metadata
dataset_info:
features:
- name: input
dtype: string
- name: output
dtype: string
- name: paragraph
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 538343
num_examples: 230
download_size: 146541
dataset_size: 538343
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
language:
- en
pretty_name: wiki-kg-prob
wiki-kg-prob
LAMA (LAnguage Model Analysis) style Knowledge Probing via WikiMIA dataset.
GitHub
https://github.com/oneonlee/wiki-kg-prob
References
@inproceedings{shi2024detecting,
title = {Detecting Pretraining Data from Large Language Models},
author = {Weijia Shi and Anirudh Ajith and Mengzhou Xia and Yangsibo Huang and Daogao Liu and Terra Blevins and Danqi Chen and Luke Zettlemoyer},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=zWqr3MQuNs}
}
@inproceedings{petroni-etal-2019-language,
title = "Language Models as Knowledge Bases?",
author = {Petroni, Fabio and Rockt{\"a}schel, Tim and Riedel, Sebastian and Lewis, Patrick and Bakhtin, Anton and Wu, Yuxiang and Miller, Alexander},
editor = "Inui, Kentaro and Jiang, Jing and Ng, Vincent and Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1250",
doi = "10.18653/v1/D19-1250",
pages = "2463--2473",
}