osbm commited on
Commit
a822dfa
1 Parent(s): 47d5103

test_this out

Browse files
Files changed (2) hide show
  1. .gitignore +2 -1
  2. zenodo.py +100 -1
.gitignore CHANGED
@@ -1 +1,2 @@
1
- *.pyc
 
 
1
+ *.pyc
2
+ .venv/
zenodo.py CHANGED
@@ -7,4 +7,103 @@ import os
7
 
8
  import datasets
9
 
10
- print("heyoooo")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  import datasets
9
 
10
+ _DESCRIPTION = """\
11
+ This dataset is for downloading a Zenodo dataset without extra packages.
12
+ """
13
+
14
+
15
+
16
+
17
+ class NewDataset(datasets.GeneratorBasedBuilder):
18
+ """This dataset downloads a zenodo dataset and returns its path."""
19
+
20
+ VERSION = datasets.Version("1.1.0")
21
+
22
+ # This is an example of a dataset with multiple configurations.
23
+ # If you don't want/need to define several sub-sets in your dataset,
24
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
25
+
26
+ # If you need to make complex sub-parts in the datasets with configurable options
27
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
28
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
29
+
30
+ # You will be able to load one or the other configurations in the following list with
31
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
32
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
33
+ # BUILDER_CONFIGS = [
34
+ # datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
35
+ # datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
36
+ # ]
37
+
38
+ # DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
39
+
40
+ def _info(self):
41
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
42
+ # if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
43
+ # features = datasets.Features(
44
+ # {
45
+ # "sentence": datasets.Value("string"),
46
+ # "option1": datasets.Value("string"),
47
+ # "answer": datasets.Value("string")
48
+ # # These are the features of your dataset like images, labels ...
49
+ # }
50
+ # )
51
+ # else: # This is an example to show how to have different features for "first_domain" and "second_domain"
52
+ # features = datasets.Features(
53
+ # {
54
+ # "sentence": datasets.Value("string"),
55
+ # "option2": datasets.Value("string"),
56
+ # "second_domain_answer": datasets.Value("string")
57
+ # # These are the features of your dataset like images, labels ...
58
+ # }
59
+ # )
60
+
61
+ features = datasets.Features(
62
+ {
63
+ "path": datasets.Value("string"),
64
+ }
65
+ )
66
+
67
+ return datasets.DatasetInfo(
68
+ # This is the description that will appear on the datasets page.
69
+ description=_DESCRIPTION,
70
+ # This defines the different columns of the dataset and their types
71
+ features=features, # Here we define them above because they are different between the two configurations
72
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
73
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
74
+ # supervised_keys=("sentence", "label"),
75
+ # Homepage of the dataset for documentation
76
+ # homepage=_HOMEPAGE,
77
+ # License for the dataset if available
78
+ # license=_LICENSE,
79
+ # Citation for the dataset
80
+ # citation=_CITATION,
81
+ )
82
+
83
+ def _split_generators(self, dl_manager):
84
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
85
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
86
+
87
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
88
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
89
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
90
+ zenodo_id = self.config.name.split("/")[0]
91
+ filename = self.config.name.split("/")[1]
92
+
93
+ url = f"https://zenodo.org/record/{zenodo_id}/files/{filename}"
94
+
95
+ data_dir = dl_manager.download_and_extract([url])
96
+ return [
97
+ datasets.SplitGenerator(
98
+ name=datasets.Split.TRAIN,
99
+ data_dir=data_dir[0],
100
+ ),
101
+ ]
102
+
103
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
104
+ def _generate_examples(self, data_dir):
105
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
106
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
107
+
108
+ yield "path", data_dir
109
+