F_n+2F_{n-2}$ ãšåå€ïŒããã«ïŒæŒžååŒãç¹°ãè¿ãçšããŠæŽçããããšã«ããïŒç€ºãã¹ãäžçåŒã¯ $F_{n-3}-1\\lt F_{n-2}$ ãšåå€ã«ãªããïŒ$n \\geq 3$ ã§ããã¯çïŒä»¥äžããå
ã®äžçåŒãçã§ããïŒ\r\n\r\n---\r\n\r\nãã§ã¯ïŒ$f(p,q) \\gt 0$ ãšãªã $(p,q)$ ã®æ¡ä»¶ãèãããïŒ$2(F_{q}+F_{q-2}) \\lt 2F_{q}+F_{q-2}+F_{q-1}=3F_{q}$ ã§ããããïŒè£é¡ãã\r\n$$\r\nF_1+F_2+\\cdots F_{q-1} \\lt 2F_{q}\r\n$$\r\nã§ããïŒ$p\\geq 3$ ã®æïŒã©ã®ãããªåå²ãæœããŠãïŒ$F_{q}$ãèŠçŽ ã«å«ãŸãªãéå $S$ ã§ãã£ãŠ\r\n$$\r\n\\sum_{k\\in S} F_k \\leq \\dfrac{F_1+F_2+\\cdots+F_{q-1}}{2}\r\n$$\r\nãšãªããã®ãååšããïŒãããã£ãŠïŒåå²ã«ãã£ãŠã§ããéåã®ãã¡ $F_{q}$ ãèŠçŽ ã«å«ãéåã $S^{\\prime}$ ãšããã°ïŒ$\\sum_{k\\in S} F_k \\lt \\sum_{k\\in S^{\\prime}} F_k$ ãæç«ããããïŒ$f(p,q)=0$ ã§ããïŒ\\\r\nã$p=2$ ã®ãšãïŒ $F_{1}+F_{2}+\\cdots +F_{q}$ ã®å€ã $2$ ãæ³ãšããŠã¿ãã°ïŒããã㯠$1,0,0,1,0,0,1,\\ldots$ ãšåšæçã«å€åããŠããããšããããïŒ$q\\equiv 1 \\pmod{3}$ ã®ãšãïŒ$F_{1}+F_{2}+\\cdots +F_{q}$ ã®å€ã¯å¥æ°ã§ããããïŒæ¡ä»¶ãæºãããã㪠$2$ ã€ã®éåã®åå²ã¯ååšããïŒ$f(p,q)=0$ ã§ããïŒäžæ¹ïŒ$q\\equiv 0,2 \\pmod{3}$ ã®ãšãïŒ$q=2$ ã§ããã° $\\\\{\\\\{1\\\\},\\\\{1\\\\}\\\\}$ ãïŒ$q=3$ ã§ããã° $\\\\{\\\\{1,1\\\\},\\\\{2\\\\}\\\\}$ ãæ¡ä»¶ãæºããïŒæŒžååŒ $F_{n+3}=F_{n+2}+F_{n+1}$ ããïŒãã $n$ ã§æ¡ä»¶ãæºããåå²ãååšãããªãã°ïŒ$n+3$ ã§ãæ¡ä»¶ãæºããåå²ãååšããã®ã§ $f(p,q)\\geq 1$ ãèšããïŒ\r\n\r\nãæåŸã«ïŒ$f(2,q)\\geq 1$ ãªãæ£æŽæ° $q$ ã«å¯ŸãïŒ$f(2,q)$ ã®å
·äœçãªå€ã決å®ãããïŒåå²åŸã®$2$ ã€ã®éåã«ã€ããŠïŒãã®éåã®èŠçŽ ã®ç·å㯠$(F_1+F_2+\\cdots+F_{q})\\/2$ ã§ããããšã«æ³šæããŠã»ããïŒ$q\\geq4$ ã®å Žåã«ãããŠïŒãã $F_{q-2},\\ F_{q}$ ãåäžã®éå $S$ ã«å«ãŸããŠãããšãããšïŒè£é¡ãã\r\n$$\r\n\\sum_{k\\in S} k \\geq F_{q}+F_{q-2} \\gt \\dfrac{F_1+F_2+\\cdots+F_{q}}{2}\r\n$$\r\nã§ããããïŒãã®ãšãæ¡ä»¶ãæºããããã«åå²ããããšãã§ããªãïŒ$F_{q-1},\\ F_{q}$ ãåäžã®éå $S$ ã«å«ãŸããŠãããšããå Žåã§ãïŒåæ§ã®çµè«ãåŸãããšãã§ããããïŒ$F_{q}$ ãš $F_{q-2},\\ F_{q-1}$ ã¯å¥ã®éåã«å«ãŸããŠããããšã«ãªãïŒãšãã㧠$F_{q}=F_{q-2}+F_{q-1}$ã§ããããïŒ$U_{q}$ ã®åå²ã®ä»æ¹ã¯ $U_{q-3}$ã®åå²ã®ä»æ¹ã«åž°çããããšãã§ããïŒ$q=2,3,5$ ã®åå²ã®æ¹æ³ããããã$1$çš®é¡ãšããŠæ°ããããããšã«æ³šæããã°ïŒ\r\n$$\r\nf(2,q)=\r\n\\begin{cases}\r\n 1 &(q=2,3,5)\\\\\\\\\r\n 2^{\\frac{q}{3}-1} &(q=6,9,12,\\ldots)\\\\\\\\\r\n 2^{\\frac{q-2}{3}-1} &(q=8,11,14,\\ldots)\r\n\\end{cases}\r\n$$\r\nãšãªãïŒä»¥äžããïŒæ±ããå€ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\sum_{2\\leq p\\leq q\\leq 100} f(p,q) = 3+(2+2^{2}+\\cdots +2^{31})+(2+2^{2}+\\cdots + 2^{32})=\\textbf{12884901887}.\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9395"
},
{
"content": "[è¿œèš] åé¡æãä¿®æ£ãããŸãã. çŸåšå
¬éãããŠããåé¡ã¯, å
¬åŒè§£èª¬ãšæŽåããŠããŸã.\r\n\r\n<details><summary>å
ã®åé¡æ<\\/summary>\r\nå®æ°å $\\left\\\\{F_{n}\\right\\\\}$ ã¯ä»¥äžã®æŒžååŒãã¿ãããã®ãšããŸãïŒ\r\n$$\r\nF_{1}=F_{2}=1, \\quad F_{n+2}=F_{n+1}+F_{n} \\quad (n \\geq 1).\r\n$$\r\nããŸ, æ£æŽæ° $p \\leq q$ ã«å¯Ÿã, $U_{q}=\\\\{1,2, \\ldots, q\\\\}$ ãšã, $U_{q}$ ã空ã§ãªã $p$ åã®éåã«åå²ããæ¹æ³ïŒåå²åŸã®éåã®é åºã¯åºå¥ããªãïŒã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ã®åæ°ã $f(p, q)$ ãšãããŸãïŒ\r\n\r\n- åå²åŸã® $p$ åã®éåã $S_{1}, S_{2}, \\ldots S_{p}$ ãšãããšã,\r\n$$\r\n\\sum_{k \\in S_{1}} F_{k}=\\sum_{k \\in S_{2}} F_{k}=\\cdots=\\sum_{k \\in S_{p}} F_{k}.\r\n$$\r\n\r\n$2 \\leq p \\leq q \\leq 100$ ãã¿ããæ£æŽæ°ã®çµ $(p, q)$ ãã¹ãŠã«å¯Ÿã $f(p, q)$ ãæ±ã, ãããã®ç·åã解çããŠãã ãã.\r\n\r\n<details><summary>éåã®åå²ã«ã€ããŠ<\\/summary>\r\n\r\n$p$ åã®éå $S_{1}, S_{2}, \\ldots S_{p}$ ã以äžã®æ¡ä»¶ãã¿ãããšã, éå $U_{q}$ ã® **åå²** ã§ãããšãããŸãïŒ\r\n- $1 \\leq i \\lt j \\leq p$ ãªãã° $S_{i} \\cap S_{j}=\\varnothing$.\r\n- $S_{1} \\cup S_{2} \\cup \\cdots \\cup S_{p}=U_{q}$\r\n<\\/details>\r\n<\\/details>\r\n\r\n---\r\n\r\nãå
¬åŒè§£èª¬èª€ãã®ææã\r\n\r\n$U_{q}$ ãåå²ããæ¹æ³ã¯, åèŠçŽ ã $S_{1}, S_{2}, \\ldots , S_{p}$ ã®ãããã«å±ãããã§åºå¥ããã (åå²åŸã®éåã®é åºã¯åºå¥ããªã). ãã®ãã, $F_{1}=F_{2}$ ã§ãã£ãŠã, $1 \\in S_{1}, 2 \\in S_{2}$ ãš $1 \\in S_{2}, 2 \\in S_{1}$ ãåºå¥ããŠèšäžããã.\r\n\r\nå
¬åŒè§£èª¬ã§ã¯, 誀ã£ãŠããããåºå¥ããŠããªããã, $q=5, 8, 11, \\ldots$ ã®ãšãã® $f(p, q)$ ã®å€ãæ¬æ¥ã® $\\frac{1}{2}$ åãšããŠç®åºããŠãã.\r\n\r\n<details><summary>[å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/yagamihai2023\\/editorial\\/9395)ã®è©²åœç®æ<\\/summary>\r\n$q=2,3,5$ ã®åå²ã®æ¹æ³ããããã 1 çš®é¡ãšããŠæ°ããããããšã«æ³šæããã°,\r\n$$\r\nf(2,q)=\\begin{cases}\r\n 1 & (q=2,3,5) \\\\\\\\\r\n 2^{\\frac{q}{3}-1} & (q=6, 9, 12, \\ldots) \\\\\\\\\r\n 2^{\\frac{q-2}{3}-1} & (q=8, 11, 14, \\ldots)\r\n\\end{cases}\r\n$$\r\nãšãªã. 以äžãã, æ±ããå€ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n \\sum_{2 \\leq p \\leq q \\leq 100} f(p, q)=3+\\left(2+2^{2}+\\cdots+2^{31}\\right)+\\left(2+2^{2}+\\cdots+2^{32}\\right)=\\mathbf{12884901887}.\r\n$$\r\n<\\/details>\r\n\r\n<details><summary>ä¿®æ£åŸ<\\/summary>\r\n$$\r\nf(2,q)=\\begin{cases}\r\n 2^{\\frac{q}{3}-1} & (q=3, 6, 9, \\ldots) \\\\\\\\\r\n 2^{\\frac{q-2}{3}} & (q=2, 5, 8, \\ldots)\r\n\\end{cases}\r\n$$\r\nãšãªã. 以äžãã, æ±ããå€ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\sum_{2 \\leq p \\leq q \\leq 100} f(p, q)=2\\left(2^{0}+2^{1}+\\cdots+2^{32}\\right)=2\\left(2^{33}-1\\right)=\\mathbf{17179869182}.\r\n$$\r\n<\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9395/290"
}
] | ã9\/24 22:50ãåé¡æãä¿®æ£ããŸããïŒç»é²ãããŠãã解çã®æ°å€ã¯åãã§ãïŒïŒ
----
ãå®æ°å $\\{F_n\\}$ ã¯ä»¥äžã®æŒžååŒãã¿ãããã®ãšããŸãïŒ
$$
F_1=F_2=1,\quad F_{n+2}=F_{n+1}+F_n \quad (n\geq 1).
$$
ãããŸïŒæ£æŽæ° $p \leq q$ ã«å¯ŸãïŒ**å€ééå** $U_{q}$ ã $U_q=\\{F_1,F_2,\ldots, F_q\\}$ ã§å®ãïŒ$U_{q}$ ã空ã§ãªã $p$ åã®å€ééåã«åå²ããæ¹æ³ïŒåå²åŸã®å€ééåã®é åºã¯åºå¥ããªãïŒã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ã®åæ°ã $f(p,q)$ ãšãããŸãïŒ
- åå²åŸã® $p$ åã®å€ééåã $S_1, S_2 ,\ldots S_p$ ãšãããšãïŒ
$$
\sum_{k\in S_1} k = \sum_{k\in S_2} k = \cdots = \sum_{k\in S_p} k.
$$
ã$2\leq p \leq q \leq 100$ ãã¿ããæ£æŽæ°ã®çµ $(p,q)$ ãã¹ãŠã«å¯Ÿã $f(p,q)$ ãæ±ãïŒãããã®ç·åã解çããŠãã ããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9440 | F | ç¢äžæ¯2023(F) | 100 | 79 | 104 | [
{
"content": "ããŸãïŒè£é¡ãšããŠä»¥äžã®äºã€ãæãç«ã€ããšã蚌æããïŒ\r\n\r\n 1. ã$k=1,2,3,4,5$ ã«å¯ŸãïŒ$x_1+x_2+â¯+x_k=\\frac12a_k(a_k+1)$ ãæºããéè² æŽæ° $a_k$ ãååšããïŒ\r\n 2. ã$\\lbrace a_k\\rbrace$ ã«å¯ŸãïŒ$a_1 \\in \\lbrace0,1 \\rbrace$ ã§ããïŒ$k=1,2,3,4$ ã«å¯ŸããŠ$a_{k+1}-a_k\\in\\lbrace-1,0,1\\rbrace$ ãæç«ããïŒ\r\n\r\nãããã¯æ°åŠçåž°çŽæ³ã«ãã£ãŠæ¬¡ã®ããã«èšŒæã§ããïŒ\r\n\r\n(i)ã$k=1$ ã®ãšãïŒ$x_1^2=x_1^3 \\iff x_1\\in\\lbrace 0,1\\rbrace$ ã§ããïŒãããã $a_k=0,1$ ã«å¯Ÿå¿ããïŒ\r\n\r\n(ii)ã$k=n$ ã®ãšãæç«ãããšããŠïŒ$k=n+1$ ã®ãšãïŒæ¡ä»¶ã¯\r\n$$\\left\\lbrace\\frac12 a_n (a_n+1)+x_{n+1} \\right\\rbrace^2=\\left\\lbrace\\frac12 a_n (a_n+1)\\right\\rbrace^2+x_{n+1}^3$$\r\nãããæŽçããã°ïŒ\r\n$$x_{n+1}^3-x_{n+1}^2-a_n(a_n+1) x_{n+1}=0 \\iff x_{n+1}\\in \\lbrace-a_n,0,a_n+1\\rbrace$$\r\nã§ããïŒãããã $a_{n+1}=a_n-1,a_n,a_n+1$ ã«å¯Ÿå¿ããããšããããïŒ$a_n=0$ ã®ãšãã¯ïŒ$a_{n+1}=a_n-1$ ãš $a_{n+1}=a_n$ ãåãçµæãäžããããïŒ$a_n$ ã¯ã€ãã«éè² æŽæ°ã§ãããšããããšã§ããïŒïŒ\r\n\r\nãéã«ïŒèšŒæã®éçšããäºã€ã®æ¡ä»¶ãäžåŒãå°ãããšãåŸãïŒããŸïŒ\r\n$$a_1\\in\\lbrace 0,1\\rbrace,\\quad \\ a_{m+1}-a_{m}\\in\\lbrace -1,0,1\\rbrace\\quad (m=1,2\\ldots,n-1),\\quad \\ a_n=k$$\r\nãã¿ããéè² æŽæ°ã®çµ $(a_1,a_2,\\ldots,a_n)$ ã®åæ°ã $f(n,k)$ ã§è¡šããšïŒããã¯æ¬¡ã®æŒžååŒãã¿ããïŒ\r\n$$\r\nf(1,k) = \\begin{cases} 1 & (k=0,1) \\\\\\\\ 0 & (k\\ge 2) \\end{cases}, \\quad\r\nf(n+1,k) = \\begin{cases} f(n,0)+f(n,1) & (k=0) \\\\\\\\ f(n,k-1)+f(n,k)+f(n,k+1) & (k\\ge 1) \\end{cases}\r\n$$\r\n\r\nãããçšããŠïŒ$n=1,2,3,4,5$ã«ã€ããŠ$f(n,k)$ã®å€ãèšç®ãããšïŒæ¬¡ã®ããã«ãªãïŒ\r\n\r\n$$\\begin{array}{c||c|c|c|c|c}\r\nf(n,k) & n=1 & n=2 & n=3 & n=4 & n=5 \\\\\\\\ \\hline \\hline\r\nk=0 & 1 & 2 & 4 & 9 & 21 \\\\\\\\ \\hline\r\nk=1 & 1 & 2 & 5 & 12 & 30 \\\\\\\\ \\hline\r\nk=2 & 0 & 1 & 3 & 9 & 25 \\\\\\\\ \\hline\r\nk=3 & 0 & 0 & 1 & 4 & 14 \\\\\\\\ \\hline\r\nk=4 & 0 & 0 & 0 & 1 & 5 \\\\\\\\ \\hline\r\nk=5 & 0 & 0 & 0 & 0 & 1 \\\\\\\\ \\hline\r\nk\\geq 6 & 0 & 0 & 0 & 0 & 0\r\n\\end{array}$$\r\n\r\nãããã£ãŠïŒæ±ããå€ã¯ $\\displaystyle\\sum_{k=0}^{\\infty}f\\left(5,k\\right)=21+30+25+14+5+1=\\textbf{96}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9440"
}
] | ã$k=1,2,3,4,5$ ããããã«å¯ŸããŠ
$$
(x_{1}+x_{2}+\cdots+x_{k})^2=x_{1}^3+x_{2}^3+\cdots+x_{k}^3
$$
ãã¿ãããããªïŒå®æ°ã®çµ $(x_{1},x_{2},x_{3},x_{4},x_{5})$ ã®åæ°ãæ±ããŠãã ããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9396 | G | ç¢äžæ¯2023(G) | 100 | 50 | 64 | [
{
"content": "ã$\\operatorname{ord}\\_{p}(N)$ ã§æŽæ° $N$ ãçŽ æ° $p$ã§å²ãåããæ倧ã®åæ°ãïŒ$\\operatorname{s}\\_{p}(N)$ ã§æŽæ° $N$ã $p$ é²æ°è¡šç€ºãããšãã®æ¡åãè¡šããã®ãšããïŒ\\\r\nã$n$ 以äžã®çŽ æ° $p$ ãä»»æã«ãšãïŒ$n$ãã倧ããçŽ æ°ã«ã€ããŠã¯åæ¯ã»ååã®ãããã«ãè¡šããªãã®ã§èããå¿
èŠã¯ãªãïŒïŒååã«ã€ããŠïŒ$\\operatorname{ord}\\_{p}(\\operatorname{lcm}\\\\{1,2,\\cdots ,n\\\\})=\\lfloor \\log\\_{p}{n} \\rfloor$ ã§ããïŒåæ¯ã$p$ã§å²ãåããåæ°ã«ã€ããŠèå¯ããããã«ïŒä»¥äžã®å®çïŒã¯ã³ããŒã®å®çïŒã瀺ãïŒ\r\n\r\n---\r\n\r\n**å®ç.** $x+y=z$ ãªãæ£æŽæ° $x,\\ y,\\ z$ ã«ã€ããŠïŒ${}\\_{z} \\mathrm{C}\\_{x}$ ãçŽ æ° $p$ ã§å²ãåããæ倧ã®åæ°ã¯ $\\dfrac{s_{p}{(x)}+s_{p}{(y)}-s_{p}{(z)}}{p-1}$ ã§ããïŒãã®å€ã¯ïŒ$p$ é²æ³ã§ã® $x+y=z$ ã®çç®ã§èµ·ããç¹°ãäžããã®åæ°ã«çããïŒ\r\n\r\n**蚌æ.** $n=n_{r}p^r+n_{r-1}p^{r-1}+\\cdots +n_0p^{0}$ ãš $p$ é²æ°è¡šèšãããŠãããšãïŒ$n!$ ã $p$ ã§å²ãåããæ倧ã®åæ°ã¯ã«ãžã£ã³ãã«ã®å®çããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{\\infty} \\Bigl\\lfloor \\dfrac{n}{p^k} \\Bigl\\rfloor \r\n&= (n_{r}p^{r-1}+n_{r-1}p^{r-2}+\\cdots +n_1p^{0})+(n_{r}p^{r-2}+n_{r-1}p^{r-3}+\\cdots +n_2p^{0}) + \\cdots + n_{r}p^{0}\\\\\\\\\r\n& = n_{r} \\dfrac{p^r-1}{p-1} +n_{r-1} \\dfrac{p^{r-1}-1}{p-1} + \\cdots+ n_{1} \\dfrac{p^1-1}{p-1} +n_{0} \\dfrac{p^0-1}{p-1}\\\\\\\\\r\n& = \\dfrac{n-s_p(n)}{p-1}\r\n\\end{aligned}\r\n$$\r\nã§ããããïŒ${}\\_{x} \\mathrm{C}\\_{y}$ ã¯çŽ æ° $p$ ã§æ倧 $\\dfrac{s_{p}{(x)}+s_{p}{(y)}-s_{p}{(z)}}{p-1}$åå²ãåããïŒ\\\r\nãç¹°ãäžããã«ã€ããŠïŒ$p$ é²æ°ã§ã® $x+y$ ã®çç®ã§ç¹°ãäžãããèµ·ãããªããšãïŒ$s_{p}{(x)}+s_{p}{(y)}=s_{p}{(z)}$ãšãªãããïŒäž»åŒµã¯æ£ããïŒæ¬¡ã«ïŒ$r$ æ¡ç®ã®ã¿ã§ç¹°ãäžãããèµ·ãããšãããšïŒ$x,\\ y,\\ z$ ã® $r$ æ¡ç®ã®æ°åã $x_r,\\ y_r,\\ z_r$ ãšããã° $x_r+y_r=z_r+p$ ãšãªãïŒ$r+1$ æ¡ç®ã§ã¯ç¹°ãäžããã«ãã $1+x_{r+1}+y_{r+1}=z_{r+1}$ ãšãªãããïŒ$s_{p}{(x)}+s_{p}{(y)}-s_{p}{(z)}$ ã®å€ã¯ $p-1$ ã ãå¢å ããïŒç¹°ãäžããã®åæ°ãå¢ããŠãåæ§ãªè°è«ãã§ãïŒäžåã®ç¹°ãäžããã«ã€ã $s_{p}{(x)}+s_{p}{(y)}-s_{p}{(z)}$ ã®å€ã¯ $p-1$ ã ãå¢å ããããšããããã®ã§ïŒå®çã瀺ãããšãã§ããïŒïŒèšŒæçµïŒ\r\n\r\n---\r\n\r\nãã¯ã³ããŒã®å®çããïŒããçŽ æ° $p$ ã«ãã£ãŠ $n+1=p^r$ ãšè¡šããããšãïŒäŸãã° $x=(p^r-1)\\/(p-1)$ ãšããã°ïŒ $p$ é²æ°ã§ã® $x+(n-x)$ ã®çç®ã«ãã㊠$r$ åç¹°ãäžãããçããã®ã§ïŒ\r\n$$\r\n\\operatorname{ord}\\_{p}\\\\{{}\\_{n+1} \\mathrm{C}\\_{1},{}\\_{n+1} \\mathrm{C}\\_{2},\\ldots,{}\\_{n+1} \\mathrm{C}\\_{n}\\\\}=r\\gt \\lfloor \\log\\_{p}{n} \\rfloor\r\n$$\r\nã§ããïŒãããã£ãŠïŒäžããããå€ã¯æŽæ°å€ã«ãªãããªãïŒ\\\r\nãäžæ¹ïŒ$p^{r} \\lt n+1 \\lt p^{r+1}$ ãæºããéè² æŽæ° $r$ ãååšãããšãïŒã©ã®ãããªæŽæ° $1\\leq x \\leq n$ ããšã£ãŠããŠã $p$ é²æ°ã§ã® $x+(n-x)$ ã®çç®ã«ãããŠç¹°ãäžããã¯é«ã
$r\\leq \\lfloor \\log\\_{p}{n} \\rfloor$ åããçããªãã®ã§ïŒçŽåããããªãããšã§åæ¯ã«ã¯çŽ å æ° $p$ ãçŸããªãïŒä»¥äžããïŒé¡æãæºããå¿
èŠååæ¡ä»¶ã¯ $n+1$ ãçŽ æ°ã¹ãã§ã¯ãªãããšã§ããïŒ\r\n\r\nã$3$ ä»¥äž $1001$ 以äžã®æŽæ°ã¯ $999$ åããïŒçŽ æ°è¡šãã $1001$ æªæºã®çŽ æ°ã¯ $168$ åååšããïŒãã®ç¯å²ã«ãããŠïŒ\r\n - $2$ ã®çŽ æ°ã¹ãïŒ$2^2$ ãã $2^9$ ãŸã§ã® $8$ å\r\n - $3$ ã®çŽ æ°ã¹ãïŒ$3^1$ ãã $3^6$ ãŸã§ã® $6$ å\r\n - $5$ ã®çŽ æ°ã¹ãïŒ$5^1$ ãã $5^4$ ãŸã§ã® $4$ å\r\n - $7$ ã®çŽ æ°ã¹ãïŒ$7^1$ ãã $7^3$ ãŸã§ã® $3$ å\r\n - $11,13,17,19,23,29,31$ ã®çŽ æ°ã¹ãïŒææ°ãšããŠèãããããã®ã¯ $1,2$ ã§ããåèš $14$ å\r\n - $37$ 以éã®çŽ æ°ã®çŽ æ°ã¹ãïŒææ°ãšããŠèãããããã®ã¯ $1$ ã®ã¿ã§ããåèš $157$ å\r\n\r\nã§ããããïŒé¡æãæºããæŽæ°ã¯ $999-(8+6+4+3+14+157)=\\textbf{807}$ åååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9396"
}
] | ã$2$ ä»¥äž $1000$ 以äžã®æŽæ° $n$ ã§ãã£ãŠïŒ
$$
\dfrac{\mathrm{lcm}\\{1,2,\ldots,n\\}} {\mathrm{lcm}\\{ {}\_{n+1}\mathrm{C}\_{1},\\, {}\_{n+1}\mathrm{C}\_{2},\\, \ldots ,\\,{}\_{n+1}\mathrm{C}\_{n} \\}}
$$
ãæŽæ°ã§ãããã®ã¯ããã€ãããŸããïŒããã ãïŒ$\mathrm{lcm}\\{x_1, x_2, \ldots, x_n\\}$ ã§ïŒ$n$ åã®æŽæ° $x_1, x_2, \ldots, x_n$ ã®æå°å
¬åæ°ãè¡šããã®ãšããŸãïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9381 | H | ç¢äžæ¯2023(H) | 100 | 16 | 22 | [
{
"content": "ãäžåŒã $S\\_n$ ãšãããš $S\\_1 = -1$ïŒä»¥äž $n\\ge 2$ ãšããïŒ \r\nã$s = r + k$ ãšããŠ\r\n$$ S\\_n = \\sum\\_{s=0}^ns^n\\\\, \\sum\\_{r=0}^s \\left(-1\\right)^r\\left(s - r + 1\\right) \\binom nr. $$\r\nãŸã\r\n$$ \\sum\\_{r=0}^s \\left(-1\\right)^r \\binom nr = \\sum\\_{r=0}^s \\left(\\left(-1\\right)^r \\binom{n - 1}r - \\left(-1\\right)^{r-1} \\binom{n - 1}{r - 1}\\right) = \\left(-1\\right)^s \\binom{n - 1}s, $$\r\n$$ \\sum\\_{r=0}^s \\left(-1\\right)^r \\left(s - r + 1\\right) \\binom nr = \\sum\\_{r=0}^s \\sum\\_{i=r}^s \\left(-1\\right)^r \\binom nr = \\sum\\_{i=0}^s \\sum\\_{r=0}^i \\left(-1\\right)^r \\binom nr = \\left(-1\\right)^s \\binom{n - 2}s. $$\r\n<details>\r\n<summary>å ã¿ã«<\\/summary>\r\n\r\nãåæ§ã®è°è«ã«ããïŒäžè¬ã«\r\n$$ \\sum\\_{r=0}^s \\left(-1\\right)^r \\mathinner{\\binom{s - r + m}m} \\binom nr = \\left(-1\\right)^s \\binom{n - m - 1}s $$\r\nãæç«ããïŒ\r\n<\\/details>\r\n\r\nããã£ãŠ\r\n$$ \\left(-1\\right)^n S\\_n = \\sum\\_{s=0}^n \\left(-1\\right)^{n+s} \\mathinner{\\binom{n - 2}s} s^n = \\sum\\_{s=0}^{n-2} \\left(-1\\right)^{n-s-2} \\mathinner{\\binom{n - 2}s} s^n $$ ãšãªããïŒãã㯠OMC008(F) å
¬åŒè§£èª¬äžã®ãè£é¡ããšåæ§ã«ïŒ$n$ åã®ããŒã«ãã¡ããã© $(n - 2)$ è²ã§å¡ãåããå Žåã®æ°ã«çããïŒãããã£ãŠ\r\n$$ \\left(-1\\right)^n S\\_n = \\binom{n - 2}2 \\times \\frac{n!}{(2!)^2} + \\binom{n - 2}1 \\times \\frac{n!}{3!} = \\frac{\\left(n - 2\\right) \\left(3n - 5\\right) n!}{24} $$\r\nãåããïŒç¹ã« $S\\_2 = 0$ïŒ \r\n* $\\rule[-8pt]{0pt}{0pt}3 \\le n \\le 16$ ã®ãšã \r\nã$n - 2,\\\\, 3n - 5 \\gt 0$ ã¯äºãã«çŽ ããïŒåæã« $17$ ã®åæ°ã«ãªããïŒåžžã« $2023 \\nmid S\\_n$ïŒ \r\n* $\\rule[-8pt]{0pt}{14pt}17 \\le n \\le 33$ ã®ãšã \r\nã$\\color{red}{2023 \\mid S\\_n}$ ãšïŒ$\\color{red}{n - 2,\\hspace{314705sp} 3n - 5\\\\ ã®äžæ¹ã\\\\ 17\\\\ ã®åæ°ã§ããããš}$ ã¯åå€ã§ïŒãã㯠$n = 19, 30$ïŒ\r\n* $\\rule[-8pt]{0pt}{14pt}n \\ge 34$ ã®ãšã \r\nãåžžã« $2023 \\mid S\\_n$ïŒ\r\n\r\nãããã«ïŒæ±ããç·åã¯\r\n$$ 1 + \\mathord{\\stackrel{\\widehat 2,\\\\, \\widehat{19},\\\\, \\widehat{30}}{\\cdots\\cdots}} + 33 = \\frac{34 \\times 33}2 - 2 - 19 - 30 = \\bm{510}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9381"
}
] | ã次ã®å€ã $2023$ ã®åæ°ã«**ãªããªã**ãããªæ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ
$$ \sum_{r=0}^n(-1)^r\mathinner{{}\_n\mathrm C\_r} \sum_{k=0}^{n-r} \left(k + 1\right) \left(k + r\right)^n\mathclose{}. $$ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9380 | I | ç¢äžæ¯2023(I) | 100 | 10 | 27 | [
{
"content": "ãä»»æã®æ£æŽæ° $x$ ã«å¯Ÿã㊠$(x + n)^{x+n} \\equiv x^x \\pmod m$ ãšãªãæ£æŽæ° $n$ ãåšæãšåŒã³ïŒæå°ã®åšæãåºæ¬åšæãšåŒã¶ããšã«ããïŒãŸã以äžã§ã¯ $m$ ãæ³ãšããïŒ \r\nãçŽ æ° $p$ïŒæŽæ° $k \\ge p + 1$ ã«å¯Ÿã $m = p^k$ ãšãªããšãïŒåºæ¬åšæãååšãããšä»®å®ããŠïŒããã $\\ell$ ãšãããšïŒ$\\ell m$ ã¯åšæã«ãªãã¯ãã§ããã\r\n$$ (p + \\ell m)^{p+\\ell m} = p^{p+\\ell m} \\left(1 + \\ell p^{k-1}\\right)^{p+\\ell m} \\equiv 0,\\qquad 0 \\lt p^p \\lt m $$\r\nãã $(p+\\ell m)^{p+\\ell m} \\not\\equiv p^p$ ã§ããããïŒ$\\ell m$ ã¯åšæã§ã¯ãªãççŸïŒãã£ãŠåºæ¬åšæã¯ååšããªãïŒ \r\nãçŽ æ° $p$ïŒæ£æŽæ° $k \\le p$ ã«å¯Ÿã $m = p^k$ ãšãªããšãïŒ$p \\mid x$ ãªãä»»æã®æ£æŽæ° $x$ 㧠$x^x \\equiv 0$ïŒ$p\\nmid x$ ãªãä»»æã®æ£æŽæ° $x$ ã«å¯ŸããŠïŒEuler ã®å®çãã\r\n$$ \\left(x + p^k \\left(p-1\\right)\\right)^{x+p^k(p-1)} \\equiv x^x \\times x^{p\\varphi(p^k)} \\equiv x^x $$\r\nã§ããããïŒ$p^k \\left(p - 1\\right)$ ã¯åšæïŒ$m$ ã®åå§æ ¹ $r$ ããšã㊠$(p=2$ ã®å ŽåãïŒ$)$ïŒä»»æã® $t = 0, 1, \\ldots, p - 2$ ã«å¯Ÿã $0 \\lt tp^{k-1} \\lt \\varphi\\mathopen{}\\left(p^k\\right)$ ãã\r\n$$ \\left(r + tp^k\\right)^{r+tp^k} \\equiv r^r \\times r^{t\\varphi(p^k)} \\times r^{tp^{k-1}} \\equiv r^r \\times r^{tp^{k-1}} \\not\\equiv r^r $$\r\nã§ãããã $tp^k$ ã¯åšæã§ãªãïŒãŸã $k=1$ ã®ãšãã¯\r\n$$ (1 + (p - 1))^{1+(p-1)} = p^p \\equiv 0 \\not\\equiv 1^1 $$\r\nã§ãã£ãŠïŒ$k \\ge 2$ ã®ãšãã¯\r\n$$ \\begin{aligned}\r\n\\left(1 + p^{k-1} \\left(p - 1\\right)\\right)^{1+p^{k-1}(p-1)} &= \\sum_{i=0}^{1+p^{k-1}(p-1)}\\binom{1 + p^{k-1} \\left(p - 1\\right)}i \\left(p^{k-1} \\left(p - 1\\right)\\right)^i \\\\\\\\\r\n&\\equiv 1 + \\left(1 + p^{k-1} \\left(p - 1\\right)\\right) p^{k-1} \\left(p - 1\\right) \\\\\\\\\r\n&\\equiv 1^1 + p^{k-1} \\left(p - 1\\right)\r\n\\end{aligned} $$\r\nããã³ $0 \\lt p^{k-1} \\left(p - 1\\right) \\lt m$ ãã $\\left(1 + p^{k-1} \\left(p - 1\\right)\\right)^{1+p^{k-1} \\left(p - 1\\right)} \\not\\equiv 1^1$ ã§ããããïŒ$p^{k-1} \\left(p - 1\\right)$ ã¯åšæã§ã¯ãªãïŒãããã£ãŠ $p^k \\left(p - 1\\right)$ ã¯åºæ¬åšæïŒ \r\nã$m = p\\_1^{k\\_1} \\times\\cdots\\times p\\_a^{k\\_a}\\hspace{303000sp} (p\\_1 \\lt\\cdots\\lt p\\_a,\\hspace{314705sp} k\\_i \\ge 1)$ ãšçŽ å æ°å解ã§ãããšãã¯ïŒäžã®çµæããïŒå $i$ 㧠$k\\_i \\le p\\_i$ ã®ãšãã«åºæ¬åšæãååšãïŒãã®ãšã $\\operatorname*{lcm}\\mathopen{}\\left(p\\_1^{k\\_1} \\left(p\\_1 - 1\\right)\\mathclose{}, \\ldots, p\\_a^{k\\_a} \\left(p\\_a - 1\\right)\\right)$ ãåºæ¬åšæïŒããã $m$ ã«çãããšããã®ã¯ïŒææ°ã®æ¡ä»¶ãæºãããããã§ïŒ$\\operatorname*{lcm}(p\\_1 - 1, \\ldots, p\\_a - 1) \\mid m$ ãšåå€ïŒ$\\operatorname*{lcm}(p\\_1 - 1, \\ldots, p\\_a - 1)$ ã¯å¶æ°ãã $m$ ãå¶æ°ã§ $p\\_1 = 2$ïŒ \r\n* $\\rule[-8pt]{0pt}{8pt}a = 1$ ã®ãšã \r\nã$m = 2, 4$ ã®ã¿ïŒ \r\n* $\\rule[-8pt]{0pt}{14pt}a = 2$ ã®ãšã \r\nã$k\\_1 = 1$ ãªãã° $p\\_2 = 3$ïŒ$k\\_1 = 2$ ãªãã° $p\\_2 = 3, 5$ ãã\r\n$$ m = 6, 12, 18, 20, 36, 54, 100, 108. $$\r\n* $\\rule[-8pt]{0pt}{0pt}a = 3$ ã®ãšã \r\nã$p\\_2 - 1 \\lt p\\_2$ ã $p\\_1^{k\\_1}$ ã®çŽæ°ã§ãªããã°ãªããªãããšããïŒ$p\\_2$ ã®æ¡ä»¶ã¯ $a = 2$ ã®ãšããšåãïŒ \r\nã$m^\\prime \\coloneqq p\\_1^{k\\_1}\\\\, p\\_2^{k\\_2}$ ãšããŠïŒ$m^\\prime = 6$ ãªãã° $p\\_3 = 7$ïŒ$m^\\prime = 12$ ãªãã° $p\\_3 = 5, 7, 13$ïŒ$m^\\prime = 18$ ãªãã° $p\\_3 = 7, 19$ïŒ$m^\\prime = 20$ ãªãã° $p\\_3 = 11$ïŒ$m^\\prime = 36$ ãªãã° $p\\_3 = 5, 7$ïŒ$m^\\prime = 54$ ãªãã° $p\\_3 = 7$ïŒãã以å€ã«ã€ããŠã¯äžã®åå€æ¡ä»¶ãæºãããªããïŒ$m$ ã $390$ ãè¶
ããŠããŸãïŒãã®ãšã\r\n$$ m = 42, 60, 84, 126, 156, 180, 220, 252, 294, 300, 342, 378. $$\r\n* $\\rule[-8pt]{0pt}{0pt}a = 4$ ã®ãšã \r\nããããã $390$ 以äžã«ãªããã®ã $210,\\\\, 330,\\\\, 390$ ãããªãïŒãŸããããã¯äžé©ïŒ\r\n\r\nã$390$ 以äžã§ããããšãã $a \\ge 5$ ã«ã¯ãªããïŒæ±ããå€ã¯ $\\bm{2794}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9380"
}
] | ã次ã®æ¡ä»¶ãã¿ãã $2$ ä»¥äž $390$ 以äžã®æ£æŽæ° $m$ ã®ç·åãæ±ããŠãã ããïŒ
- æ£æŽæ° $n$ ã§ãã£ãŠïŒä»»æã®æ£æŽæ° $x$ ã«å¯ŸããŠ
$$(x + n)^{x+n} \equiv x^x \pmod m$$
ãæãç«ã€ãããªãã®ãååšãïŒãã®ãã¡æå°ã®ãã®ã $m$ ã§ããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9382 | J | ç¢äžæ¯2023(J) | 100 | 9 | 14 | [
{
"content": "ã$N = 2520$ ãšããïŒé ç¹ $1,\\\\, \\ldots,\\\\, N$ ãããããã®äººã«å¯Ÿå¿ããïŒé ç¹ã蟺ã§çµã¶ããšãïŒå¯Ÿå¿ãã $2$ 人ã仲è¯ãã§ããããšã«å¯Ÿå¿ãããã°ã©ãã $G$ ãšããïŒãã®ãšã仲è¯ã $n$ 人çµã¯ã¯ãªãŒã¯ $K\\_n$ ã«å¯Ÿå¿ãïŒ$G$ ã® $K\\_n$ å
šäœã®éåã $K\\_n(G)$ ã§è¡šãããšã«ããïŒããã§ç·åã $N$ ã§ããéè² æŽæ°ã®çµ $\\bm x \\coloneqq (x\\_1, \\ldots, x\\_N)$ ã«å¯ŸãïŒ$f\\_r(\\bm x)$ ã\r\n$$ f\\_r(\\bm x) = \\sum\\_{|k\\_1\\cdots k\\_r|\\in K_r(G)}\\prod\\_{i=1}^rx_{k_i} $$\r\nã§å®ãããšïŒ$v \\ne w,\\hspace{314705sp} vw \\not\\in E(G),\\hspace{314705sp} x\\_v, x\\_w \\ne 0$ ãªã $v,\\\\, w$ ã«å¯Ÿã\r\n$$ S\\_v \\coloneqq \\sum\\_{|vk_1\\cdots k_{r-1}|\\in K_r(G)}\\prod\\_{i=1}^{r-1}x\\_{k\\_i} \\ge \\sum\\_{|wk_1\\cdots k_{r-1}|\\in K_r(G)}\\prod\\_{i=1}^{r-1}x\\_{k\\_i} \\eqqcolon S\\_w $$\r\nãšããŠãäžè¬æ§ã倱ãã\r\n$$ y\\_k \\coloneqq \\begin{cases}\r\nx\\_v + x\\_w & (k = v) \\\\\\\\\r\n0 & (k = w) \\\\\\\\\r\nx\\_k & (\\text{otherwise})\r\n\\end{cases} $$\r\nãšããã°ïŒ$f\\_r(\\bm y) - f\\_r(\\bm x) = x\\_w \\left(S\\_v - S\\_w\\right) \\ge 0$ ãã $f\\_r(\\bm y) \\ge f\\_r(\\bm x)$ïŒ \r\nããã㧠$G$ ã $K\\_{n+1}$ ãæããªããšãïŒ$\\bm x$ ãã $\\bm y$ ãžã®å€æãå¯èœãªéãç¹°ãè¿ããŠïŒçµã®äžã®æ£ã®æ°ã $n$ å以äžã«ã§ããïŒ$(1, \\ldots, 1)$ ã«å¯Ÿããããè¡ã£ããã®ã $\\bm c$ ãšããïŒ$\\bm c$ ãã $(N - n)$ åã® $0$ ãåãå»ã£ããã®ã $(\\alpha\\_1, \\ldots, \\alpha\\_n)$ ãšãããš\r\n$$ |K\\_r(G)| = f\\_r(1, \\ldots, 1) \\le f\\_r\\mathopen{}\\left(\\bm c\\right) \\le \\sum\\_{1\\le k\\_1\\lt\\cdots\\lt k\\_r\\le n}\\prod\\_{i=1}^r \\alpha\\_{k\\_i}. $$\r\nçå·ã¯ïŒ$G$ ã倧ãã $\\alpha\\_1, \\ldots, \\alpha\\_n$ ã®éšéåãæã€å®å
š $n$-éšã°ã©ãã®ãšãã«æç«ïŒããã« Muirhead ã®äžçåŒãã\r\n$$ \\sum\\_{1\\le k\\_1\\lt\\cdots\\lt k\\_r\\le n}\\prod\\_{i=1}^r\\alpha\\_{k\\_i}\\le\\mathinner{\\binom nr} n^{-r} \\left(\\sum_{k=1}^n \\alpha\\_k\\right)^r = \\binom nr \\left(\\frac Nn\\right)^r\\mathclose{}. $$\r\nãã£ãŠ $|K_r(G)| \\le \\dbinom nr \\left(\\dfrac Nn\\right)^r$ ãåŸãïŒ$n \\mid N$ ã®ãšãã¯ïŒäžã®éšéåã®å€§ãããæããã°çå·ãæç«ããïŒ \r\nãããããïŒ$n = 2, \\ldots, 10$ ã®ãšã\r\n$$ M\\_{n+1} = \\sum\\_{r=2}^n r \\mathinner{\\binom nr} \\left(\\frac Nn\\right)^r = N\\sum_{r=1}^{n-1} \\mathinner{\\binom{n-1}r} \\left(\\frac Nn\\right)^r=N \\left(\\left(\\frac Nn+1\\right)^{n-1} - 1\\right) $$\r\nãåããïŒ$2521 = N + 1$ ãæ³ãšã㊠$M\\_{n+1} - 1 \\equiv -\\mathopen{}\\left(\\dfrac{n - 1}n\\right)^{n-1}$ ã§ãããã\r\n$$ \\prod\\_{n=2}^{10} (M\\_{n+1} - 1) \\equiv -\\prod_{n=2}^{10} \\left(\\dfrac{n - 1}n\\right)^{n-1} = -\\frac{9!}{10^9} \\equiv \\bm{355}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9382"
}
] | ãããããŒãã£ãŒã« $2520$ 人ãéãŸããŸããïŒä»»æã®ç°ãªã $2$ 人ã®çµã«å¯ŸããŠïŒä»²è¯ãã§ããã仲è¯ãã§ãªããã®ã©ã¡ããã決ãŸã£ãŠãããã®ãšããŸãïŒãŸãïŒ$k$ 人 $(k \ge 2)$ ã®çµã¿åããã«ã€ããŠïŒãã®äžã®ä»»æã®çžç°ãªã $2$ 人ã仲è¯ãã§ãããšãïŒãã® $k$ 人ã®çµåãã**仲è¯ã $k$ 人çµ**ãšåŒã¶ããšã«ããŸãïŒããã«ïŒ$2520$ 人ã®äžã«ä»²è¯ã $k$ 人çµã $a\_k$ åãã£ããšãïŒããŒãã£ãŒã®**芪å¯åºŠ**ã $\displaystyle\sum\_{k=2}^{2520} ka\_k$ ã§å®ããŸãïŒ\
ãããŸïŒ$a_3=0$ ã§ãããããªããŒãã£ãŒã«ã€ããŠïŒãã®èŠªå¯åºŠãšããŠããããæ倧å€ã $M\_3$ ãšãïŒåæ§ã« $M_4,\ldots, M_{11}$ ãå®ããŸãïŒãã®ãšãïŒ
$$ (M_3-1)(M_4-1)\cdots (M_{11}-1) $$
ã $2521$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
ç¢äžæ¯2023 | https://onlinemathcontest.com/contests/yagamihai2023 | https://onlinemathcontest.com/contests/yagamihai2023/tasks/9383 | K | ç¢äžæ¯2023(K) | 100 | 8 | 9 | [
{
"content": "ãè¯ãç¹ã®äžæååšã¯ä¿éãããŠããããïŒåçŽç· $ZX,\\\\, ZY$ äžã«ããããç¹ $\\widetilde X,\\\\, \\widetilde Y$ ãïŒ$X\\widetilde X,\\\\, Y\\widetilde Y$ ã埮å°ã§ïŒãŸã $XY = \\widetilde X\\widetilde Y$ ãšãªãããã«ãšã£ããšãïŒ$XY$ ãš $\\widetilde X\\widetilde Y$ ã®äº€ç¹ $\\widetilde W$ ã«å¯ŸããŠïŒ$W\\widetilde W$ ã¯åŸ®å°ïŒãã£ãŠç°¡åãªé·ãèšç®ã«ããïŒ$Z$ ãã $XY$ ã«äžããåç·ã®è¶³ $W^\\prime$ ã«å¯ŸããŠïŒ$XW = YW^\\prime$ ãšãªãããšãåããïŒ \r\nã$BC,\\\\, AC,\\\\, AB,\\\\, CD,\\\\, BE$ ã®äžç¹ãïŒãããã $M\\_A,\\\\, M\\_B,\\\\, M\\_C,\\\\, M\\_D,\\\\, M\\_E$ ãšãããšïŒ$M\\_C\\\\,M\\_D$ ãš $M\\_B\\\\,M\\_E$ ã®äº€ç¹ã¯ $T$ ã§ïŒ$M\\_D,\\\\, M\\_E$ ã¯ããããç·å $M\\_A\\\\,M\\_B,\\\\, M\\_A\\\\,M\\_C$ äžã«ãã£ãŠ\r\n$$ 2M\\_A\\\\,M\\_D = BD,\\qquad 2M\\_A\\\\,M\\_E = CE. $$\r\nãã£ãŠ $\\triangle ABC$ ã®éå¿ãäžå¿ãšãã $-2$ åã®çžäŒŒæ¡å€§ã«ãã $M\\_D,\\\\, M\\_E$ ã移ãç¹ãïŒãããã $H\\_1,\\\\, H\\_2$ ãšããã°ïŒãããã蟺 $AB,\\\\, AC$ äžã«ãã£ãŠïŒ$AH\\_1 = BD,\\hspace{314705sp} AH\\_2 = CE$ ãæç«ããã®ã§ïŒ$H\\_1,\\\\, H\\_2$ ã¯ããããïŒ$C$ ãã $AB$ ã«ïŒ$B$ ãã $AC$ ã«äžããåç·ã®è¶³ã§ïŒ$CH\\_1$ ãš $BH\\_2$ ã®äº€ç¹ã¯ $\\triangle ABC$ ã®åå¿ïŒãã®ç¹ã¯ïŒäžã®çžäŒŒæ¡å€§ã«ãã $T$ ã移ãç¹ã«äžèŽããããïŒ$T$ 㯠$\\triangle ABC$ ã®å€å¿ã§ããããšãåãã£ãïŒ \r\nããããã£ãŠïŒ$\\triangle ABC$ã®å€æ¥åïŒå
æ¥åã®ååŸãïŒãããã $R,\\\\, r$ ãšããã°ïŒ$R = \\dfrac{2468}3$ ã§ããããïŒ$\\triangle ABC$ ã®å€å¿ãäžè§åœ¢ã®å
éšã«ããããšãšåãããŠïŒé·ãã«é¢ãã Carnot ã®å®çãã\r\n$$ r = \\frac{1858\\times1202}{2001} - \\frac{2468}3 = \\frac{195720}{667}. $$\r\nããããïŒæ±ããé¢ç©ã¯ $\\dfrac{3939r}2 = \\dfrac{385470540}{667}$ ã§ããããïŒè§£çãã¹ãå€ã¯ $\\bm{385471207}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9383"
},
{
"content": "ãè¯ãç¹ã®äžæååšã¯ä»¥äžã®ããã«ã·ã ãœã³ç·ãã瀺ãããïŒ\\\r\n\\\r\nãäžè§åœ¢ $XYZ$ ã®å€æ¥åã $\\Omega$ ãšãïŒèŸº $XY$ äžã«ç¹ $P$ ãåãïŒ$\\Omega$ ã®å£åŒ§ $XY$ äžã«ç¹ $Q$ ã $PQ\\perp XY$ ãæºããããã«åãïŒç¹ $Q$ ãã $ZX, ZY$ ã«äžãããåç·ã®è¶³ãé ã« $R, S$ ãšããã°ã·ã ãœã³ç·ãã $R, P, S$ ã¯åäžçŽç·äžã§ããïŒè§åºŠè©äŸ¡ããäžè§åœ¢ $PXY$ ãšäžè§åœ¢ $PRS$ ã®çžäŒŒãåããïŒçžäŒŒæ¯ãã $RS:XY=QR:QX$ ã§ãã $\\angle QRZ=90\\degree$ ãã $QR\\leq QX$ ããªãã¡ $RS\\leq XY$ ãèšããïŒ\\\r\nããããã£ãŠ $XY$ ã®æå°æ§ãæºããããã®ã¯çŽç· $XY$ ãã·ã ãœã³ç·ãšãªããšãã®ã¿ã§ããïŒãã㯠$W$ ãéã $XY$ ã«åçŽãªçŽç·ãšå£åŒ§ $XY$ ã®äº€ç¹ $V$ ã $VX\\perp ZX, VY\\perp ZY$ ãæºãããšãïŒããªãã¡ $ZV$ ã $\\Omega$ ã®çŽåŸãšãªããšãã§ããïŒçŽç· $ZW$ ã $Z$ ãã $XY$ ãžã®åç·ã®çé·å
±åœ¹ç¹ã§ãããšãã ãã§ããããšã瀺ãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/yagamihai2023/editorial/9383/292"
}
] | ãä»»æã®éè§äžè§åœ¢ $XYZ$ ã«å¯ŸããŠïŒèŸº $XY$ äžïŒç«¯ç¹ãé€ãïŒã®ç¹ $W$ ã§ãã£ãŠïŒããããåçŽç· $ZX,\\, ZY$ äžïŒ$Z$ ãé€ãïŒã®ä»»æã®ç¹ $X^\prime,\\, Y^\prime$ ã«å¯ŸããŠ
$$ X^\prime,\\, W,\\, Y^\prime\\ \text{ã¯åäžçŽç·äž} \implies X^\prime\\, Y^\prime \ge XY $$
ãšãªããããªãã®ããã äžã€ååšããŸãïŒãã®ãã㪠$W$ ãïŒäžè§åœ¢ $XYZ$ ã«ããã蟺 $XY$ ã«é¢ãã**è¯ãç¹**ãšåŒã¶ããšã«ããŸãïŒ
---
ãåšé·ã $3939$ ã®éè§äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB,\\, AC$ ã«é¢ããè¯ãç¹ããããã $D,\\, E$ ãšããŸãïŒãã®ãšãïŒããããç·å $AB,\\, CD$ ãçŽåŸãšãã $2$ åãçžç°ãªã $2$ ç¹ $P,\\, Q$ ã§ïŒããããç·å $AC,\\, BE$ ãçŽåŸãšãã $2$ åãçžç°ãªã $2$ ç¹ $R,\\, S$ ã§äº€ããïŒ$P,\\, Q,\\, R,\\, S$ ã¯åäžååšäžã«ãã£ãã®ã§ïŒããããéãåã®äžå¿ã $T$ ãšããŸãïŒ
ãç¹ $T$ ãšèŸº $AB,\\, BC,\\, CA$ ããããã®è·é¢ã®åã $\rule[-10pt]{0pt}{16pt}\dfrac{1858 \times 1202}{2001}$ ã§ãã£ãŠïŒã〠$TA + TB + TC = 2468$ ã§ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,\\, b$ ãçšã㊠$\rule{0pt}{14pt}\dfrac ab$ ãšè¡šããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ |
OMC178 | https://onlinemathcontest.com/contests/omc178 | https://onlinemathcontest.com/contests/omc178/tasks/7908 | A | OMC178(A) | 200 | 349 | 361 | [
{
"content": "ããŸãïŒ$ 2023 = 7 à 17^2 $ ãšçŽ å æ°å解ã§ããïŒããã§ïŒ$ n, n+1, n+2$ ã®äžã« $17$ ã®åæ°ã $2$ ã€ä»¥äžå«ãŸããããšã¯ãªãããïŒãã®äžã« $289$ ã®åæ°ãå«ãŸããå¿
èŠããããšåããïŒããããïŒ$ 1 \\leq n \\leq 1000$ ãšåãããŠïŒ$n$ ã¯\r\n$$287, 288, 289, \\quad 576, 577, 578, \\quad 865, 866, 867 $$\r\nã®ããããã§ããïŒãã®ãã¡ïŒ$ n(n+1)(n+2)$ ã $7$ ã®åæ°ã«ããªãïŒã€ãŸãïŒ$ n, n+1, n+2$ ã®äžã« $7$ ã®åæ°ãå«ãŸããã®ã¯\r\n$$287,\\quad 866,\\quad 867 $$\r\nã®ãšãã§ãããšåããïŒãã£ãŠïŒæ±ããçã㯠$287 + 866 + 867 = \\mathbf{2020}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7908"
}
] | ã$1$ ä»¥äž $1000$ 以äžã®æŽæ° $n$ ã§ãã£ãŠïŒ$n(n+1)(n+2)$ ã $2023$ ã®åæ°ã«ãªããã®ã®ç·åã解çããŠäžããïŒãã ãïŒ$2023=7\times 17^2$ ã§ãïŒ |
OMC178 | https://onlinemathcontest.com/contests/omc178 | https://onlinemathcontest.com/contests/omc178/tasks/7909 | B | OMC178(B) | 300 | 151 | 279 | [
{
"content": "ã$ 1,2, \\cdots ,5 $ ã®çªå·ãä»ãã $5$ åã®é ç¹ã«å¯ŸããŠïŒç¹ $n$ ããç¹ $f(n)$ ãžã®æå蟺ãå ããã°ã©ãã\r\n$G$ ãšããïŒãã®ãšãïŒ$f$ ãæ¡ä»¶ãæºããããšã¯æ¬¡ã®ããã«èšãæããããïŒ\r\n- ãã $1$ ä»¥äž $5$ 以äžã®æŽæ° $m$ ãååšãïŒç¹ $m$ ããã¯ç¹ $m$ èªèº«ã«åãã£ãŠæå蟺ã䌞ã³ãŠããïŒãŸãïŒç¹ $m$ 以å€ã®é ç¹ããã¯ ç¹ $m$ ã«åããåçŽæåãã¹ãååšããïŒ\r\n\r\nããããæºãããã㪠$G$ ãšããŠããåŸããã®ã®ç·æ°ãæ±ããã°ããïŒå¯Ÿç§°æ§ãã, $m = 1$ ã®å Žåãæ°ãäžããŠïŒããã $5$ åãããã®ãçãã§ããïŒãŸãïŒç¹ $1$ ã«çŽæ¥æå蟺ã䌞ã³ãŠããïŒç¹ $1$ 以å€ã®é ç¹ã®åæ°ã§å Žååããã. \r\n- é ç¹ã®åæ°ã $4$ åã®ãšã\\\r\nãå
šãŠã®é ç¹ããç¹ $1$ ã«æå蟺ã䌞ã³ãŠããããšã«ãªãããïŒæ¡ä»¶ãæºããã°ã©ã㯠$1$ éãã§ããïŒ\r\n- é ç¹ã®åæ°ã $3$ åã®ãšã\\\r\nãç¹ $1$ ã«çŽæ¥æå蟺ã䌞ã³ãŠãã $3$ ç¹ã®éžã³æ¹ã $4$ éãïŒæ®ãã® $1$ ç¹ããã©ã® $3$ ç¹ã«æå蟺ã䌞ã³ãŠããã㧠$3$ éãããããïŒæ¡ä»¶ãæºããã°ã©ã㯠$12$ éãããïŒ\r\n- é ç¹ã®åæ°ã $2$ åã®ãšã\\\r\nãç¹ $1$ ã«çŽæ¥æå蟺ã䌞ã³ãŠãã $2$ ç¹ã®éžã³æ¹ã $6$ éãããïŒããã§ïŒäžè¬æ§ã倱ããã«ïŒãã® $2$ ç¹ãç¹ $2, 3$ ãšããïŒãã®ãšãïŒç¹ $4$ ãšç¹ $5$ ãå
±ã«ç¹ $2$ ã«åãã£ãŠæå蟺ã䌞ã°ããŠããå ŽåïŒä»¥äžã® $3$ éãããïŒïŒä»¥äž, $ a \\rightarrow b $ ã§ç¹ $a$ ããç¹ $b$ ã«æå蟺ã䌞ã³ãŠããããšãè¡šãïŒ\r\n$$ 4 \\rightarrow 2 \\ ã〠\\ 5 \\rightarrow 2 ,\\quad 4 \\rightarrow 5 \\ ã〠\\ 5 \\rightarrow 2 ,\\quad 4 \\rightarrow 2 \\ ã〠\\ 5 \\rightarrow 4$$\r\nç¹ $4$ ãšç¹ $5$ ãå
±ã«ç¹ $3$ ã«åãã£ãŠæå蟺ã䌞ã°ããŠããå Žåãåæ§ã« $3$ éããã. ãããŠ, ç¹ $4$ ãšç¹ $5$ ãç°ãªãé ç¹ã«åãã£ãŠæå蟺ã䌞ã°ããŠããå Žåã¯, $2$ éããããã, æ¡ä»¶ãæºããã°ã©ãã¯å
šéšã§ $6 à 8 = 48$ éããã.\r\n- é ç¹ã®åæ°ã $1$ åã®ãšã\\\r\nã ç¹ $1$ ã«çŽæ¥æå蟺ã䌞ã³ãŠãã $1$ ç¹ã®éžã³æ¹ã $4$ éãããïŒããã§ïŒäžè¬æ§ã倱ããã«ïŒãã® $1$ ç¹ãç¹ $2$ ãšããïŒãã®ãšãïŒæ®ãã® $3$ ç¹ããã©ã®ããã«æå蟺ã䌞ã³ãŠãããã«ã€ããŠã¯ïŒç¹ $2$ ã«çŽæ¥æå蟺ã䌞ã³ãŠããé ç¹ã®åæ°ã§å ŽååããããšããïŒä»¥äžããïŒå
šéšã§ $16$ éãããã®ã§ïŒæ¡ä»¶ãæºããã°ã©ãã¯å
šéšã§ $4 à 16 = 64$ éãããïŒ\r\n - $3$ åã®ãšãã»ã»ã» $1$ éã\r\n - $2$ åã®ãšãã»ã»ã» $2$ ç¹ã®éžã³æ¹ã $3$ éãïŒæ®ãã® $1$ ç¹ããã®æå蟺ã®äŒžã°ãæ¹ã $2$ éãã§èš $6$ éã\r\n - $1$ åã®ãšãã»ã»ã» $1$ ç¹ã®éžã³æ¹ã $3$ éãïŒæ®ãã® $2$ ç¹ããã®æå蟺ã®äŒžã°ãæ¹ã $3$ éãã§èš $9$ éã\r\n\r\n以äžãèžãŸããŠïŒ$m = 1$ ã®å Žåã« $G$ ãšããŠããåŸããã®ã $125$ éãããããïŒçã㯠$125 à 5 = \\mathbf{625}$ éããšåããïŒ\r\n\r\n----\r\n**åè.**ãäžè¬ã«ïŒ$n$ åã®ã©ãã«ä»ãé ç¹ãæã€æšã¯ $n^{n-2}$ çš®é¡ããïŒCayleyã®å
¬åŒïŒïŒç°¡æœãªèšŒæãè€æ°ç¥ãããïŒ\\\r\nããã®åé¡ã«ãããŠïŒèªå·±ã«ãŒãã«ãªãé ç¹ã®çªå·ãåºå®ãããšãïŒæ°ãäžãããã®ã¯ $5$ åã®ã©ãã«ä»ãé ç¹ãæã€æšã®æ°ã§ããïŒãã㯠$5^{5-2} = 125$ åããïŒãã£ãŠæ±ããçã㯠$125\\times5=\\bf625$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7909"
}
] | ã$1$ ä»¥äž $5$ 以äžã®æŽæ°ã«å¯ŸããŠå®çŸ©ããïŒ$1$ ä»¥äž $5$ 以äžã®æŽæ°å€ãåãé¢æ° $f$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãæºãããã®ã¯ããã€ãããŸããïŒ
- ããæ£ã®æŽæ° $k$ ãååšããŠïŒ$f^{k}(1) = f^{k}(2) = \cdots = f^{k}(5)$ ãæç«ããïŒ
ãã ãïŒ$f^{1}(x) = f(x)$ ãšãïŒä»»æã®æ£ã®æŽæ° $k$ ã«ã€ã㊠$f^{k+1}(x) = f(f^{k}(x))$ ãæãç«ã€ãã®ãšããŸãïŒ |
OMC178 | https://onlinemathcontest.com/contests/omc178 | https://onlinemathcontest.com/contests/omc178/tasks/7911 | C | OMC178(C) | 300 | 139 | 217 | [
{
"content": "ã以äžïŒåååŒã®æ³ã¯ $2017$ ãšããïŒ$x \\neq y$ ã®ãšãïŒäžåŒã¯\r\n$$ x^{2017} + x^{2016}y + x^{2015}y^2 + \\cdots + xy^{2016} + y^{2017} = \\frac{x^{2018} - y^{2018}}{x - y} $$\r\nãšå€åœ¢ã§ããïŒãã㧠$x-y$ 㯠$2017$ ã§å²ãåããªãã®ã§ïŒFermat ã®å°å®çããïŒ\r\n$$ \\frac{x^{2018} - y^{2018}}{x - y} \\equiv \\frac{x^2 - y^2}{x - y} \\equiv x+y $$\r\nãšãªãïŒäžæ¹ã§ $x = y$ ã®ãšãïŒåã³ Fermat ã®å°å®çãã\r\n$$ x^{2017} + x^{2016}y + x^{2015}y^2 + \\cdots + xy^{2016} + y^{2017} \\equiv 2018 x^{2017} \\equiv x $$\r\nãšãªãïŒ$0 \\le x+y \\le 2017$, $0 \\le x \\le 2017$ ã«æ³šæãããšïŒæ±ããã¹ãå€ã¯ \r\n$$ \\begin{aligned}\r\n\\sum_{0 \\leq x \\leq 1000, \\ 0 \\leq y \\leq 1000,\\ x \\neq y} (x + y) \\ + \\sum_{ 0 \\leq x \\leq 1000} x = \\sum_{x=0}^{1000}\\sum_{y=0}^{1000} (x + y) - \\sum_{y = 1}^{1000} \\ y \\ \\ = \\mathbf{1001500500}\r\n\\end{aligned}$$\r\nãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7911"
}
] | ã$0$ ä»¥äž $1000$ 以äžã®æŽæ°ã®çµ $(x,y)$ ãã¹ãŠã«å¯ŸããŠïŒ
$$ x^{2017} + x^{2016}y + x^{2015}y^2 + \cdots + xy^{2016} + y^{2017} $$
ãçŽ æ° $2017$ ã§å²ã£ãäœãã®ç·åãæ±ããŠãã ããïŒ\
ããç·åã $2017$ ã§å²ã£ãäœããã§ã¯ãªãããšã«æ³šæããŠãã ããïŒ |
OMC178 | https://onlinemathcontest.com/contests/omc178 | https://onlinemathcontest.com/contests/omc178/tasks/7910 | D | OMC178(D) | 400 | 78 | 128 | [
{
"content": "ã$AM = MB = x$ ãšãããšïŒæ¹ã¹ãã®å®çãã $AD^2 = AM à AB = 2x^2$ ãã $AN = NC = \\sqrt{2}x $ ãšãããïŒããã§ïŒ$MN = y$ ãšãããšïŒæ¹ã¹ãã®å®çãã $NC^2 = DC à BC$ ãã $DC = \\dfrac{x^2}{y}$ ãšåããïŒãŸãïŒ$MN \\parallel BD$ ããåã«å
æ¥ããåè§åœ¢ $BMND$ ã¯çèå°åœ¢ã§ããã®ã§ïŒ$DN = x$ ãšããããïŒããããïŒäžè§åœ¢ $ADC$ ã«äžç·å®çãçšããŠïŒ\r\n$$AD = x \\sqrt{6-\\left( \\frac{x}{y} \\right)^2} $$\r\nãšãªãããšãåããïŒãã£ãŠïŒ\r\n$$ \\sqrt{11} : 1 = AD : DC = \\sqrt{6-\\left( \\frac{x}{y} \\right)^2} : \\dfrac{x}{y}$$\r\nãšãªãã®ã§ïŒ$y = \\sqrt{2}x$ ãåŸã.\r\nããããïŒ$\\sqrt{14} = DC = \\cfrac{x}{\\sqrt{2}}$ ãšãªãïŒ$ x = 2\\sqrt{7}, y = 2\\sqrt{14}$ ãšåããïŒããã«ããäžè§åœ¢ $ABC$ ã®é¢ç©ã $28\\sqrt{7}$ ãšãããäžæ¹ïŒèŸºã®æ¯ããäžè§åœ¢ $ABC$ ãšåè§åœ¢ $BMND$ ã®é¢ç©æ¯ã¯ $8 : 5$ ãªã®ã§ïŒåè§åœ¢ $BMND$ ã®é¢ç©ã¯ $\\cfrac{35\\sqrt{7}}{2}$ ã§ããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ $35^2 à 7 + 2^2 = \\mathbf{8579} $ ãšåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7910"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB, AC$ ã®äžç¹ããããã $M, N$ ãšãããšïŒäžè§åœ¢ $BMN$ ã®å€æ¥åãç¹ $N$ ã§çŽç· $AC$ ã«æ¥ããŸããïŒããã«ïŒäžè§åœ¢ $BMN$ ã®å€æ¥åãšèŸº $BC$ ã $B$ ã§ãªãç¹ã§äº€ãã£ãã®ã§ãã®äº€ç¹ã $D$ ãšãããšïŒ
$$AD = \sqrt{154}, \quad DC = \sqrt{14} $$
ãæç«ããŸããïŒãã®ãšãïŒåè§åœ¢ $BMND$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$ \dfrac{a}{b} $ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC178 | https://onlinemathcontest.com/contests/omc178 | https://onlinemathcontest.com/contests/omc178/tasks/7912 | E | OMC178(E) | 400 | 20 | 72 | [
{
"content": "ãããæ£æŽæ° $m$ ã«ã€ããŠïŒ$a_m = 1$ ãªãã°ä»»æã® $ n \\geq m $ ãæºããæ£æŽæ° $n$ ã«ã€ããŠïŒ$a_n = 1$ ãšãªãããšããïŒãã $1 \\leq n \\leq 2023$ ãæºããæ£æŽæ° $n$ ã«å¯Ÿã㊠$a_n = 1$ ãšãªããã㪠$a_1$ ã§ãã£ãŠïŒã〠$a_1 \\gt 3$ ãæºãããããªãã®ã®åæ°ãæ±ãããšããïŒ\\\r\nãããã§ïŒ$a_n \\gt 0$ ãªãã°åžžã« $a_{n+1} \\gt 0$ ã§ããããšã確èªã§ããããïŒ$a_1 \\gt 3$ ã®å ŽåãèãããšïŒ$a_n$ ã¯åžžã«æ£ãšèããŠããããšãåããïŒãã®ãšãïŒãã $0 \\lt \\theta_n \\lt \\cfrac{\\pi}{2}$ ãæºãã $\\theta_n$ ã«ãã£ãŠ $a_n = \\tan^2\\theta_n$ ãšäžæã«è¡šãããšãã§ããïŒ\r\nãããšïŒ$a_n \\neq 1$ ãªãã°ïŒ\r\n$$a_{n+1} = \\frac{4a_n}{(a_n-1)^2} = \\left(\\frac{2\\tan\\theta_n}{1 - \\tan^2\\theta_n}\\right)^2 = \\tan^2(2\\theta_n)$$\r\nãšãªãïŒ\r\nããã§ïŒ$\\tan^2(2\\theta_n) = \\tan^2(\\pi - 2\\theta_n)$ ã§ããããšããïŒæ°å $\\lbrace \\theta_n \\rbrace$ ã¯\r\n$$\r\n\\theta_{n+1} = \\begin{cases}\r\n\\pi - 2\\theta_n & \\bigg( \\cfrac{\\pi}{4} \\lt \\theta_n \\lt \\cfrac{\\pi}{2}\\bigg)\\\\\\\\\r\n2\\theta_ n & \\bigg( 0 \\lt \\theta_n \\lt \\cfrac{\\pi}{4}\\bigg)\\\\\\\\\r\n\\dfrac{\\pi}{4} & \\bigg(\\theta_n = \\cfrac{\\pi}{4}\\bigg)\r\n\\end{cases}\r\n$$\r\nãã¿ããïŒæ±ããã¹ãã¯ïŒãã $1 \\leq n \\leq 2023$ ãæºããæ£ã®æŽæ° $n$ ã«å¯Ÿã㊠$\\theta_n = \\dfrac{\\pi}{4}$ ãšãªããã㪠$\\theta_1$ ã§ãã£ãŠïŒ $ \\dfrac{\\pi}{3} \\lt \\theta_1 \\lt \\dfrac{\\pi}{2}$ ãã¿ãããã®ã®åæ°ã§ããïŒ\\\r\nãããã§ïŒ$\\theta_n = \\dfrac{\\pi}{4}$ ãšãªã $n$ ã®ãã¡æå°ã®ãã®ã $m$ ãšãªããã㪠$\\theta_1$ ã¯ïŒä»¥äžã®\r\n$2^{m-1}$ åã§ããïŒ\r\n$$\r\n\\frac{1}{2^{m+1}}\\pi,\\quad\r\n\\frac{3}{2^{m+1}}\\pi,\\quad\r\n\\ldots,\\quad\r\n\\frac{2^m - 1}{2^{m+1}}\\pi\r\n$$\r\nãã®ãã¡ $\\dfrac{\\pi}{3}$ ãã倧ããªãã®ã®åæ°ã¯ïŒ$m$ ãå¶æ°ã®ãšã $\\dfrac{2^{m-1}+1}{3}$ åïŒ$m$ãå¥æ°ã®ãšã $\\dfrac{2^{m-1}-1}{3}$ åã§ããã®ã§ïŒæ±ããåæ°ã¯\r\n$$ \\sum_{k=1}^{1011} \\cfrac{2^{2k-1} + 1}{3} \\ + \\ \\sum_{k=0}^{1011} \\cfrac{2^{2k} - 1}{3} = \\cfrac{2^{2023} - 2}{3}$$\r\nã§ããïŒFermatã®å°å®çããïŒãããçŽ æ° $2017$ ã§å²ã£ãäœã㯠$\\dfrac{2^7-2}{3} = \\mathbf{42} $ ã§ãã.ã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7912"
},
{
"content": "ã$a_{n}$ ã®æåããé·ç§»å³ãäœãã\r\n\r\n$$\r\nf(x)=\\begin{cases}\r\n 1 & (x=1) \\\\\\\\\r\n \\frac{4 x}{(x-1)^{2}} & (x\\neq1)\r\n\\end{cases}\r\n$$\r\n\r\nãšãããš, $a_{n+1}=f(a_{n})$.\r\n\r\n$f(x)=1$ ã®å®æ°è§£ã¯, $x=1, 3\\pm2\\sqrt{2}$ ã§ãã.\r\nãŸã, $y=f(x)$ ã®ã°ã©ããã, $f(x) \\in (0, 3)$ ãæºããå®æ° $x$ ã¯åºé $(0, 3)$ ãšåºé $(3, \\infty)$ ã« 1ã€ãã€, $f(x) \\in (3, \\infty)$ ãæºããå®æ° $x$ ã¯åºé $(0, 3)$ ã«ã¡ããã© 2 ã€ååšãã.\r\n\r\nãã£ãŠ, $k=1, 2, \\\\ldots$ ã«å¯ŸããŠ, $f^{(k)}(x) \\in (0, 3)$ ãšãªãå®æ° $x$ ã®åæ°ã $p_{n}$, $f^{(k)}(x) \\in (3, \\infty)$ ãšãªãå®æ° $x$ ã®åæ°ã $q_{n}$ãšãããš, \r\n$$p_{n+1}$$\r\n\r\nç·šéäž",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7912/289"
}
] | ãå®æ°å $\lbrace a_n \rbrace\_{n=1,2,\ldots}$ ã¯ä»¥äžãã¿ãããŠããŸãïŒ
$$ a_{n+1} = \begin{cases}
1 & ( a_n = 1)\\\\
\dfrac{4a_n}{(a_n-1)^2} & ( a_n \neq 1)
\end{cases}
$$
ããã« $a_{2023} = 1$ ã§ãããšãïŒ$a_1$ ãšããŠããããå€ã®ãã¡ $3$ ãã倧ãããã®ã®åæ°ãïŒçŽ æ° $2017$ ã§å²ã£ãäœãã解çããŠãã ããïŒ |
OMC178 | https://onlinemathcontest.com/contests/omc178 | https://onlinemathcontest.com/contests/omc178/tasks/7916 | F | OMC178(F) | 500 | 26 | 57 | [
{
"content": "ãçŽç· $BE$ äžã«ç¹ $F$ ãïŒ$DE = EF$ ã〠$3$ ç¹ $B, E, F$ ããã®é ã«äžŠã¶ããã«åãïŒãããš $\\angle CEF = \\angle CED = 108^\\circ$ ããäžè§åœ¢ $CEF$ ãšäžè§åœ¢ $CED$ ã¯ååãªã®ã§ïŒ$\\angle ECF = \\angle ECD = 30^\\circ$ ãšãªãïŒãŸã $\\angle CBF = \\angle CBE = 30^\\circ$ ããïŒäžè§åœ¢ $ECF$ ãšäžè§åœ¢ $CBF$ ãçžäŒŒãªã®ã§ïŒ$FE \\times FB = FC^2$ ãšãªãïŒããã« $CD = CF$ ãš $\\angle DCF = 2\\angle DCE = 60^\\circ$ ããäžè§åœ¢ $DCF$ ã¯æ£äžè§åœ¢ãªã®ã§ïŒ$DF = FC$ ã§ããïŒãã£ãŠïŒ\r\n$$FE \\times FB = FC^2 = DF^2$$\r\nããäžè§åœ¢ $FED$ ãš äžè§åœ¢ $FDB$ ã¯çžäŒŒãªã®ã§ïŒ$FD = DB$ ãåŸãïŒããããïŒ$DB = DF = DC$ ãåŸãïŒ$\\angle DBC = \\angle DCB = 48^\\circ$ ãã $\\angle DAE = \\angle BAC = 54^\\circ$ ãšãªãïŒããã« $\\angle ADE = 54^\\circ$ ããã³ $DE = AE = 5$ ãåŸãã®ã§ïŒæ£åŒŠå®çãã \r\n$$BD^2 = DC^2 = 100 \\sin^2{108^\\circ} = \\dfrac{125 + 25\\sqrt{5}}{2}$$ \r\nãšãªãïŒè§£çãã¹ãå€ã¯ $\\mathbf{3252}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7916"
},
{
"content": "ãå®ã¯ $BD = CD$ ã¯æ§ã
ãªæ¹æ³ã§ç€ºãããšãã§ããŸã. ($BD = CD$ ã瀺ããåŸã®æ¹éã¯å
¬åŒè§£èª¬ãšåæ§ã§ã.) ããã§, ããã§ã¯ $BD = CD$ ã瀺ã $2$ ã€ã®æ¹æ³ã®å€§ãŸããªæµãã玹ä»ããŸã. $ \\\\\\ $\r\n**æ¹é1**\r\n- äžè§åœ¢ $BEC$ ã®å€å¿ã $F$ ãšãã. ãããš, äžè§åœ¢ $FEC$ ã¯æ£äžè§åœ¢ãšãªã.\r\n- $â FCD = â ECD = 30^\\circ$ ãã, äžè§åœ¢ $FCD$ ãšäžè§åœ¢ $ECD$ ã¯ååãšåãã, $â FDC = â EDC = 42^\\circ$ ãšåãã.\r\n- $DF \\perp BC$, åã³ $BF = CF$ ããçŽç· $DF$ ã $BC$ ã®åçŽäºçåç·ãšåãã, $BD = CD$ ãåŸã.\r\n\r\n**æ¹é2**\r\n- äžè§åœ¢ $DEC$ ã®å€å¿ã $L$ ãšãã. ãããš, äžè§åœ¢ $DLE$ ã¯æ£äžè§åœ¢ãšãªã, ç°¡åãªè§åºŠèšç®ã«ãã $â BCL = 30^\\circ$ ãåãã.\r\n- çŽç· $CL$ ãšçŽç· $BE$ ã®äº€ç¹ã $K$ ãšãããš, $BK = CK$ , åã³ $â LKE = 60^\\circ$ ãåãã.\r\n- $â LKE = â LDE = 60^\\circ$ ãã, åç¹ $K, D, E, L$ ãå
±åãšåãã, ååšè§ã®å®çãã $â KDL = â KEL = 24^\\circ$ ãåãã.\r\n- $â KDC = â KDL + â LDC = 42^\\circ$ ãã $DK \\perp BC$ ã, $BK = CK$ ããçŽç· $DK$ ã $BC$ ã®åçŽäºçåç·ã§ããããšãåŸã, $BD = CD$ ãåŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7916/288"
},
{
"content": "ãèªåãã³ã³ãã¹ãäžã«è§£ããæ¹æ³ãïŒæŽçãã解æ³ã§ãïŒ\r\n\r\n---\r\n![figure 1](\\/images\\/OtuE4jDDX85dsvjatHFm6eNpUc56LVFTpu0cTBWO)\r\n\r\nã$\\\\ \\triangle BCE$ ã®å€å¿ã $P$ ãšãããšïŒ$\\angle CBE = 30^\\circ$ ããïŒ$\\angle CPE = 60^\\circ$ ãšãªã $\\triangle CEP$ ã¯æ£äžè§åœ¢ã§ïŒä»¥äžãåããïŒ\r\n$$ \\angle DCP = 30^\\circ,\\quad \\angle PBC = \\angle PCB = 18^\\circ,\\quad \\angle BPC = 144^\\circ. $$\r\nãŸã $E$ ãš $P$ 㯠$CD$ ã«å¯ŸããŠå¯Ÿç§°ãªäœçœ®ã«ããããïŒ$DE = DP$ ã§\r\n$$ \\angle DPE = \\angle DEP = 48^\\circ,\\quad \\angle PDE = 84^\\circ. $$\r\n$\\triangle DPE \\equiv \\triangle QBP$ ãšãªãããã« $Q$ ããšããšïŒ$\\angle DPQ = 60^\\circ$ ãã $\\triangle DPQ$ ã¯æ£äžè§åœ¢ã§ïŒä»¥äžãåããïŒ\r\n$$ \\angle BQD = 144^\\circ,\\quad \\angle QBD = \\angle QDB = 18^\\circ,\\quad \\angle ADE = 54^\\circ = \\angle DAE. $$\r\nãããã $AE = DE$ ãšãªã£ãŠ\r\n$$ BQ = DQ = DP = DE = AE = 5 $$\r\nãã\r\n$$ BD^2 = (2 \\times 5\\cos18^\\circ)^2 = 50 \\left(1 + \\cos 36^\\circ\\right) = 50 \\left(1 + \\frac{1 + \\sqrt5}4\\right) = \\frac{125 + 25\\sqrt5}2. $$\r\nãããã£ãŠæ±ããå€ã¯ $\\bm{3252}$ïŒ\r\n---\r\n\r\n**ãè£è¶³ã**$\\hspace{300000sp}$äžè¬ã«æŽè§åè§åœ¢ã®åé¡ã¯ãå€å¿ $3$ ã€æ³ãã«ããåçŽåã§ããïŒããªãã¡ïŒ$\\triangle BCE$ ã®å€å¿ã $P$ïŒ$\\triangle CDE$ ã®å€å¿ã $P^\\prime$ïŒ$\\triangle CPP^\\prime$ ã®å€å¿ã $P^{\\prime\\prime}$ ãšãïŒ$\\triangle BQP$ ãš $\\triangle CP^\\prime\\\\, E$ïŒ$\\triangle DRP^\\prime$ ãš $\\triangle CPE$ ãããããçžäŒŒã«ãªãããã« $Q,\\\\, R$ ãå®ããïŒãã®ãšãïŒåç·åã®é·ãã®çããæãç· $BQPP^{\\prime\\prime}\\\\,P^\\prime\\\\, RD$ ãèãããšïŒåç·åã® $CE$ ã«å¯Ÿããåè§ã¯æ¢ç¥ã§ããããïŒ$BD$ ã® $CE$ ã«å¯Ÿããåè§ãç¥ãããšãã§ããïŒ \r\nãä»åã¯\r\n$$ BQPP^{\\prime\\prime}\\\\,P^\\prime\\\\, RD \\stackrel{â }{\\longrightarrow} BQPP^{\\prime\\prime}\\\\,P^\\prime\\\\, D \\stackrel{â¡}{\\longrightarrow} BQPD \\stackrel{â¢}{\\longrightarrow} BQD $$\r\nãšããŠåŸãããïŒãã ã $â $ 㯠$\\triangle DP^\\prime\\\\, R$ ãæ£äžè§åœ¢ã§ããããšïŒ$â¡$ ã¯åè§åœ¢ $DPP^{\\prime\\prime}\\\\,P^\\prime$ ãå¹³è¡å蟺圢ã§ããããšïŒ$â¢$ 㯠$\\triangle DPQ$ ãæ£äžè§åœ¢ã§ããããšãå©çšããŠå€åœ¢ããïŒ",
"text": "å€å¿ 3 ã€æ³",
"url": "https://onlinemathcontest.com/contests/omc178/editorial/7916/293"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $AB, AC$ äžã«ïŒç«¯ç¹ãé€ãïŒããããç¹ $D, E$ ããšã£ããšããïŒ
$$ \angle{BED} = 36^\circ, \quad \angle{BEC} = 72^\circ $$
$$ \angle{DCA} = 30^\circ, \quad \angle{DCB} = 48^\circ, \quad AE = 5 $$
ãæç«ããŸããïŒãã®ãšãïŒç·å $BD$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒãã ãïŒçãã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a, b, c$ ã«ãã£ãŠ $ \dfrac{a+\sqrt{b}}{c} $ ãšè¡šãããã®ã§ïŒ$ a + b + c $ ã®å€ã解çããŠãã ããïŒ |
OMC177 (for beginners) | https://onlinemathcontest.com/contests/omc177 | https://onlinemathcontest.com/contests/omc177/tasks/4145 | A | OMC177(A) | 100 | 354 | 381 | [
{
"content": "ã$AB=AC=AD$ ã§ããããïŒ$B,C,D$ ã¯ãããã $A$ ãäžå¿ãšããååŸ $AB$ ã®åäžã«ããïŒãŸãïŒ$\\angle{BAC}=60^{\\circ}$ ã§ããããïŒ$D$ ãçŽç· $BC$ ã«é¢ããŠã©ã¡ãã®åŽã«ãããã«ãã£ãŠ $\\angle BDC$ 㯠$30^\\circ$ ãŸã㯠$150^\\circ$ ãšãªãããšãåããïŒãã£ãŠæ±ããå€ã¯ $\\bf{4500}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/4145"
}
] | ãæ£äžè§åœ¢ $ABC$ ããã³ $AB=AD$ ãªãç¹ $D$ ãããïŒ$3$ ç¹ $B,C,D$ ã¯ãã¹ãŠçžç°ãªããŸãïŒãã®ãšãïŒ $\angle BDC$ ã®å€§ãããšããŠããããå€ã床æ°æ³ã§ãã¹ãŠæ±ãïŒãã®**ç·ç©**ã解çããŠãã ããïŒ |
OMC177 (for beginners) | https://onlinemathcontest.com/contests/omc177 | https://onlinemathcontest.com/contests/omc177/tasks/1822 | B | OMC177(B) | 100 | 315 | 348 | [
{
"content": "ãé¡æã«ãã $n^2-7n+12=(n-3)(n-4)$ ã $1822$ ã®åæ°ã§ããããïŒ$n=\\textbf{1825}$ ã¯æ¡ä»¶ãã¿ããïŒããã $1818$ ã«æãè¿ããã®ã§ããããšã確èªããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/1822"
}
] | ã$n^2-7n+8$ ã $1822$ ã§å²ã£ãäœãã $1818$ ãšãªããããªæ£ã®æŽæ° $n$ ã®ãã¡ïŒ$1818$ ã«æãè¿ããã®ãæ±ããŠãã ããïŒãã ãïŒãã®ãã㪠$n$ ã¯ãã äžã€ã«å®ãŸããŸãïŒ |
OMC177 (for beginners) | https://onlinemathcontest.com/contests/omc177 | https://onlinemathcontest.com/contests/omc177/tasks/3130 | C | OMC177(C) | 200 | 333 | 357 | [
{
"content": "ã$\\angle ABC=2x$ ãšããïŒäžè§åœ¢ $ABP$ ãæ£äžè§åœ¢ã§ããããšãã $\\angle BAC=60^{\\circ}$ ã§ããïŒäžæ¹ã§ïŒäžè§åœ¢ $ABQ$ ãšäžè§åœ¢ $QAC$ ãäºç蟺äžè§åœ¢ã§ããããšããïŒ$\\angle BAC$ ã¯\r\n$$\\angle{BAQ}+\\angle{QAC}=(180^\\circ-4x)+x=180^{\\circ}-3x$$\r\nãšè¡šãããããïŒ$x=40^{\\circ}$ ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{80}$ ãšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/3130"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒãããã蟺 $AC,BC$ äžïŒç«¯ç¹ãé€ãïŒã«ããããç¹ $P,Q$ ãããïŒä»¥äžã®æ¡ä»¶ãã¿ãããŸããïŒ
$$AB=AP=AQ=BP=CQ.$$
ãã®ãšãïŒ$\angle ABC$ ã®å€§ããã床æ°æ³ã§è§£çããŠãã ããïŒ |
OMC177 (for beginners) | https://onlinemathcontest.com/contests/omc177 | https://onlinemathcontest.com/contests/omc177/tasks/5582 | D | OMC177(D) | 300 | 118 | 243 | [
{
"content": "ã$f(a,b,c,d)$ ãæå°å€ããšããšãïŒ$4$ ç¹\r\n$$(-1995, -2229) ,\\quad (c, d),\\quad (a, b), \\quad (1881,2103) $$\r\nããã®é ã«äžçŽç·äžã«ããïŒããªãã¡ïŒ$(a, b), (c, d)$ ã¯ç·å\r\n $$17y=19x+12 \\qquad (-1995\\leq x \\leq 1881)$$\r\n äžã®æ Œåç¹\r\n$$(x,y)=(11+17m, 13+19m) \\qquad (m=-118, -117, \\ldots, 109, 110)$$\r\nã«å±ããïŒãããã®æ Œåç¹ããïŒçžç°ãªããšéããªãïŒ$2$ ç¹ãéžã¶æ¹æ³ã¯ïŒ$-118\\le c^\\prime \\le a^\\prime\\le 110$ ãªãæŽæ°ã®çµ $(a^\\prime,c^\\prime)$ ã®æ°ã«äžèŽãïŒ\r\n $\\_{229}\\mathrm{C}\\_{2} + 229=\\bf26335$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/5582"
},
{
"content": "[é¡é¡ïŒOMC???-?](https:\\/\\/onlinemathcontest.com\\/contests\\/omc015\\/tasks\\/97)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/5582/285"
}
] | ãå®æ° $x,y,z,w$ ã«å¯ŸããŠå®çŸ©ãããé¢æ°
$$\begin{aligned}
f(x,y,z,w)&=\sqrt{(x-1881)^2+(y-2103)^2}\\\\
&+\sqrt{(z-x)^2+(w-y)^2}\\\\
&+\sqrt{(z+1995)^2+(w+2229)^2}
\end{aligned}$$
ã®ãšãããæå°å€ã $m$ ãšããŸãïŒãã®ãšãïŒ$f(a,b,c,d)=m$ ãšãªããããªæŽæ°ã®çµ $(a,b,c,d)$ ã¯ããã€ãããŸããïŒ |
OMC177 (for beginners) | https://onlinemathcontest.com/contests/omc177 | https://onlinemathcontest.com/contests/omc177/tasks/4323 | E | OMC177(E) | 300 | 90 | 207 | [
{
"content": "ãåæäœãšããã«äŒŽã移åã¯ïŒä»¥äžã®3ã€ã®ããããã«åé¡ã§ããïŒ\r\n\r\n1. ã1çªç®ã®æäœãéžã¶ããšã«ãã, åããŠèšªãããã¹ã«å°éãã\r\n2. ã2çªç®ã®æäœãéžã¶ããšã«ãã, ãã¹ $x$ ãããã¹ $x-1$ ã«æ»ã\r\n3. ãããããã®æäœãéžã¶ããšã«ãã, ãã¹ $x$ ããæ¢ã«èšªããããšã®ãããã¹ $x+1$ ã«ç§»ã\r\n\r\nãã®ãã¡ïŒ1.ã¯24åãŸãã¯25åè¡ããïŒ3.㯠2.ã®çŽåŸã®ã¿ã«è¡ãããïŒ\\\r\nã1.ã24åè¡ãããæïŒ2.ããã³ 3.ã¯3åãã€è¡ãããïŒäœåç®ã® 1.ã®åŸã« 2. ããã³ 3.ãè¡ããïŒãŸã 3.ã«ãããŠã©ã¡ãã®æäœãè¡ããã®éžæãããã®ã§ïŒãã®å Žå㯠${}\\_{26}\\mathrm{C}\\_{3}\\times 2\\^{3}$ éãã§ããïŒ\\\r\nã1.ã25åè¡ãããæïŒ30åç®ã®ç§»å㯠2.ã§ããïŒãã以å€ã§ 2. ããã³ 3.ã¯2åãã€è¡ãããïŒäžãšåæ§ã«èããã°ïŒãã®å Žå㯠${}\\_{26}\\mathrm{C}\\_{2}\\times 2\\^{2}$ éãã§ããïŒ\\\r\nããã£ãŠïŒæ±ããçã㯠${}\\_{26}\\mathrm{C}\\_{3}\\times 2\\^{3}+{}\\_{26}\\mathrm{C}\\_{2}\\times 2\\^{2}=\\mathbf{22100}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/4323"
},
{
"content": "ã$n$ åã®æäœåŸã«ãã¹ $k$ ã«ãããããªæäœæ¹æ³ã®ç·æ°ã $a_{n,k}$ ãšããïŒ \r\n$n$ åã®æäœåŸã«ãã¹ $k$ ã«ããã®ã¯ $n-1$ åã®æäœåŸã«ãã¹ $k-1$ ã«ããŠæäœ $1$ ãè¡ããïŒ$n-2$ åã®æäœåŸã«ãã¹ $k$ ã«ã㊠$n-1$ åç®ã®æäœã«æäœ $1$ ãæäœ $2$ ãè¡ã£ãåŸã« $n$ åç®ã®æäœã§æäœ $2$ ãè¡ããšããªã®ã§ïŒ$a_{n,k}=a_{n-1,k-1}+2a_{n-2,k}$ ãšãªãïŒ \r\n $a_{n,n}=1(n\\geqq2)$ ããã³ $a_{2n,0}=2^{n-1}(n\\geqq1)$ ãã挞ååŒã解ããšïŒ$$a_{n+2,n}=2n+1\\ ,\\ a_{n+4,n}=\\displaystyle\\sum_{k=0}^{n}2(2k+1)=2{(n+1)}^2\\ ,\\ a_{n+6,n}=\\displaystyle\\sum_{k=0}^{n}4{(k+1)}^2=\\dfrac{2}{3}(n+1)(n+2)(2n+3)$$ ãšãªãïŒæ±ããæäœæ¹æ³ã®ç·æ°ã¯ $a_{30,24}=\\dfrac{2}{3}\\cdot25\\cdot26\\cdot51=\\textbf{22100}$ïŒ",
"text": "挞ååŒãç«ãŠã",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/4323/286"
}
] | ãå·Šå³äžåã« $31$ åã®ãã¹ã䞊ãã§ããïŒå·Šããé ã« $0,1,2,\dots,30$ ãšçªå·ãä»ããŠããŸãïŒã¯ããïŒãã¹ $0$ ã«ã³ããäžã€ããïŒãã®ã³ãã«å¯ŸããŠæäœãã¡ããã© $30$ åè¡ããŸãïŒ$i$ åç®ã®æäœïŒ$i=1,\ldots,30$ïŒã§ã¯ïŒä»¥äžã® $2$ çš®é¡ã®è¡åã®ãã¡ïŒã¡ããã©äžæ¹ãè¡ããŸãïŒ
1. ãçŸåšã³ãã®ãããã¹ã $x$ ãšãããšãïŒã³ãããã¹ $x+1$ ã«åãã.
2. ã$i-1$ åç®ã®æäœã®çŽåã«ã³ãããã£ããã¹ã $y$ ãšãããšãïŒã³ãããã¹ $y$ ã«åãã.
ãã ãïŒ$1$ åç®ã«2çªç®ã®æäœãéžã¶ããšã¯ã§ããªããšããŸãïŒ\
ãæäœã®éžã³æ¹ã¯å
šäœã§ $2\^{29}$ éããããŸããïŒã³ãã®åããäžèŽããå ŽåãïŒ$2$ çš®é¡ã®æäœã¯åºå¥ãããã®ãšããŸãïŒïŒãã®ãã¡ æçµçã«ã³ãããã¹ $24$ ã«ãããããªæäœã®éžã³æ¹ã¯äœéããããŸããïŒ |
OMC177 (for beginners) | https://onlinemathcontest.com/contests/omc177 | https://onlinemathcontest.com/contests/omc177/tasks/6586 | F | OMC177(F) | 400 | 5 | 55 | [
{
"content": "ãäžåŒãã $xz = xw + yz$ ã§ããããïŒ$g = \\gcd(x,z), x = ga, z = gb$ ãšããã°ïŒ$y,w$ ã¯ãããã $a, b$ ã®åæ°ã§ããïŒåŸã£ãŠïŒ$y = as, w = bt$ ãšããã° $s, t$ ã¯æ£ã®æŽæ°ã§ãã $s + t = g$ ãæºããïŒãã£ãŠïŒããããäžåŒã«ä»£å
¥ãïŒ\r\n$$ab(s^2 + st + t^2) = 10!\\tag{1}$$\r\nãåŸãïŒä»¥äžã§ã¯ïŒä»ãŸã§ã® $a,b,s,t$ ã®æå³ãå¿ãïŒ(1)ãäžå®æ¹çšåŒãšããŠèŠãããšã«ããïŒ(1)ãæºãã $\\gcd(a,b)=1$ ãªã $(a,b,s,t)$ ã®çµãšäžåŒãæºãã $(x,y,z,w)$ ã®çµãäžå¯Ÿäžå¯Ÿå¿ãïŒ(1)ãæºãã $\\gcd(a,b) = 1$ ãªã $(a,b,s,t)$ ã®çµãš(1)ãæºãã $\\gcd(s,t) = 1$ ãªã $(a,b,s,t)$ ã®çµãäžå¯Ÿäžå¯Ÿå¿ããã®ã§ïŒä»¥äžã§ã¯(1)ãæºãã $\\gcd(s,t) = 1$ ãªã $(a,b,s,t)$ ã®çµã®æ°ãæ±ããïŒ\r\n\r\n----\r\n**è£é¡.**ã$s^2 + st + t^2$ ãšããŠããåŸãå€ã¯ïŒ$3,7,21$ ã®ã¿ã§ããïŒ\\\r\n**蚌æ.**ã$s$ ãš $t$ ãäºãã«çŽ ã§ããããšããïŒ$\\bmod\\ 2, \\bmod\\ 5, \\bmod\\ 9$ ãèããããšã§ïŒ$s^2 + st + t^2$ 㯠$2,5$ ã§å²ããïŒ$3$ ã§é«ã
$1$ åããå²ãåããªãããšã確èªã§ããïŒãŸãïŒ$s^2 + st + t^2$ 㯠$10!$ ã®çŽæ°ã§ããããïŒä»¥äžã®ããšãšäœµããããšã§ïŒ$s^2 + st + t^2$ 㯠$3\\times7$ ã®çŽæ°ã§ããããšããããïŒ$21$ ã®çŽæ°ã«å¯ŸããŠé ã« $s,t$ ã®ååšã確èªããã°ïŒ$3,7,21$ ã®ãšãã«ååšããããšã確ãããããïŒ\r\n----\r\n\r\n- $s^2 + st + t^2 = 3$ ã§ããå Žå\\\r\nã$s^2 + st + t^2 = 3$ ãæºãã $(s,t)$ ã®çµã¯ $1$ éãã§ããïŒ$ab = 10!\\/3 = 2^8\\times3^3\\times5^2\\times7$ ãæºãã $(a,b)$ ã®çµã¯ $(8+1)(3+1)(2+1)(1+1) = 216$ éãããã®ã§ïŒãã®å Žåã® $(a,b,s,t)$ ã®çµã®æ°ã¯ $1\\times216 = 216$ çµïŒ\r\n- $s^2 + st + t^2 = 7$ ã§ããå Žå\\\r\nã$s^2 + st + t^2 = 7$ ãæºãã $(s,t)$ ã®çµã¯ $2$ éãã§ããïŒ$ab = 10!\\/7 = 2^8\\times3^4\\times5^2$ ãæºãã $(a,b)$ ã®çµã¯ $(8+1)(4+1)(2+1) = 135$ éãããã®ã§ïŒãã®å Žåã® $(a,b,s,t)$ ã®çµã®æ°ã¯ $2\\times135 = 270$ çµïŒ\r\n- $s^2 + st + t^2 = 21$ ã§ããå Žå\\\r\nã$s^2 + st + t^2 = 21$ ãæºãã $(s,t)$ ã®çµã¯ $2$ éãã§ããïŒ$ab = 10!\\/21 = 2^8\\times3^3\\times5^2$ ãæºãã $(a,b)$ ã®çµã¯ $(8+1)(3+1)(2+1) = 108$ éãããã®ã§ïŒãã®å Žåã® $(a,b,s,t)$ ã®çµã®æ°ã¯ $2\\times108 = 216$ çµïŒ\r\n\r\n以äžããïŒæ±ããçã㯠$216 + 270 + 216 = \\bf{702}$ çµã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/6586"
},
{
"content": "ãå
¬åŒè§£èª¬ãåçªãããŸãããïŒç§ã¯ããæããŸããïŒOMC038-E ãç¥ã£ãŠããã°æ倧å
¬çŽæ°ãåããæ°æã¡ã¯çãŸããã«ãã...ïŒã\\\r\nãæ¬è³ªãå
ã«æžã圢ãšããŸãããïŒïŒâ»ïŒã®éšåãäžçªäžã«èšè¿°ããŠããŸãïŒãã¡ããå
ã«èªãã§ããããããããªãã§ãïŒ\r\n\r\n---\r\n\r\nããªãããããïŒâ»ïŒãããŸããŠïŒF ã«æ»ã£ãŠããã®ã§æ°å転æãããããªããŸããïŒãšããããæ¡ä»¶ãèŠããã圢ã«ããŸãïŒ\r\n\r\n$$\\begin{aligned}\r\nxz &= yw + 10! \\\\\\\\\r\nxw + yz &= yw + 10!\r\n\\end{aligned}$$\r\n\r\nå°ãèŠããããŠèœã¡çããŸããïŒãããŠãã®æ¡ä»¶ãïŒ$x-y = a, z-w = b$ ãšããã°\r\n$$ab=yw,ã(y+a)(w+b) - yw = 10!$$\r\nãšããïŒå°ã綺éºãªåœ¢ã«æžããããšãïŒïŒâ»ïŒã®éšåã§åãã£ãŠããŸãïŒ\r\n\r\n\r\nãããå°ãæ°å転æã«ãä»ãåããã ããïŒãããè³å
ã§ããžã¥ã¢ã«åããŠã¿ãŸãïŒ$(y+a)(w+b)$ ã¯æãç®ã®åœ¢ãªã®ã§ïŒé·æ¹åœ¢ã®é¢ç©ãšèŠãããšãã§ããŸããïŒããããç°ãã®åã®ããã«ïŒæšªã®é·ãã $y,a$ ã§åºåãïŒçžŠã®é·ãã $w,b$ ã§åºåã£ãå³ãã€ã¡ãŒãžããŸãïŒ\\\r\nããããšïŒ$yw$ ã«ãããé·æ¹åœ¢ãšïŒ$ab$ ã«ãããé·æ¹åœ¢ãïŒé¢ç©ãçãããªã£ãŠããïŒãããŠãã®çããé¢ç©ãå
šäœããåŒãããã®ã $10!$ ã«ãªããã§ããïŒ\r\n\r\nãããã§æŒžãïŒ$(y,w)$ ãšïŒ$(a,b)$ ã察称çã§ããããšã«æ°ä»ããŸãïŒèšãããŠã¿ãã°ïŒäœã $y,w$ ãåºå®ã㊠$a,b$ ãå€æ°ãšããŠèŠãå¿
èŠã¯ãªããã§ããïŒããã¯ïŒ$(a,b,y,w)$ ãš $(x,z,y,w)$ ãäžå¯Ÿäžã«å¯Ÿå¿ããããã§ãïŒ\r\n\r\nãã€ãŸãïŒ$y,w,a,b$ ã¯ããããïŒå
šãç䟡ãªå¯Ÿè±¡ãšããŠæããããšãå¯èœã§ãïŒãã®ããšã念é ã«çœ®ããŠé²ããŠã¿ãŸãïŒ\\\r\nããããšïŒ$ab=yw$ ãšããåŒã« **Four Number Lemma** ãé©çšã§ãããã§ãïŒãã®äž»åŒµã¯ïŒç§ã¯ MONT (â»1) ãèŠãŠããŸããŸããã...ïŒ\r\n- æ£æŽæ° $a,b,c,d$ ã $ab=cd$ ãæºãããªãïŒ$\\gcd (p,q)=1$ ãã€\r\n$$a=pr,ãc=qr,ãd=ps,ãb=qs$$\r\nãæºãããã㪠$p,q,r,s$ ããã äžã€ååšããïŒ\r\n\r\nãšãããã®ã§ãïŒé çªãå€ãªã®ã¯ïŒèšŒæã®ãšãã« $a\\/c=d\\/b=p\\/q$ ãšæ¢çŽåæ°ã®è¡šç€ºãçšããããšã«ç±æ¥ããŸãïŒç§ã®æ æ°ãããããŸããïŒïŒ\r\n\r\nãè©Šãã«ïŒãããçšããŠåŒãæžãæããŠã¿ãŸãããïŒ$y\\/a = b\\/w$ (â»2) ã§ãããïŒãã $p,q,r,s$ ïŒãã ã $(p,q)=1$ ïŒã«ã€ããŠ\r\n$$(y,a) = (pr, qr),ã(w,b) = (qs, ps)$$\r\nãšæžããŸãïŒãã®ãšãïŒæ¡ä»¶ã®åŒã¯æ¬¡ã®ããã«æžãæããããŸãïŒ\r\n$$(pr+qr)(ps+qs) = 10! + pqrs$$\r\näœãå¬ããããšèšããšïŒããšããš $yw$ ã ã£ãïŒ $ab$ ã«ãæžãæããããã®ã§ïŒããŸã察称çã§ã¯ãªãã£ãïŒãã®ãïŒ$pqrs$ ãšããããªã察称çãªèŠãç®ããããã®ã«æžãæããããããšã§ãïŒèŠããŠããŸãããïŒãããèªã㧠Four Number Lemma ãé©çšããã®ãããããŸããïŒ\r\n\r\nãè±ç·ããŸããïŒäžåŒãæŽçãããšïŒ\r\n$$rs (p+q)^2 = 10! + pqrsã\\iffãrs = \\frac{10!}{(p+q)^2-pq} = \\frac{10!}{p^2+pq+q^2}$$\r\nãšãªããŸãïŒäœãšããããšã§ãããïŒ$p,q$ ãš $r,s$ ãå®å
šã«åé¢ã§ããŠããŸããŸããïŒããã¯å€§ããªé²æã§ãïŒ\r\n\r\nãæåŸã« $p^2+pq+q^2=t$ ãšã§ã眮ãã°ïŒããšã¯å
¬åŒè§£èª¬ãšåæ§ã«ïŒå€å°ã®æèã¯å¿
èŠã§ããïŒçããæ±ããããšãã§ããŸã (â»3)ïŒ\r\n\r\n---\r\n\r\nã(â»1)ã[MONT](https:\\/\\/www.academia.edu\\/44512122\\/Modern_Olympiad_Number_Theory) ãšã¯ïŒAditya Khurmi æ°ãèããæ°ãªãªã®æŽæ°è«ã®æ¬ã§ãïŒãªããšç¡æã§ãïŒæ¬åœã«è¯ããã§ããããïŒã¡ãªã¿ã«ç§ã¯ PDF ãä¿åããŠããã®ã§èŠãŠãååã§ã¯ãªãã§ãïŒ\r\n\r\nã(â»2)ããã©ãããã§ããïŒããã§ã察称æ§ãèæ
®ããŠããŸãïŒ$y\\/a$ ã $y\\/b$ ããªãïŒ$(y+a)(w+b)$ ãšããåŒãèŠãã°åè
ãéžã¶ã§ãããïŒ\r\n\r\nã(â»3)ãå
¬åŒè§£èª¬ã§ã¯ $t$ ãçµãããšãèããŠããŸããïŒããã¯ã $p^2+pq+q^2=t$ ãšããäžå®æ¹çšåŒïŒã®è§£ã®åæ°ïŒãèããã®ããšãŠãé£ããããã«æããããããšãèæ
®ããã°èªç¶ã§ãïŒç§ã¯ïŒ$t=9$ ã®ãšãã« $(p,q)$ ãååšããªãããšãã $t$ ãçµããããšãçããŸããïŒ\r\n\r\n---\r\n\r\nãïŒâ»ïŒã以äžã¯ïŒç§ãæåã«ããããåŒå€åœ¢ãè©Šããéçšã§ãïŒ**åèã«ããªãã§ãã ããïŒããŠäžå©çã被ã£ãŠã責任ãåããŸããïŒïŒ**\\\r\nãããããïŒç©ççã«ïŒè¡éãçãã®ã¯ïŒããŒãã®è¡éã®çãã®åçŸã§ãïŒèŠã«ããã§ããïŒ\r\n\r\nã$-yw$ ãæ¡ä»¶ã« 2 åçŸããŠããã®ã§ïŒãšããããå·®ãåããŸãïŒ$xw-xz+yz=0$ïŒãããå€åœ¢ãããš $(x-y)(z-w)=yw$ ã§ãïŒããã§ç§ã¯æéãé£ããŸãããïŒæ¬æ¥ã¯ã¹ããŒãã£ãŒã«ãã¹ãäœæ¥ã§ã...ïŒïŒ\\\r\nããªãã»ã©ïŒå·®ã®ç©ã $yw$ ã«ãªããã§ããïŒäœãšãªã䟿å©ãããªã®ã§ $x-y$ ãš $z-w$ ã«ãããã $a,b$ ãšååãä»ããŠãããŸãããïŒâïŒïŒ\\\r\nã$ab=yw$ ã§ããïŒä»åºŠã¯éã« $x,z$ ã $y,w,a,b$ ã§è¡šããšïŒ$(y+a)(w+b)-yw=10!$ ã«ãªããŸããïŒ$yw+aw+by=10!$ïŒããŒãïŒãŸã äžæçãªã®ã§ $yw=c, aw=d$ ãšã§ã眮ããŸããïŒãããããšïŒ\r\n$$c+d+\\frac{c^2}{d}=10!ã\\impliesã\\left(\\frac{c}{d}+1\\right)(c+d)=10!+c$$\r\nã«ãªããŸãïŒããŒããã¡ããã¡ãããŠããŸããïŒæµç³ã«äž¡èŸºã $d$ ã§å²ããŸãããïŒ\r\n$$\\left(\\frac{c}{d}+1\\right)^2 = \\frac{10!+c}{d} = \\frac{c}{d} + \\frac{10!}{d}.$$\r\nè¥å¹²ãããããããŸããïŒ$c\\/a=e$ ãšãããšïŒ$(e+1)^2 = e+ 10!\\/a$ïŒæåãå°ãªããŠè¯ããããããŸããïŒã§ãè¿·èµ°ããŠãæãããããŸãïŒ$e$ ãå
šãŠå·ŠèŸºã«æã£ãŠãããš $e^2+e+1 = 10!\\/a$ïŒãïŒå·ŠèŸºã®åœ¢ã€ããã§ããïŒâ
ïŒïŒãšããã $e$ ã£ãŠæŽæ°ãªãã§ããããïŒãã $yw\\/aw$ ãªã®ã§æŽæ°ãšã¯éããªãã§ããïŒããŒãŒããªããéãæ°ãããŸãïŒ\r\n\r\nããã®åŸãã¡ãã£ãšã ãåŒå€åœ¢ãããŸããïŒããã¯æ¬åœã«åèã«ãªããŸããïŒä»æ¹ããªãã®ã§ãšãããã A~E ã解ããŠïŒæ»ã£ãŠããŸãïŒ\r\n\r\nãïŒâïŒâ
ïŒããïŒå®ã¯åŸã
ãã¡ãã£ãšèŠèŠããããªïœããšãªã£ãŠåœ¹ç«ã¡ãŸããïŒãšãããïŒä»èŠããšâ
ã®æ¹ã¯ããªãæ¬è³ªã«è¿ã¥ããŠããŸããïŒããããå€åœ¢ããã®ãè¯ãããã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc177/editorial/6586/287"
}
] | ã以äžã®çåŒãã¿ããæ£æŽæ°ã®çµ $(x, y, z, w)$ ã®ç·æ°ãæ±ããŠãã ããïŒ
$$xz - yw = xw + yz - yw = 10!$$ |
OMC176 | https://onlinemathcontest.com/contests/omc176 | https://onlinemathcontest.com/contests/omc176/tasks/4646 | A | OMC176(A) | 100 | 331 | 345 | [
{
"content": "ã$\\angle BAD=90^\\circ$ ã§ããããïŒ$BD=\\sqrt{1^2+7^2}=5\\sqrt{2}$ ã§ããïŒååšè§ã®å®çãã $\\angle CBD=\\angle CDB=45^\\circ$ ã§ããããïŒ$BC=CD=5$ ã§ããïŒãã£ãŠåè§åœ¢ $ABCD$ ã®é¢ç©ã¯\r\n$$\\frac{1}{2}\\times1\\times7 + \\frac{1}{2} \\times 5\\times 5 = \\bf{16}$$\r\nã§ãã. \r\n![figure 1](\\/images\\/U7zXY3TeEZovuLThwQBTHqWSkbW4pbqiN0M7zuDB)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/4646"
},
{
"content": "ã$\\angle{CAB}=\\angle{CAD}=45^{\\circ}$ ã§ããïŒåè§åœ¢ $ABCD$ ãåã«å
æ¥ããåè§åœ¢ã§ããããšããïŒ$\\angle{BAD}=\\angle{BCD}=90^\\{\\circ}$ ããã³ $CB=CD$ ãæãç«ã€ïŒ \r\nãã£ãŠïŒåè§åœ¢ $ABCD$ ã $C$ ãäžå¿ã«åæèšåãã« $90^{\\circ},180^{\\circ},270^{\\circ}$ å転ããå³åœ¢ããã£ã€ãããšäžèŸº $8$ ã®æ£æ¹åœ¢ãåºæ¥ãã®ã§ïŒæ±ããé¢ç©ã¯ $8^2\\div4=\\textbf{16}$",
"text": "蟺ã®é·ãã¯æ±ããã«",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/4646/281"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã
$$\angle BAC=\angle CAD=45^{\circ},\quad AB=1,\quad AD=7$$
ãã¿ãããšãïŒãã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC176 | https://onlinemathcontest.com/contests/omc176 | https://onlinemathcontest.com/contests/omc176/tasks/6981 | B | OMC176(B) | 200 | 246 | 298 | [
{
"content": "ã$x=4, 6, 8$ ã«ã€ã㊠$f(x)=x-1$ ã§ããããïŒ$3$ 次å€é
åŒ $f(x)$ ã¯å®æ° $a$ ãçšããŠ\r\n$$f(x)=a(x-4)(x-6)(x-8)+x-1$$\r\nãšè¡šãããïŒä»®å®ãã $f(1)=-105a=2$ ã§ããããïŒ$a=-\\dfrac{2}{105}$ ã§ããïŒãããã£ãŠïŒæ±ããçãã¯\r\n$$|f(18)|=\\bigg|-\\frac{2}{105}\\cdot 14\\cdot 12\\cdot 10+17\\bigg|=\\bf{15}$$\r\nã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/6981"
},
{
"content": "ããã®åé¡ã解ããªãã£ãæ¹ïŒãããã¯æçŽã«è§£ããæ¹ã¯ïŒãŸãã¯æ¬è§£æ³ã«è³ãåæ©ãç解ããŸãããïŒãã®åé¡ã§ã¯ïŒ$4$ ã€ã®ãã¡ $3$ ã€ã®æ¡ä»¶ã«èŠåãèŠåºããŠããŸã( $f(x)=x-1$ )ïŒèŠåãèŠã€ããã°ïŒ$f(x)=(hogehoge)+x-1$ ãã€ïŒ$x=4,6,8$ ã®ãšã $(hogehoge)$ ã®å€ã $0$ ã«ãªãã°ããã§ãïŒ$f(x)$ 㯠$3$ 次å€é
åŒã§ãããïŒ$(hogehoge)$ 㯠$a(x-4)(x-6)(x-8)$ ã«ä»ãªããŸããïŒãã®åé¡ã®ããã«æããã«æ£æ»æ³ãæçŽä»¥å€ã«ååšããå Žåã¯ïŒäžããããæ¡ä»¶ã®ãã¡ã®ããã€ãã«å
±éããèŠåãèŠåºãããšã§æ¥œã«è§£ããå ŽåããããŸãïŒ\r\n\r\nããã®äžã§ïŒæçŽã«é£ç«æ¹çšåŒã解ãæ¹æ³ããããŸããïŒæ¬¡ã«ç€ºãæ¹æ³ã§ã解ããŸãïŒ\r\n***\r\n**ã©ã°ã©ã³ãžã¥è£éïŒ** $(x_1,y_1),(x_2,y_2),\\cdots(x_{n+1},y_{n+1})$ ãéã $n$ 次é¢æ° $P(x)$ ã¯æ¬¡ã§äžããããïŒãã ãïŒ$1\\leq i\\lt j\\leq n+1$ ãªãä»»æã®æŽæ° $i,j$ ã«å¯ŸãïŒ$x_i\\neq x_j$ ãæ¡ä»¶ãšããïŒ\\\r\n$$P(x)=\\sum_{k=1}^{n+1}\\Big(y_i\\prod_{l\\neq k}\\dfrac{x-x_l}{x_k-x_l}\\Big)$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/6981/283"
}
] | $$f(1)=2, \quad f(4)=3, \quad f(6)=5, \quad f(8)=7$$
ãªãå®æ°ä¿æ° $3$ 次å€é
åŒ $f(x)$ ã«ã€ããŠïŒ$\lvert f(18)\rvert $ ã®å€ãæ±ããŠãã ãã. |
OMC176 | https://onlinemathcontest.com/contests/omc176 | https://onlinemathcontest.com/contests/omc176/tasks/4385 | C | OMC176(C) | 300 | 243 | 259 | [
{
"content": "ã$\\lfloor x \\rfloor =X,\\lfloor y \\rfloor =Y$ ãšãããšïŒ$x,y$ ã¯ç¡çæ°ã§ããããšãã $\\lceil x \\rceil =X+1,\\lceil y \\rceil =Y+1$ ã§ããïŒããã«çæããã°äžåŒã¯ä»¥äžã®ããã«èšãæããããïŒ\r\n- $X^3+Y^3-3XY=251$\r\n- $(X+Y)^2+2(X+Y)+1=144$\r\n\r\nåŸè
ãã $X+Y=11$ ãå°ãïŒãããåè
ã«ä»£å
¥ããããšã«ãã $(X,Y)=(6,5),(5,6)$ ããããïŒåè
ã®ãšã $(m,n)$ ã¯ååšãã, åŸè
ã®ãšã $(m,n)=(4,3)$ ãé©ãããã, ãã®ãšã $\\lfloor xy \\rfloor=\\lfloor 12\\sqrt{10} \\rfloor=\\textbf{37}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/4385"
}
] | ãæ£ã®æŽæ° $m,n$ ãçšã㊠$x=\sqrt 2m, \\, y=\sqrt 5n$ ãšè¡šããå®æ° $x,y$ ã
- $\lfloor x \rfloor^3+\lfloor y \rfloor^3-3\lfloor x \rfloor \lfloor y \rfloor=251$
- $\lfloor x \rfloor \lceil x \rceil + \lfloor y \rfloor \lceil y \rceil + \lfloor x \rfloor \lfloor y \rfloor + \lceil x \rceil \lceil y \rceil =144$
ãã¿ãããšãïŒ$\lfloor xy \rfloor$ ãšããŠããããå€ã®ç·åã解çããŠãã ããïŒ |
OMC176 | https://onlinemathcontest.com/contests/omc176 | https://onlinemathcontest.com/contests/omc176/tasks/5246 | D | OMC176(D) | 400 | 166 | 230 | [
{
"content": "ã$n_{(2)}$ 㧠$n$ ã $2$ é²æ³è¡šèšãããã®ãšãããšïŒæäœã¯æ¬¡ã®ããã«æžãæãããã. \r\n- $n_{(2)}$ ã®äžã®äœã $1$ ãªãã°ïŒããã $0$ ã«ãã\r\n- $n_{(2)}$ ã®äžã®äœã $0$ ãªãã°ïŒãããæ¶å»ãã\r\n\r\nãã®ããã«èããããšã§ïŒä»¥äžã®ããã«è¡šããããšããããïŒ\r\n$$f(n)=\\big(n_{(2)}ã®æ¡æ°\\big)+\\big(n_{(2)}ã«å«ãŸãã 1 ã®æ°\\big)-1$$\r\nãããã§ïŒ$S_N=f(2^{N-1})+\\cdots+f(2^N-1)$ ãèãããšïŒæ¡æ°ã®å¯äžã¯ã€ãã« $N$ ãã€ã§ããïŒæäžäœãé€ããŠã¡ããã©åæ°ã§ $1$ ãš $0$ ãçŸããããšããïŒ$1$ ã®æ°ã®å¯äžã¯å¹³åãããš $(N+1)\\/2$ ãšãããïŒãã£ãŠïŒ\r\n$$ S_N=\\biggl(N+\\dfrac{N+1}{2}-1\\biggr) \\times 2^{N-1} = (3N-1)2^{N-2}$$\r\nã§ããããïŒäžè¬ã« $24$ ã $M$ ãšããã°æ±ããç·åã¯\r\n$$ \\sum_{N=1}^{M} S_N = (3M-4)2^{M-1}+2$$\r\nã§ããïŒ$M=24$ ã®ãšããã㯠$\\textbf{570425346}$ ã§ããïŒãã ãïŒä»¥äžã®çåŒãçšããïŒ\r\n$$\\sum_{k=1}^{M} k2^{k-1} = (M-1)2^M+1$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/5246"
},
{
"content": "- äžè¬ã«æŽæ°$n$ãäºé²æ°è¡šèšãããšãã®æ¡åã$\\mathrm{popcount}(n)$ãšè¡šãããšããããŸãïŒOMCã§ã¯æ¯èŒçé »åºã§ãïŒ\r\n- ãã®åé¡ã®ããã«ç·åã§è¶³ãæ¹å(é çª)ãå€ããããšãã䞻客転åããšåŒã¶ããšããããŸãïŒ\r\n- å
¬åŒè§£èª¬ã®æåŸã®çåŒã¯ïŒç·åã$t$ãšããŠ$2t-t$ãèšç®ããããšã«ãã蚌æã§ããŸãïŒãçå·®Ãçæ¯ããªã©ãšã°ã°ãã°è©³çŽ°ãåºãŠãããšæããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/5246/280"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒä»¥äžã®æäœã $n$ ã $0$ ã«ãªããŸã§ç¹°ãè¿ããŸãïŒ
- $n$ ãå¥æ°ãªãã°ïŒ$n$ ãã $1$ ãåŒã
- $n$ ãå¶æ°ãªãã°ïŒ$n$ ã $2$ ã§å²ã
äŸãã° $14$ ã¯ä»¥äžã®ããã«æäœãããŸãïŒ
$$14\rightarrow7\rightarrow6\rightarrow3\rightarrow2\rightarrow1\rightarrow0.$$
ããã®ãšãïŒ$n$ ã $0$ ã«ãªããŸã§ã«å¿
èŠãªæäœã®åæ°ã $f(n)$ ãšããŸãïŒããšãã° $f(14)=6$ ã§ãïŒ
$$f(1)+f(2)+f(3)+\cdots+f(2^{24}-2)+f(2^{24} - 1)$$
ãæ±ããŠãã ããïŒ |
OMC176 | https://onlinemathcontest.com/contests/omc176 | https://onlinemathcontest.com/contests/omc176/tasks/7315 | E | OMC176(E) | 500 | 44 | 89 | [
{
"content": "ãç€é¢ã«å¯ŸããŠ**ã¹ã³ã¢**ã以äžã§å®çŸ©ãããšïŒããã¯æäœãè¡ã£ãŠãäžå®ã§ããïŒ\r\n- ãã¹ $(m,n)$ ã« $2^{101-m-n}$ ãæžã蟌ãïŒ\r\n- è¡šãäžã«ããŠã³ã€ã³ã眮ãããŠãããã¹ã«æžã蟌ãŸããæ°ã®ç·åãšïŒè£ãäžã«ããŠã³ã€ã³ã眮ãããŠãããã¹ã«æžã蟌ãŸããæ°ã®éæ°ã®ç·åã®åã**ã¹ã³ã¢**ãšããïŒ\r\n\r\næ¡ä»¶ã®ããã«ã³ã€ã³ã眮ãããšãïŒã¹ã³ã¢ã¯ $396_{(10)} = 110,001,100_{(2)}$ ã§ããããïŒæåã« $2^{2}, 2^{3}, 2^7, 2^8$ ãæžã蟌ãŸãããã¹ã« $1$ ã€ãã€ã³ã€ã³ã眮ãããšãïŒãŸããã®ãšãã«éãïŒæåã«ã³ã€ã³ã眮ãããŠãããã¹ã®åæ°ãæå°ãšãªãïŒåŸã£ãŠïŒæåã®ã³ã€ã³ã®é
眮ãšãããããã®ã¯\r\n$$98\\times97\\times93\\times92 = {81333336}$$\r\néãããïŒãããã®é
眮ããç®æšã®ç¶æ
ãäœãããšãã§ããããšã確èªã§ããã®ã§ïŒæ±ããçã㯠$\\bf{81333336}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/7315"
},
{
"content": "ãå
¬åŒè§£èª¬ã®**ã¹ã³ã¢**ã倩äžãçã«ç»å ŽããŠããã®ã§ïŒãã®çºæ³ã«è³ãæèã«ã€ããŠæžããŸãïŒãªãïŒæ¬è§£èª¬ã¯å³å¯æ§ã«ã¯æ¬ ããŠããŸãïŒ\\\r\nãè¡šåãã®ã³ã€ã³ã«ã€ããŠèãããšïŒåé¡æã®æ¡ä»¶ïŒã¯ïŒã$m+n$ ã®å€ã $1$ å¢ãããšïŒã³ã€ã³ã®ææ°ã $2$ åã«ãªãããšèªã¿æ¿ããããŸãïŒãŸãïŒåé¡æã®æ¡ä»¶ïŒã«ã€ããŠã¯ïŒã$m+n$ ã®å€ãå€ããªãç¯å²ã§ã¯ïŒã³ã€ã³ã¯èªç±ã«åãããããšèªã¿æ¿ããããŸãïŒ\\\r\nãè£åãã®ã³ã€ã³ã«é¢ããæ¡ä»¶ã¯ïŒåé¡æã®æ¡ä»¶ïŒãïŒã$m+n$ ã®å€ã $1$ æžãããšïŒã³ã€ã³ã®ææ°ã $2$ åã«ãªãããšèªã¿æ¿ãããïŒæ¡ä»¶ïŒã¯ïŒãã³ã€ã³ãè£è¿ãããšã§ïŒ$m+n=k$ ã®å€ã $202-k$ ãšã§ããããšãã£ãå
·åã«èªã¿æ¿ããããŸãïŒ\\\r\nã以äžã®ããšããïŒåé¡æã«æžãããŠããæçµç¶æ³ã¯ïŒã¡ãã£ãšä¹±æŽã§ããã$m+n=100$ ã®ãšããã«ïŒè¡šåãã®ã³ã€ã³ã $198$ æããããšèããããšãå¯èœã§ãïŒ\r\n\r\nã次ã«ïŒãã®ã³ã€ã³ã«é©åãªæäœãããŠïŒã³ã€ã³ãæå°ã®ææ°ã«ãã£ãŠãããŸãïŒ\\\r\nããŸã $198$ æã®ã³ã€ã³ãå
šãŠ $m+n=99$ ã®ãšããã«ãã£ãŠããã°ïŒã³ã€ã³ã¯ååã®ææ°ã«ãªãïŒ$99$ æã«ãªããŸãïŒãã®ãã¡ $1$ æã¯ã©ããã£ãŠã $m+n=98$ ã®ãšããã«ãã£ãŠãããªãã®ã§ïŒ$1$ æãé€ããŠïŒæ®ã $98$ æã $m+n=98$ ã®ãšããã«ãã£ãŠããïŒ$49$ æã«ããŸãïŒãŸãå¥æ°ãªã®ã§ïŒ$1$ æ㯠$m+n=98$ ã®ãšããã«çœ®ãããŸãŸïŒ$m+n=97$ ã®ãšããã«ã³ã€ã³ $48$ æããã£ãŠãããŸãïŒâŠâŠä»¥äžåæ§ã«èãããšïŒæçµçã«ïŒ$m+n=99,98,94,93$ ã®ãšããã«ã³ã€ã³ã $1$ æãã€ããããšã«ãªãïŒãã®å Žåãæå°ã®å Žåã§ãïŒ\r\n\r\nã以äžã®è°è«ã¯æåã«æžããéãïŒå³å¯æ§ã«ã¯æ¬ ããŸããïŒæèŠçã«ã¯ãããªèª¬æã§ãããããã§ãïŒãããå³å¯ã«æžããšïŒäŸãã°å
¬åŒè§£èª¬ã®ããã«æäœã®éã§å€åããªã**ã¹ã³ã¢**ãå°å
¥ãããªã©ã®æ¹æ³ãèãããããšæããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/7315/282"
}
] | ã$100\times100$ ã®ãã¹ç®ããããŸãïŒäžãã $m$ è¡ç®ïŒå·Šãã $n$ è¡ç®ã®ãã¹ã $(m, n)$ ãšè¡šããŸãïŒæåïŒããã€ãã®ãã¹ã«**è¡šãäžã«ããŠ**ã³ã€ã³ã $1$ æãã€çœ®ãããŠããŸãïŒãã以å€ã®ãã¹ã«ã¯çœ®ãããŠããŸããïŒïŒããããïŒOMCåã¯ä»¥äžã®æäœã®äžããäžã€ãéžãã§è¡ãããšãç¹°ãè¿ããŸãïŒãã ãïŒã©ã®ãã¹ã«çœ®ãããŠããã³ã€ã³ãã€ãã«é«ã
$1$ æã§ãªããã°ãªããªããã®ãšããŸãïŒããªãã¡ïŒãã§ã«ã³ã€ã³ã眮ãããŠãããã¹ã«å¯ŸããŠãæ°ãã«ã³ã€ã³ã眮ããå¿
èŠãçãããããªæäœã¯è¡ããŸããïŒïŒ
- $(m, n) ~ (1\leq m, n\leq 99)$ ã«è¡šãäžã«ããŠã³ã€ã³ã眮ãããŠãããšãïŒãã®ã³ã€ã³ãåãå»ãïŒ$(m+1, n)$ ãš $(m, n+1)$ ããããã«è¡šãäžã«ããŠæ°ãã«ã³ã€ã³ã眮ãïŒ
- $(m, n) ~ (2\leq m, n\leq 100)$ ã«è£ãäžã«ããŠã³ã€ã³ã眮ãããŠãããšãïŒãã®ã³ã€ã³ãåãå»ãïŒ$(m-1, n)$ ãš $(m, n-1)$ ããããã«è£ãäžã«ããŠæ°ãã«ã³ã€ã³ã眮ãïŒ
- $(m, n) ~ (1\leq m, n\leq 100)$ ã«ã³ã€ã³ã眮ãããŠãããšãïŒãã®ã³ã€ã³ãåãå»ãïŒ$(101-m, 101-n)$ ã«åã£ãã³ã€ã³ãšéã®åŽãäžã«ããŠæ°ãã«ã³ã€ã³ã眮ãïŒ
- $(m, n) ~ (1\leq m, n\leq 100)$ ã«ã³ã€ã³ã眮ãããŠãããšãïŒãã®ã³ã€ã³ãåãå»ãïŒ$(m-1, n+1)$ ãŸã㯠$(m+1, n-1)$ ã«åã£ãã³ã€ã³ãšåãåŽãäžã«ããŠæ°ãã«ã³ã€ã³ã眮ãïŒ
ãæéåæäœãç¹°ãè¿ããšïŒ$m+n=100$ ãªããã¹ãŠã®ãã¹ $(m,n)$ ã«è¡šãäžã«ã㊠$1$ æãã€ã³ã€ã³ã眮ããïŒ$m+n=102$ ãªããã¹ãŠã®ãã¹ $(m,n)$ ã«è£ãäžã«ã㊠$1$ æãã€ã³ã€ã³ã眮ããïŒãã以å€ã®ãã¹ã«ã¯äœã眮ãããŠããŸããã§ããïŒãã®ãšãïŒæåã«ã³ã€ã³ã眮ãããŠãããã¹ã®åæ°ãæå°ã®å ŽåãšãªããããªïŒæåã®ã³ã€ã³ã®é
眮ã¯äœéããããŸããïŒ |
OMC176 | https://onlinemathcontest.com/contests/omc176 | https://onlinemathcontest.com/contests/omc176/tasks/6900 | F | OMC176(F) | 500 | 21 | 69 | [
{
"content": "ã$MX = 12x$ ãšçœ®ã. ãã®ãšã, $BM = 18x$ ã§ãã. ãŸã, \r\n$$\\angle XHC=\\angle XBC=\\angle XDM,\\quad \\angle XCH=\\angle XBH=\\angle XMD$$ ããäžè§åœ¢ $XDM$ ãš $XHC$ ã¯çžäŒŒã§ãã, ãã£ãŠäžè§åœ¢ $XDH$ ãš $XMC$ ãçžäŒŒã§ãã.ããã«, çŽç· $BH$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã®å
$B$ ã§ãªãæ¹ã $Y$ ãšãããš,\r\n$$HY=2HD,\\quad CB=2CM$$\r\nã§ãããã, äžè§åœ¢ $XBC$ ãš $XYH$ ã¯çžäŒŒã§ãã. ãŸã,\r\n$$\\angle XYB=\\angle XBM=\\angle XDM$$\r\nãã, äžè§åœ¢ $DMX$ ãš $YMD$ ã¯çžäŒŒã§ãã. ãã£ãŠ, $DM=BM=18x$ ãã, \r\n$$XY=MY-MX=DM\\times\\frac{DM}{MX}-12x=15x,\\quad BX=XY\\times\\frac{CX}{HX}=20x$$\r\nã§ãã. 以äžãšäžç·å®çãã\r\n$$(20x)^2+4^2=2((12x)^2+(18x)^2)$$\r\nãæç«ããã®ã§, ããã解ã㊠$x=\\dfrac{2}{\\sqrt{134}}$ ãåŸã. åŸã£ãŠ, $BC=36x=\\dfrac{72}{\\sqrt{134}}$ ã§ãã. ç¹ã«, 解çãã¹ãå€ã¯ $\\bf{206}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/6900"
},
{
"content": "ãäžè§åœ¢ $HBC$ ã®å€æ¥åãšçŽç· $XM$ ã® $X$ ã§ã¯ãªã亀ç¹ã $P$ ãšããïŒ$BC=12x$ ãšããã° $BM=6x, XM=4x$ ãã $BP=6, PM=9x$ ã§ãã\\\r\n$\\angle HPC =\\angle HBM = \\angle HDM = \\angle BXM$ ãã $CH=BP=6, PH=BC=12x$ ã§ïŒåè§åœ¢ $CPHX$ ã«ãã¬ããŒã®å®çãé©çšã㊠$CP=10x$ãšãªãïŒãã£ãŠ $BX=\\dfrac{20}3x$ ãšãªãïŒããšã¯å
¬åŒè§£èª¬ãšåæ§ã®äžç·å®çãçšããã°è¯ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/6900/279"
},
{
"content": "ãç¹ã«æ°ããç¹ãåããªãæ¹æ³ã§ãïŒ\r\n\r\nãå
¬åŒè§£èª¬ãšåæ§ã«ïŒ$\\triangle{XHC} \\sim \\triangle{XDM}$ïŒ$\\triangle{XDH} \\sim \\triangle{XMC}$ ïŒããã«ïŒç¹ $M$ äžå¿ïŒçŽåŸ $BC$ ã®åãèããã°ããããïŒ$MB=MC=MD$ ã§ããïŒ\\\r\nãæ±ããã $BC$ ã®é·ãã $x$ ãšçœ®ããšïŒ$MB=MC=MD=\\dfrac{x}{2}$ïŒ$MX=\\dfrac{x}{3}$ïŒããã«ïŒå
ã»ã©ã®çžäŒŒã䜿ã£ãŠïŒ$HC=6$ïŒ$HD=\\dfrac{3}{8}x$ ã§ããïŒããã§ïŒ$CD$ ã®é·ãã $x$ ã§è¡šãããšãã§ããã°ïŒ$\\triangle{CDH}$ ã«äžå¹³æ¹ã®å®çãçšããããšã§ïŒ$x$ ã®å€ãæ±ãŸãïŒããã§ïŒ$\\angle C$ ã®äœåŒŠïŒæ£åŒŠã§ãããïŒãããããªãããšå³ãããèŠãã°ïŒ$\\triangle{HXC}$ ã«ç®ãè¡ãïŒ\\\r\nãå
·äœçã«ã¯ïŒ$\\triangle{HXC}$ ã® $3$ 蟺ã®é·ããåãã£ãŠããã®ã§ïŒäœåŒŠå®çãã $\\angle HXC$ ã®äœåŒŠãæ±ãŸãïŒ$\\angle HXC=90^\\circ+\\angle C$ ãçšããŠïŒ$\\angle C$ ã®äœåŒŠãæ±ãŸãïŒ$CD$ ã®é·ãã $\\dfrac{\\sqrt{455}}{24}x$ ã§ãããšãããïŒããšã¯ïŒå
è¿°ã®äžå¹³æ¹ã®å®çã䜿ãã°ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc176/editorial/6900/284"
}
] | ãäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšããŸãïŒçŽç· $BH$ ãšèŸº $AC$ ã®äº€ç¹ã $D$ïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãïŒäžè§åœ¢ $HBC$ ã®å€æ¥åãšäžè§åœ¢ $BDM$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $B$ ã§ãªãæ¹ã $X$ ãšããŸãïŒãã®ãšã, 以äžãæç«ããŸããïŒ
$$BC=3XM,\quad HX=3,\quad CX=4.$$
ãã®ãšãïŒèŸº $BC$ ã®é·ãã¯æ£æŽæ° $a, b$ïŒ$b$ ã¯å¹³æ¹å åããããªãïŒãçšã㊠$\dfrac{a}{\sqrt{b}}$ ãšè¡šããã®ã§ïŒ$a+b$ ãæ±ããŠãã ããïŒ |
OMC175 (for beginners) | https://onlinemathcontest.com/contests/omc175 | https://onlinemathcontest.com/contests/omc175/tasks/5091 | A | OMC175(A) | 100 | 361 | 373 | [
{
"content": "ã $D$ ã®çºèšãçã ãšãããšïŒ $A \\sim D$ ã®ãã¡äºäººä»¥äžã®çºèšãçã§ããããšã«ãªãïŒæ¡ä»¶ã«åããïŒãã£ãŠïŒ $D$ ã®çºèšã¯åœã§ããïŒ $A$ ãš $B$ ã®çºèšããšãã«åœã§ããïŒãããã£ãŠïŒ $C$ ã®çºèšã¯çã§ããïŒçµå±æ±ããå€ã¯ïŒ $7$ ã®åæ°ã§ãªãïŒ $16$ ã®åæ°ã§ããïŒ $100$ ä»¥äž $200$ 以äžã®æå°ã®æŽæ°ïŒããªãã¡ $\\mathbf{128}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5091"
}
] | ãããæ£ã®æŽæ° $x$ ã«ã€ããŠïŒ $A,B,C,D$ ã®å人ããããã以äžã®ããã«çºèšããŠããŸãïŒããã§ïŒå人ã®ãã¡çºèšãçã§ããã®ã¯äžäººã ãã§ããïŒæ®ãã®äžäººã®çºèšã¯åœã§ããããšãããã£ãŠããŸãïŒ
- $A$ïŒ$x$ 㯠$7$ ã®åæ°ã§ãïŒ
- $B$ïŒ$x$ 㯠$16$ ã®åæ°ã§ã¯ãããŸããïŒ
- $C$ïŒ$x$ 㯠$100$ ä»¥äž $200$ 以äžã§ãïŒ
- $D$ïŒ$A$ ãš $B$ ã®çºèšã«ã€ããŠïŒã¡ããã©äžæ¹ã®ã¿ãçã§ãïŒ
ãã®ãšãïŒ $x$ ãšããŠããããæå°ã®å€ã解çããŠãã ããïŒ |
OMC175 (for beginners) | https://onlinemathcontest.com/contests/omc175 | https://onlinemathcontest.com/contests/omc175/tasks/5102 | B | OMC175(B) | 100 | 320 | 348 | [
{
"content": "ã$Z$ ã®è¡šé¢ã®ãã¡ $X$ ã®è¡šé¢ã§ããéšåã®é¢ç©ã¯ïŒ$X$ ã®è¡šé¢ããååŸ $2$ïŒäžå¿è§ $90^\\circ$ ã®æåã $3$ æåãé€ããé¢ç©ã«çãã, \r\n\r\n$$3^{2} \\times 6-2^{2} \\times \\pi \\times \\frac{1}{4} \\times 3=54-3 \\pi $$\r\n\r\nã§ããïŒãŸãïŒ$Y$ ã®ãã¡ $X$ ã®å
åŽã«ããéšå㯠$Y$ ã®äœç©ã® $\\frac{1}{8}$ ã§ããããïŒ$Z$ ã®è¡šé¢ã®ãã¡ $Y$ ã®è¡šé¢ã§ããéšåã®é¢ç©ã¯ïŒ\r\n\r\n$$4 \\times 2^{2} \\times \\pi \\times \\frac{7}{8} =14 \\pi $$\r\n\r\nã§ããïŒãã£ãŠïŒ $Z$ ã®è¡šé¢ç©ã¯ $54+11 \\pi $ ïŒç¹ã«è§£çãã¹ãå€ã¯ $ \\mathbf{65} $ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5102"
}
] | ãäžèŸºã®é·ãã $3$ ã§ããç«æ¹äœ $X$ ã®é ç¹ã®äžã€ã $P$ ãšãïŒ$P$ ãäžå¿ãšããååŸ $2$ ã®çã $Y$ ãšããŸãïŒ$X$ ãš $Y$ ã®å°ãªããšãäžæ¹ã®å
éšãŸãã¯è¡šé¢ãããªãç«äœã $Z$ ãšãããšãïŒ$Z$ ã®è¡šé¢ç©ã¯æŽæ° $p,q$ ãçšããŠïŒ$p+q \pi $ ãšè¡šãããŸãïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC175 (for beginners) | https://onlinemathcontest.com/contests/omc175 | https://onlinemathcontest.com/contests/omc175/tasks/5095 | C | OMC175(C) | 200 | 286 | 325 | [
{
"content": "ãæ±ããå€ã¯ïŒä»¥äžã®åŒãèšç®ããããšã§åŸãããããšãïŒå±éãã圢ãèããããšã§ãããïŒ\r\n$$(1^{2}+2^{2}+\\cdots+9^{2}) (0^2+1^{2}+\\cdots+9^{2}) (0^2+1^{2}+\\cdots+9^{2}) $$\r\nãããå®éã«èšç®ãããšïŒ $\\mathbf{23149125}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5095"
}
] | ã$3$ æ¡ã®æ£ã®æŽæ°ã¯å
šéšã§ $900$ åãããŸãïŒ\
ãããããã«ã€ããŠïŒãåæ¡ã®ç©ã® $2$ ä¹ãã®ç·åãæ±ããŠãã ããïŒ |
OMC175 (for beginners) | https://onlinemathcontest.com/contests/omc175 | https://onlinemathcontest.com/contests/omc175/tasks/5096 | D | OMC175(D) | 200 | 226 | 312 | [
{
"content": "ã $x+y+z$ ã $3$ ã§å²ã£ãŠ $1$ äœãïŒ $x^{2}+y^{2}+z^{2}$ ã $3$ ã®åæ°ã«ãªããšãïŒ$x,y,z$ ããããã $3$ ã§å²ã£ããšãã®äœãã®çµã¿åãããšããŠããããã®ã¯ä»¥äžã® $3$ éãã§ããïŒ\r\n\r\n$$(2,1,1), \\quad (1,2,1), \\quad (1,1,2)$$\r\n\r\n察称æ§ããïŒ$(2,1,1)$ ã®å Žåãæ±ãïŒ \r\n$3$ åããã°ããïŒãã®ãšãïŒ$0$ 以äžã®æŽæ° $a,b,c$ ãçšããŠ\r\n\r\n$$x=3a+2, \\quad y=3b+1, \\quad z=3c+1$$\r\n\r\nãšè¡šããïŒ$a+b+c=332$ ãæãç«ã€ïŒãã® $(a,b,c)$ ã®çµã¿åãã㯠${}\\_{334}\\mathrm{C}\\_{2}=55611$ éãïŒãããã£ãŠïŒæ±ããåæ°ã¯ $55611 \\times 3= \\mathbf{166833}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5096"
}
] | ã $x+y+z=1000$ ãã¿ããæ£ã®æŽæ°ã®çµ $(x,y,z)$ ã§ãã£ãŠïŒ $x^{2}+y^{2}+z^{2}$ ã $3$ ã®åæ°ãšãªããã®ã¯ããã€ãããŸããïŒ |
OMC175 (for beginners) | https://onlinemathcontest.com/contests/omc175 | https://onlinemathcontest.com/contests/omc175/tasks/5098 | E | OMC175(E) | 400 | 23 | 73 | [
{
"content": "ã $ \\angle BAC=120^\\circ$ ã§ããããšãã次ãåŸãïŒ\r\n\r\n$$ \\angle BIC=150^\\circ , \\quad \\angle BOC=120^\\circ$$\r\n\r\nãããã§ïŒçŽç· $OC$ ã«é¢ã㊠$B$ ãšå察åŽã«ç¹ $D$ ãïŒäžè§åœ¢ $BOI$ ãšäžè§åœ¢ $COD$ ãååãšãªãããã«ãšãïŒãã®ãšãïŒ$ \\angle DCI=90^\\circ, \\angle IOD=120^\\circ$ ã§ããããïŒ\r\n\r\n$$IB^{2}+IC^{2}=CD^{2}+IC^{2}=DI^{2}= \\bigl (20 \\sqrt{3} \\bigr )^{2}=1200$$\r\n\r\nãããã $IC=\\sqrt{359}$ ãåŸãããïŒäžè§åœ¢ $IBC$ ã«ã€ããŠäœåŒŠå®çãé©çšããã°ïŒ\r\n\r\n$$BC^{2}=1200 +29 \\sqrt{1077} $$\r\n\r\nããããã£ãŠïŒè§£çãã¹ãå€ã¯ $ \\mathbf{2306} $ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5098"
},
{
"content": "ã以äž, äžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã$R$, å
æ¥åã®ååŸã $r$, $CI = x$ ãšãã. ãŸã, ãªã€ã©ãŒã®å®çãã, $R^{2} - 2Rr = OI^{2} = 400$ ãåŸã. ãŸã, $â BIC = 150^{\\circ}$ ã§ããããšãã, äœåŒŠå®çãçšããããšã§, $x^{2} + 841 + 29\\sqrt{3}x = BC^{2} = 3R^{2}$ ãåŸã. ($BC = \\sqrt{3}R$ 㯠$OB = OC = R, â BOC = 120^{\\circ}$ ããåãã.) ãããŠ, äžè§åœ¢ $BIC$ ã®é¢ç©ã $2$ éãã§è¡šãããšã§, $\\sqrt{3}Rr = \\cfrac{29x}{2}$ ãåŸã. æªç¥æ°ã $3$ ã€, åŒã $3$ ã€ãªã®ã§, åŸã¯ããã解ãã°ãã, èšç®ãããš $x = \\sqrt{359}$ ãæ±ãŸãã®ã§, $x^{2} + 841 + 29\\sqrt{3}x = BC^{2}$ ã«ä»£å
¥ãããš, $BC^{2} = 1200 + 29\\sqrt{1077}$ ãåŸããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5098/278"
}
] | ã $ \angle BAC=120^\circ$ ãã¿ããäžè§åœ¢ $ABC$ ãããïŒãã®å
å¿ã $I$ïŒå€å¿ã $O$ ãšãããšïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$OI=20, \quad IB=29.$$
ããã®ãšãïŒèŸº $BC$ ã®é·ãã® $2$ ä¹ã¯ïŒå¹³æ¹å åãæããªãæ£æŽæ° $r$ ããã³ æ£æŽæ° $p,q$ ãçšã㊠$p+q \sqrt{r} $ ãšè¡šãããŸãïŒ$p+q+r$ ã解çããŠãã ããïŒ |
OMC175 (for beginners) | https://onlinemathcontest.com/contests/omc175 | https://onlinemathcontest.com/contests/omc175/tasks/5097 | F | OMC175(F) | 400 | 30 | 123 | [
{
"content": "ã $1$ ã€ç®ã®æ¡ä»¶ããïŒ $f(x)$ ã¯ä»¥äžã®ããã«ãããïŒ$c=f(0)$ ã¯æŽæ°ã§ããïŒ\r\n\r\n$$f(x)=ax^{2}+bx+c \\quad (a \\gt 0)$$\r\n\r\nãããŸïŒ$f(x)$ ãäžã«åžã§ããããšããïŒ$0 \\leq x \\leq 1$ ã®ç¯å²ã§ã®æ倧å€ã¯ $x=0$ ãŸã㯠$x=1$ ã§ãšãïŒãã㧠$x=0$ ã§æ倧å€ããšããšãïŒ$-1 \\leq x \\leq 0$ ã®ç¯å²ã§ã®æå°å€ã $x=0$ ã§ãšããã°ãªããªããïŒããã¯ççŸã§ããïŒãããã£ãŠïŒ$3$ ã€ç®ã®æ¡ä»¶ã¯ $f(1)=200$ ãšèšãæããããïŒ\\\r\nã以äžïŒ $f(x)$ ã®ã°ã©ãã®è»ž $x=-b\\/2a$ ã®å Žæã«ãã£ãŠ $3$ ã€ã®å ŽåãèããïŒ\r\n\r\n$(1)$ã$-b\\/2a \\lt -1 $ ã®ãšã\\\r\nããã®ãšãïŒ $f(-1)=100, f(1)=200$ ã§ããã®ã§ïŒ $b=50,a+c=150$ ãåŸãïŒãããš $-b\\/2a \\lt -1$ ãã $ c \\gt 125 $ ããããïŒãŸã $a\\gt 0$ ãã $c \\lt 150 $ ã§ããïŒãããã£ãŠïŒ $f(0)=c$ 㯠$126$ ä»¥äž $149$ 以äžã®æŽæ°ã§ããïŒ $c$ ã®å€ã«å¿ã㊠$f(x)$ 㯠$1$ ã€ã«å®ãŸãã®ã§ïŒ $f(x)$ ãšããŠãããããã®ã¯ $24$ åããïŒ\r\n\r\n$(2)$ã$-1 \\leq -b\\/2a \\lt 0$ ã®ãšã\\\r\nããã®ãšãïŒ $f(-b\\/2a)=100,f(1)=200$ ã§ããããïŒä»¥äžãæãç«ã€ïŒ\r\n\r\n$$- \\frac{b^{2}}{4a} +c =100, \\quad a+b+c=200$$\r\n\r\nãã® $2$ åŒãã $a$ ãæ¶å»ãïŒ $b$ ã $c$ ã«ãã£ãŠè¡šããšïŒ \r\n\r\n$$b=-2(c-100) \\pm 20 \\sqrt{c-100}$$\r\n\r\nãããã§ïŒ$b$ ãæ£ã®å®æ°ã§ããããšãã $c \\gt 100$ ã§ããïŒ$\\pm$ 㯠$+$ ã«éãããïŒãŸãïŒ$f(-1)=a-b+c$ ãæŽæ°ãšãªãããšããïŒ $2b$ ã¯æŽæ°ã§ããïŒãããã£ãŠïŒ $c-100$ ã¯å¹³æ¹æ°ã§ããïŒãŸãïŒ$-1 \\leq -b\\/2a \\lt 0$ 㯠$100 \\lt c \\leq 125$ ãšèšãæããããïŒãã£ãŠïŒ $c$ ãšããŠã¯ $101,104,109,116,125$ ã® $5$ ã€ãããããïŒããããã«ã€ããŠïŒ$c$ ã®å€ã«ãã£ãŠ $f(x)$ 㯠$1$ ã€ã«å®ãŸãããïŒ $f(x)$ ãšããŠãããããã®ã $5$ åããïŒ\r\n\r\n$(3)$ã$0 \\leq -b\\/2a$ ã®ãšã\\\r\nããã®ãšã $f(0)=100,f(1)=200$ ã§ããïŒãŸã軞ã $x \\geq 0$ ã®ç¯å²ã«ããããšãã $f(-1) \\geq 200$ ã§ããïŒéã«ïŒ $f(-1)$ ã®å€ã $200$ ä»¥äž $300$ 以äžã®æŽæ°ã§å®ãããšïŒããããã«ã€ããŠé©ãã $f(x)$ ã $1$ ã€å®ãŸãïŒãã£ãŠïŒ $f(x)$ ãšããŠãããããã®ã¯ $101$ åããïŒ\r\n\r\nã以äžããïŒ $f(x)$ ãšããŠãããããã®ã¯ $ \\mathbf{130} $ åããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5097"
},
{
"content": "ãå
¬åŒè§£èª¬ã® $(2)$ ã«é¢ããŠå¥è§£ã§ãïŒåŒ $y=a(x-p)^2+q$ ãçšããããšããæ¹åãã§ãïŒ\r\n\r\nãæå°å€ã®æ¡ä»¶ããïŒ$f(x)=a(x-p)^2+100$ ãšãããïŒ$a \\gt 0$ïŒ$-1 ⊠p \\lt 0$ïŒïŒ\\\r\nãæ倧å€ã®æ¡ä»¶ããïŒ$a(1-p)^2=100$ ã§ããïŒ\\\r\nã$f(-1),f(0) \\in \\mathbb{Z}$ ããïŒ$ap^2,a(p+1)^2 \\in \\mathbb{Z}$ ã§ããïŒããã«ïŒ$a(p-1)^2+a(p+1)^2-2ap^2=2a \\in \\mathbb{Z}$ïŒ$a(p+1)^2-a(p-1)^2=4ap \\in \\mathbb{Z}$ ã§ããïŒä»¥äžããïŒ$p \\in \\mathbb{Q}$ ãåŸãïŒ\\\r\nã$p=-\\dfrac{t}{s}$ ïŒæ¢çŽåæ°ïŒãšãããšïŒ$a(1-p)^2=100$ ãã $\\dfrac{a(s+t)^2}{s^2}=100$ïŒ$2a \\in \\mathbb{Z}$ ã ã£ãã®ã§ïŒ$(s+t)^2$ 㯠$200$ ã®çŽæ°ã§ããããšããããïŒãã£ãŠïŒ$s+t$ ã®åè£ã¯ $2$ïŒ$5$ïŒ$10$ ã§ããïŒ\\\r\nã$-1 ⊠p \\lt 0$ ãã $sâ§t$ ã§ããããšã«æ³šæãããšïŒ$(s,t)$ åè£ã¯ïŒ$(1,1)$ïŒ$(3,2)$ïŒ$(4,1)$ïŒ$(7,3)$ïŒ$(9,1)$ ã§ããïŒããšã¯ïŒãããå
šãŠã®å Žåã«ã€ããŠæ¡ä»¶ãæºãããŠããããšã確ãããŠïŒ$(2)$ 㯠$5$ éãã§ããããšããããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc175/editorial/5097/276"
}
] | ãå®æ°ä¿æ° $2$ 次å€é
åŒ $f(x)$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããã®ã¯ããã€ãããŸããïŒ
- $2$ 次ã®ä¿æ°ã¯æ£ã§ããïŒ
- $-1 \leq x \leq 0$ ã®ç¯å²ã§ã®æå°å€ã¯ $100$ ã§ããïŒ
- $0 \leq x \leq 1$ ã®ç¯å²ã§ã®æ倧å€ã¯ $200$ ã§ããïŒ
- $f(-1),f(0),f(1)$ ã¯ãããã $300$ 以äžã®æŽæ°å€ã§ããïŒ |
OMC174 (for experts) | https://onlinemathcontest.com/contests/omc174 | https://onlinemathcontest.com/contests/omc174/tasks/7162 | A | OMC174(A) | 400 | 133 | 158 | [
{
"content": "ã$x, y, z, w$ ã®æŽæ°éšåããããã $A, B, C, D$ ãšããïŒå°æ°éšåããããã $a, b, c, d$ ãšããïŒ\r\nãã ãå®æ° $t$ ã«å¯Ÿã $t$ ã®**æŽæ°éšå**ãšã¯ $\\lfloor t\\rfloor$ïŒ**å°æ°éšå**ãšã¯ $t-\\lfloor t\\rfloor$ ã®ããšãšããïŒ\\\r\nã$x=A+a$ ãªã©ã«æ³šæã㊠$1$ çªç®ã®åŒãæŽçãããšïŒ\r\n$$A^2 + B^2 = a^2 + 52.19$$\r\n\r\nãåŸãããïŒãã®åŒã®å·ŠèŸºãæŽæ°ã§ããïŒã〠$0 \\leq a \\lt 1$ ã§ããããšãã\r\n$$A^2 + B^2 = 53ïŒa = 0.9$$\r\n\r\nãåŸãïŒåæ§ã« $2, 3$ çªç®ã®åŒãã\r\n$$B^2 + C^2 = 85ïŒC^2 + D^2 = 565ïŒb = 0.7ïŒc = 0.5$$\r\nãåŸãããïŒ$53$ ã $2$ ã€ã®å¹³æ¹æ°ã®åã§è¡šãæ¹æ³ã¯ $2^2 + 7^2 = 53$ ã®ã¿ãªã®ã§çµ $(A^2, B^2)$ ãšããŠããåŸããã®ã¯ $2$ çµããïŒããããã«å¯Ÿã㊠$4$ æ°ã®çµ $(A^2, B^2, C^2, D^2)$ ã¯ä»¥äžã®ããã«ïŒãã¹ãŠå¹³æ¹æ°ãšãªãããã«æ±ºãŸãïŒ\r\n$$(2^2, 7^2, 6^2, 23^2)ïŒ(7^2, 2^2, 9^2, 22^2)$$\r\n\r\nããŸã $a + b + c = 2.1$ ã§ããããšãã $x + y + z + w$ ãæŽæ°ãšãªãã®ã¯ $d = 0.9$ ã®ãšãã«éããïŒãã®ãšã $a + b + c + d = 3$ ãšãªãïŒããã«ïŒ$x + y + z + w$ ã®ãšãåŸãæŽæ°å€ã¯ä»¥äžã©ã¡ããã®åœ¢åŒã§è¡šãããæ°ã§ããïŒåã
ã®åœ¢åŒã«å¯Ÿãè€å·ã®æ±ºãæ¹ã¯ä»»æã§ããïŒïŒ\r\n- **åœ¢åŒ 1.**ã$\\pm 2 \\pm 6 \\pm 7 \\pm 23 + 3$\r\n- **åœ¢åŒ 2.**ã$\\pm 2 \\pm 7 \\pm 9 \\pm 22 + 3$\r\n\r\nåœ¢åŒ 1. ã§è¡šãããæ°ã¯å€§ããæ¹ãã $41, 37, 29, \\dots$ ã§ããïŒåœ¢åŒ 2. ã§è¡šãããæ°ã¯å€§ããæ¹ãã $43, 39, 29, \\dots$ ã§ããïŒããã«è§£çãã¹ãå€ã¯\r\n$$43 \\times 41 \\times 39 \\times 37 \\times 29 = \\mathbf{73776261}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/7162"
}
] | ãå®æ° $x, y, z, w$ ã以äžã® $3$ ã€ã®çåŒãæºãããšãïŒå $x + y + z + w$ ããšãããæŽæ°å€ã®äžã§ $1, 2, 3, 4, 5$ çªç®ã«å€§ãããã®ã®**ç·ç©**ã解çããŠãã ããïŒ
$$
\left\\{
\begin{array}{l}
2 \lfloor x \rfloor x + \lfloor y \rfloor ^2 = x^2 + 52.19\\\\
2 \lfloor y \rfloor y + \lfloor z \rfloor ^2 = y^2 + 84.51\\\\
2 \lfloor z \rfloor z + \lfloor w \rfloor ^2 = z^2 + 564.75
\end{array}
\right.
$$
ãã ãïŒå®æ° $t$ ã«å¯Ÿã $\lfloor t \rfloor$ 㧠$t$ 以äžã®æ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMC174 (for experts) | https://onlinemathcontest.com/contests/omc174 | https://onlinemathcontest.com/contests/omc174/tasks/2211 | B | OMC174(B) | 400 | 34 | 64 | [
{
"content": "ã$\\mathcal{P}$ ã®è»žã $y$ 軞ãšå¹³è¡ã§ãããããªçŽäº€åº§æšãèãããšïŒããšãã° $A$ ã® $x$ 座æšã¯ $S$ ãš $U$ ã® $x$ 座æšã®å¹³åãšãªãããšãç¥ãããŠããïŒ\\\r\nãä»åã®èšå®ã§ãã®äºå®ããã®åž°çµããŸãšããããšã§ïŒä»¥äžã®æç«ãåããïŒ\r\n$$ SB:BA=BT:TC=AC:CU=3:2. $$\r\nããã§ïŒç·å $SU$ äžã« $SX:XU=3:2$ ãªãç¹ $X$ ããšããšïŒåè§åœ¢ $ABXC$ ã¯é·æ¹åœ¢ã§ããããïŒ$X$ 㯠$ABC$ ã®å€æ¥åäžã«ããïŒããã«ãã $A$ ãã $SU$ ã«ããããåç·ã®è¶³ $H$ ãåãåäžã«ããïŒèŸºã®æ¯ãèããã°ïŒ\r\n$$SH:HU=SA^2:UA^2=\\left(4\\times \\dfrac{5}{2}\\right)^2:\\left(7\\times \\dfrac{5}{3}\\right)^2=36:49.$$\r\nããã«ãã $H=K$, $X=L$ ãšå¯Ÿå¿ãïŒæ±ããæ¯ã¯ $ SK:KL:LU=36:15:34$ ãšãªãããïŒè§£çãã¹ãå€ã¯ $\\textbf{18360}$ ã§ããïŒ\r\n![figure 1](\\/images\\/nlEb472UuYzhNGojE4CPt7QEPHCRMMwEw48Y7Qhx)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/2211"
},
{
"content": "ã解説 $4$ è¡ç®ãŸã§ã¯åæ§ïŒå³ã¯çžäŒŒæ¡å€§ãé€ãäžæã§ããã®ã§ïŒèŸºã®é·ããæŽæ°ã«ãªãããã« $AB=12,AC=21$ ãªãçžäŒŒæ¡å€§ãæœãïŒ$SU=5\\sqrt{85}$ ã§ããïŒ$2$ ç¹ $S,U$ ããæ¹ã¹ãã®å®çãé©çšããããšãèããïŒ\\\r\n$SK=\\sqrt{85}x,KL=\\sqrt{85}y,LU=\\sqrt{85}z$ ãšããïŒ(åã« $x,y,z$ ãšçœ®ãããïŒãã®çœ®ãæ¹ãªãã°åŸã®é£ç«ã«æ ¹å·ãç»å ŽããªãããïŒèšç®ã楜ã«ãªãïŒ)\\\r\nãæ¹ã¹ãã®å®çããïŒä»¥äžã®æç«ããããïŒ\\\r\n$$x+y+z=5,\\quad x(x+y)=\\dfrac{108}{17},\\quad z(z+y)=\\dfrac{98}{17}$$\r\nããããã®æåãæ£ã§ããããšã«æ³šæããã°ïŒ$(x,y,z)=\\Big(\\dfrac{36}{17},\\dfrac{15}{17},\\dfrac{34}{17}\\Big)$ ãšãªãïŒ$x:y:z=36:15:34$ ã§ããã®ã§ïŒè§£çãã¹ãå€ã¯ $\\mathbf{18360}$ ã§ããïŒ",
"text": "æ¹ã¹ãã®å®çãçšãããš",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/2211/274"
}
] | ãæŸç©ç· $\mathcal{P}$ äžã« $3$ ç¹ $S,T,U$ ããã®é ã«äžŠã¶ããã«ãšãïŒåç¹ã«ããã $\mathcal{P}$ ã®æ¥ç·ã $l_S,l_T,l_U$ ãšããŸãïŒ$l_S$ ãš $l_U$ ã®äº€ç¹ã $A$ ãšãïŒ$l_S$ ãš $l_T$ ã®äº€ç¹ã $B$ ãšãïŒ$l_T$ ãš $l_U$ ã®äº€ç¹ã $C$ ãšãããšïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$\angle BAC=90^\circ,\quad AB:AC=4:7,\quad BT:TC=3:2.$$
ããã«ïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã¯ç·å $SU$ ãš $2$ ç¹ã§äº€ãããŸããïŒãããã®äº€ç¹ã $S$ ã«è¿ãæ¹ãã $K,L$ ãšãããšãïŒ$SK:KL:LU$ ãæ±ããŠãã ããïŒãã ãïŒæ±ããæ¯ã¯äºãã«çŽ ãªæ£æŽæ° $p,q,r$ ãçšã㊠$p:q:r$ ãšè¡šããã®ã§ïŒ$pqr$ ã解çããŠãã ããïŒ |
OMC174 (for experts) | https://onlinemathcontest.com/contests/omc174 | https://onlinemathcontest.com/contests/omc174/tasks/8150 | C | OMC174(C) | 500 | 34 | 89 | [
{
"content": "ã$1, 2, \\ldots, 100$ ã®çªå·ã®ã€ããé ç¹ãçšæãïŒçªå·ã®åã $101, 103, 105$ ã®ããããã§ããé ç¹ã®éã«èŸºã匵ãããšã§ïŒç¡åïŒã°ã©ã $G$ ãæ§æãããšïŒ$G$ ã¯å³1ã®ããã«ãªãïŒãã ãå³1ã«ãããŠïŒ\r\n$$a_{2n-1}=4n-3,\\quad a_{2n}=104-4n,\\quad b_{2n-1}=4n-1,\\quad b_{2n}=102-4n\\quad (n=1, 2, \\ldots, 25)$$\r\nã§ããïŒã¹ã³ã¢ã $7$ ãšãªããã㪠$7$ æã®ã«ãŒãã®éžã³æ¹ã¯ïŒé ç¹ã®åæ°ã $7$ïŒèŸºã®æ¬æ°ã $7$ ã§ãã $G$ ã®èªå°éšåã°ã©ãã«å¯Ÿå¿ãïŒãã®èªå°éšåã°ã©ããå³1ã®é ç¹ã®äœçœ®é¢ä¿ã§èãããšãã®åœ¢ã¯å³2ã® (i)\\~(v) ã®ããããã§ããïŒããããå転ãå転ãããã®ãå«ãïŒïŒ\\\r\nã(i) ã¯é£çµãª $6$ é ç¹ã®äœçœ®ã§å ŽååãããŠèããã° $91\\times 2 + 90\\times 45=4232$ éãïŒãŸã (ii)\\~(v) ã«ã€ããŠã¯å転ããã³å転ãèãããš (ii) 㯠$182$ éãïŒ(iii), (iv), (v) 㯠$184$ éããã€ãšãããïŒ\\\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $\\bm{4966}$ éãïŒ\r\n\r\n<details>\r\n<summary>èªå°éšåã°ã©ããšã¯<\\/summary>\r\nãããšã®ã°ã©ãããããã€ãã®é ç¹ãéžã¶ãšãïŒãããã®é ç¹ã®éã®èŸºã®æç¡ãããšã®ã°ã©ããšäžèŽããéšåã°ã©ãã**èªå°éšåã°ã©ã**ãšåŒã¶ïŒ\r\n<\\/details>\r\n\r\n![figure 1](\\/images\\/0FWFPuMklRTkzP5t7l3PUYsLoxZq5Cmqrv0x7eC8)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/8150"
},
{
"content": "ã[å
¬åŒè§£èª¬](.\\/)ã® $G$ ã«ã€ããŠïŒå蟺ãçµã¶ $2$ é ç¹ã®å¶å¥ã¯ç°ãªãããïŒ$G$ ã¯å¥æ°ã®é ç¹ã®éåãšå¶æ°ã®é ç¹ã®éåãããããéšéåã«æã€äºéšã°ã©ãã§ããããšã«æ³šç®ããïŒäžéšã«å¥æ°ã®é ç¹ãïŒäžéšã«å¶æ°ã®é ç¹ã䞊ã¹ïŒãŸã蟺ã§çµã°ããé ç¹å士ãè¿ããªãããã«ïŒå¥æ°ã¯ $1,\\\\, 3,\\\\, \\ldots,\\\\, 99$ïŒå¶æ°ã¯ $100,\\\\, 98,\\\\, \\ldots,\\\\, 2$ ã®é ã«äžŠã¹ïŒãããŠå $103$ ã®èŸºãéçŽã«ãªãããã«ããã°ïŒã°ã©ãã®åœ¢ãã€ã¡ãŒãžããããïŒå
¬åŒè§£èª¬ã§ã¯ïŒåã $103$ ã®é ç¹ã®çµã«å¯ŸãïŒ$1$ çµããã«ã²ã£ããè¿ãããšã§ããã«èŠãããããŠãããïŒãã®ãŸãŸã§ãååã§ããããïŒããã§ã¯ãããããïŒ \r\nã次ã«ïŒå
¬åŒè§£èª¬ã®èªå°éšåã°ã©ãã«ã€ããŠïŒé ç¹ã®æ°ãšèŸºã®æ°ãçããããšããïŒæšã§ã¯èŸºã®æ°ã足ããªãïŒãã£ãŠã©ããã«ãµã€ã¯ã«ãã§ããŠããŠïŒ$G$ ã®åœ¢ç¶ãã $\\Join$ ã®åœ¢ãæããªããã°ãªããªãããšãåããïŒããšã¯ $\\Join$ ãäºã€ãã£ã€ãããã®${}+1$ ç¹ãšãããïŒ$\\Join$ ã«åèš $3$ 蟺ã®æšãã€ãªããã°ããïŒåŸè
ã®å Žåã«ã€ããŠïŒ$\\Join$ ã®åãåŽã«ãã㊠$\\Join$ ã«é£æ¥ãã $2$ ç¹ãäž¡æ¹éžã¶ããšã¯ã§ããªãããšã«æ³šæãããš\r\n$$\\mathord\\Join\\\\!\\mathord\\vee\\\\!\\backslash \\qquad\r\n\\mathord\\Join\\\\!\\mathord\\vee\\\\!| \\qquad\r\n\\/\\\\!\\mathord\\Join\\\\!\\mathord\\vee \\qquad\r\n\\/\\\\!\\mathord\\Join\\\\!\\mathord\\wedge$$\r\nã«å€§å¥ããïŒãããå
¬åŒè§£èª¬ã®å³ $2$ ã«å¯Ÿå¿ããŠããïŒå
¬åŒè§£èª¬ã§ã¯ïŒãããããããæ°ããŠãããïŒ$\\Join$ ã®äœçœ®ããšã«ãŸãšããŠæ°ããŠãè¯ãïŒ$\\Join$ ã端ãã $1,\\\\, 2,\\\\, 3$ çªç®ïŒãã以å€ã®å Žåã«ã€ããŠïŒãããã $6,\\\\, 10,\\\\, 15,\\\\, 16$ éãã§ããããšãåããïŒãããã\r\n$$ 2 \\times (6 + 10 + 15) + 42 \\times 16 = 734 $$\r\néãïŒãããã£ãŠ $\\mathord\\Join\\\\!\\mathord\\Join + 1$ ç¹ã®å Žåãå
¬åŒè§£èª¬ãšåæ§ã«æ°ãäžããã°ïŒãã® $4232$ éããšäžãåãããŠïŒæ±ããå Žåã®æ°ã¯ $\\bm{4966}$ éãïŒ",
"text": "å
¬åŒè§£èª¬ã®è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/8150/272"
}
] | ã$1, 2, \ldots, 100$ ã®çªå·ã®ãã¡ã¡ããã©äžã€ãæžãããã«ãŒãããããã $1$ æãã€ïŒèš $100$ æãããŸãïŒãã®äžãã $7$ æã®ã«ãŒããåæã«éžã¶ãšãïŒéžãã ã«ãŒãã®ãã¡ïŒæžãããçªå·ã®åã $101, 103, 105$ ã®ãããããšãªããã㪠$2$ æã®ãã¢ã®åæ°ã**ã¹ã³ã¢**ãšåŒã³ãŸãïŒã¹ã³ã¢ã $7$ ãšãªããããªã«ãŒã $7$ æã®éžã³æ¹ã¯äœéããããŸããïŒ |
OMC174 (for experts) | https://onlinemathcontest.com/contests/omc174 | https://onlinemathcontest.com/contests/omc174/tasks/7484 | D | OMC174(D) | 500 | 34 | 50 | [
{
"content": "ã$y_n = x_{n+1} - x_n$ ãšãããšïŒäžããããçåŒã¯\r\n$$y_n^2 - 2c_{n+1} y_n + 2c_{n+1}c_n = 0$$\r\nãšå€åœ¢ããããšãã§ããïŒããã $y_n$ ã«ã€ããŠã® $2$ 次æ¹çšåŒãšã¿ãªãããšãã®å€å¥åŒïŒã® $4$ åã® $1$ïŒã\r\n$$D_n = c_{n+1} (c_{n+1} - 2c_n)$$\r\nãšãããšïŒæ¡ä»¶ãã $D_1, D_2, ..., D_8$ ã®ãã¡ $1$ ã€ã®ã¿ãæ£ã§ïŒæ®ã㯠$0$ ã§ãªããã°ãªããªãïŒå
ã»ã©ã® $2$ 次æ¹çšåŒãå®éã«è§£ããšïŒ$D_n \\gt 0$ ãªãã°\r\n$$y_n = c_{n+1} \\pm \\sqrt{D_n}$$\r\nã解ã§ããïŒ$D_n = 0$ ãªãã°\r\n$$y_n = c_{n+1}$$\r\nã解ã§ããïŒãããã£ãŠ $D_n \\gt 0$ ãªããã äžã€ã® $n$ ã $r$ ãšãããš\r\n$$x_9 = \\sum_{k = 1}^9 c_k \\pm \\sqrt{D_r}$$\r\nã§ããã®ã§ïŒãããã以äžãã¿ããã°ããïŒ\r\n$$\\sum_{k = 1}^9 c_k = 0ïŒD_r = 3^2 \\cdot 73 \\tag{1}$$\r\nããã§æ¬¡ã®äºå®ã«æ³šæããïŒ\r\n- $c_1, âŠ, c_9$ ã®äžã«æ£ã®ãã®ãšè² ã®ãã®ãïŒã©ã¡ãã $1$ ã€ä»¥äžå«ãŸããïŒ\r\n- $D_n = 0$ ãªãã° $c_{n+1} = 2 c_n$ ãæãç«ã€ïŒ\r\n\r\nãããã®äºå®ã«ãã $C$ ã¯æ¬¡ã®ãããªåœ¢ã§è¡šãããïŒãã ã $\\alpha, \\beta$ 㯠$0$ ã§ãªãæŽæ°ã§ããïŒäºãã«å笊å·ã§ãããšããïŒ\r\n$$(\\alpha, 2 \\alpha, âŠ, 2^{r-1} \\alpha, -\\beta, -2 \\beta, âŠ, -2^{8-r} \\beta)$$\r\n\r\nãããšæ¡ä»¶ $(1)$ ãã\r\n$$\\alpha = \\frac{2^{9-r} - 1}{2^r - 1}\\betaïŒ\\beta(\\beta + 2^r \\alpha) = 3^2 \\cdot 73$$\r\nãããããïŒãããã\r\n$$|\\beta| = 3 \\sqrt{\\frac{2^r - 1}{7}}$$\r\nãåŸãããïŒ$\\alpha, \\beta$ ããšãã«æŽæ°ãšãªãã®ã¯ $r = 3, 6$ ã®ãšãã§ããïŒãããã£ãŠä»¥äžã® $C$ ãé©ããïŒããããè€å·åé ã§ããïŒïŒ\r\n$$\r\n(\\pm 27, \\pm 54, \\pm 108, \\mp 3, \\mp 6, \\mp 12, \\mp 24, \\mp 48, \\mp 96) \\\\\\\\\r\n(\\pm 1, \\pm 2, \\pm 4, \\pm 8, \\pm 16, \\pm 32, \\mp 9, \\mp 18, \\mp 36)\r\n$$\r\n\r\nã以äžã®è°è«ããïŒé©ãã $C$ ã¯è€å·ã®å®ãæ¹ã®éããå«ããŠå
šéšã§ $4$ åããããšãåããïŒããããã®æ倧å€ã®åã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$108 + 96 + 32 + 36 = \\mathbf{272}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/7484"
}
] | ã$9$ ã€ã®**æŽæ°**ãããªãå $C = (c_1, c_2, \ldots, c_9)$ ãäžããããŠããïŒ$c_1, c_2, \ldots, c_9$ ã¯ãããã $0$ ã§ãªããšããŸãïŒãããšïŒä»¥äžãã¿ãããã㪠$9$ ã€ã®å®æ°ãããªãå $X = (x_1, x_2, \ldots, x_9)$ ãïŒã¡ããã© $2$ ã€ååšããŸããïŒ
- $x_1 = c_1$ ãã¿ããïŒãªããã€å $n=1, 2, \ldots, 8$ ã«ã€ããŠ
$$x_{n+1}^2 + x_n^2 = 2(x_{n+1}x_n + c_{n+1}x_{n+1} - c_{n+1}x_n - c_{n+1}c_n)$$
ãæãç«ã€ïŒ
ããã«ïŒããããŠåŸããã $2$ ã€ã®å $X$ ã¯ïŒäžæ¹ã $x_9 = 3\sqrt{73}$ ãã¿ããïŒããäžæ¹ã $x_9 = -3\sqrt{73}$ ãã¿ãããŸããïŒãã®ãšãïŒ$C$ ãšããŠãããããã®ãã¹ãŠã«å¯ŸããŠïŒ$C$ ã«å«ãŸããé
ã®æ倧å€ã®ç·åã解çããŠãã ããïŒ |
OMC174 (for experts) | https://onlinemathcontest.com/contests/omc174 | https://onlinemathcontest.com/contests/omc174/tasks/7626 | E | OMC174(E) | 600 | 12 | 23 | [
{
"content": "ãäžè¬ã« $\\mathcal P$ ãåž $2n$ è§åœ¢ãšããŠèããïŒçžç°ãªã $2$ é ç¹ãçµã¶ç·åã®**é·ã**ãïŒ$2$ ç¹ã®éã«ãã蟺ã®æ¬æ°ïŒã®ãã¡å€§ãããªãæ¹ïŒãšå®çŸ©ããïŒ\\\r\nãçè²ãããç·åã®é·ããå¥æ°ãªãã°ïŒå¿
ãå¶æ°æ¬ã®çè²ãããç·åãšäº€ããïŒé·ããå¶æ°ãªãã°ïŒå¿
ãå¥æ°æ¬ã®çè²ãããç·åãšäº€ããïŒãã£ãŠïŒãã®åé¡ã§ã¯ïŒé·ããå¶æ°ã®çè²ãããç·åå士ã®äº€ç¹ã®åæ°ã®ïŒçžå ïŒå¹³åãæ±ããã°ããïŒ\\\r\nãçè²ãã $n$ æ¬ã®éžã³æ¹ãã¹ãŠã«ã€ããŠïŒé·ããå¶æ°ã®çè²ãããç·åå士ã®äº€ç¹ã®åæ°ã®ç·åã $S_n$ ãšããïŒïŒçè²ã®æç¡ã«ãããªãïŒé·ããå¶æ°ã®ç·åå士ã®ãã亀ç¹ã«çç®ãããšãïŒãã®ç¹ããé·ããå¶æ°ã®çè²ãããç·åå士ã®äº€ç¹ããšããŠèšäžãã $S_n$ ã«å¯äžããåæ°ã¯ïŒãã®ç¹ãéãç·å以å€ã® $n-2$ æ¬ã®éžã³æ¹ã®å Žåã®æ°\r\n$$\\dbinom{2n-4}{2}\\dbinom{2n-6}{2}\\cdots\\dbinom{2}{2}\\times\\dfrac{1}{(n-2)!}=\\dfrac{(2n-4)!}{2^{n-2}(n-2)!}\\quad\\cdots(1)$$\r\nã«çããïŒïŒçè²ã®æç¡ã«ãããªãïŒé·ããå¶æ°ã®ç·åå士ã®äº€ç¹ã®åæ°ã¯ïŒ$2n$ åã®é ç¹ããçžç°ãªã $4$ ç¹ãéžã¶ãšãïŒé£ãåãç¹ã®éã«ãã蟺ã®æ¬æ°ã (i) ãã¹ãŠå¶æ°ã§ããå Žåã®æ°ãš (ii) ãã¹ãŠå¥æ°ã§ããå Žåã®æ°ã®åã«çããïŒ\r\n- (i) ã¯ïŒ$1\\leq a\\lt b\\lt c\\lt d\\leq 2n$ ãã¿ããïŒãã¹ãŠã®å¶å¥ãäžèŽããæŽæ°ã®çµ $(a, b, c, d)$ ã®æ°ã«çããïŒ\r\n- (ii) ã¯ïŒ$1\\leq a\\lt b\\lt c\\lt d\\leq 2n$ ãã¿ããïŒå¶æ°ãšå¥æ°ãäºãéãã«äžŠã¶ $(a, b, c, d)$ ã®æ°ã«çããïŒããã¯ïŒ$1\\leq a\\lt b+1\\lt c+2\\lt d+3\\leq 2n+3$ ãã¿ããïŒãã¹ãŠã®å¶å¥ãäžèŽãã $(a, b+1, c+2, d+3)$ ã®æ°ã«çããïŒ\r\n\r\nãããã£ãŠïŒïŒçè²ã®æç¡ã«ãããªãïŒé·ããå¶æ°ã®ç·åå士ã®äº€ç¹ã®åæ°ã¯ïŒ\r\n$$\\dbinom{n}{4}\\times2+\\dbinom{n+2}{4}+\\dbinom{n+1}{4}=\\dfrac{1}{6}(n-1)n(n^2-2n+3)\\quad\\cdots(2)$$\r\nã$S_n$ 㯠(1), (2) ã®ç©ã§ããïŒãŸãïŒçè²ãã $n$ æ¬ã®éžã³æ¹ã®ç·æ°ã¯ïŒ\r\n$$\\dbinom{2n}{2}\\dbinom{2n-2}{2}\\cdots\\dbinom{2}{2}\\times\\dfrac{1}{n!}=\\dfrac{(2n)!}{2^{n}n!}$$\r\nã§ããããïŒæ±ããå¹³åå€ã¯ïŒ\r\n$$S_n\\times\\dfrac{2^{n}n!}{(2n)!}=\\dfrac{(n-1)n(n^2-2n+3)}{6(2n-1)(2n-3)}$$\r\nãšãããïŒ$n=100$ ã代å
¥ããã°ïŒïŒåæ¯ãšååã $6$ ã§å²ãåããããšã«æ³šæããŠïŒç¹ã«è§£çãã¹ãå€ $\\bm{16214153}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/7626"
},
{
"content": "ã[å
¬åŒè§£èª¬](.\\/)ã«ãããŠïŒåŒ $(1)$ ãçè²ãã $n$ æ¬ã®éžã³æ¹ã¯ïŒé ç¹ã«ä»»æã« $1,\\\\, \\ldots,\\\\, 2n$ ãšã©ããªã³ã°ãïŒãŸã éžã°ããŠããªãæãè¥ãé ç¹ã«ã€ããŠïŒèŸºã§æ¥ç¶ããé ç¹ã®éžã³æ¹ããã®éœåºŠèããããšã§ïŒãããã $(2n - 5)!!,\\\\ (2n - 1)!!$ ãšåããïŒå
¬åŒè§£èª¬ã®åŒãå€åœ¢ããŠãããã«çããããšã¯åããïŒïŒããã䜿ããšå°ãã ãèšç®åæ°ãæžãïŒ",
"text": "å°ãã ãèšç®ãã©ã¯ã«",
"url": "https://onlinemathcontest.com/contests/omc174/editorial/7626/273"
}
] | ãåž $200$ è§åœ¢ $\mathcal P$ ãããïŒã©ã® $3$ æ¬ã®å¯Ÿè§ç·ãé ç¹ä»¥å€ã® $1$ ç¹ã§äº€ãããŸããïŒ$\mathcal P$ ã®èŸºãŸãã¯å¯Ÿè§ç·ã«ãããç·åã®ãã¡çžç°ãªã $100$ æ¬ãïŒã©ã® $2$ æ¬ã端ç¹ãå
±æããªãããã«éžã³ïŒäžåºŠã«èµ€è²ã§å¡ããŸãïŒããã«ïŒèµ€ãç·åã®ãã¡ïŒã¡ããã©å¥æ°æ¬ã®èµ€ãç·åãšäº€ãããã®ãïŒãã¹ãŠäžåºŠã«éè²ã§å¡ãæ¿ããŸãïŒãã®ãšãïŒã¯ããã«èµ€è²ã«å¡ã $100$ æ¬ã®ç·åã®éžã³æ¹ãã¹ãŠã«ã€ããŠïŒéãç·åå士ã®äº€ç¹ã®åæ°ã®ïŒçžå ïŒå¹³åãæ±ããŠãã ããïŒ\
ããã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒãŸãïŒç·åãéžã¶éïŒå転ãè£è¿ãã«ãã£ãŠäžèŽãããç·åã§ãã£ãŠããã¹ãŠåºå¥ãããã®ãšããŸãïŒ |