Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
130ed46
1 Parent(s): 64732e5

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,243 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - crowdsourced
4
- language_creators:
5
- - crowdsourced
6
- - found
7
- language:
8
- - en
9
- license:
10
- - cc-by-3.0
11
- - cc-by-sa-3.0
12
- - mit
13
- - other
14
- license_details: Open Portion of the American National Corpus
15
- multilinguality:
16
- - monolingual
17
- size_categories:
18
- - 100K<n<1M
19
- source_datasets:
20
- - original
21
- task_categories:
22
- - text-classification
23
- task_ids:
24
- - natural-language-inference
25
- - multi-input-text-classification
26
- paperswithcode_id: multinli
27
- pretty_name: Multi-Genre Natural Language Inference
28
- dataset_info:
29
- features:
30
- - name: promptID
31
- dtype: int32
32
- - name: pairID
33
- dtype: string
34
- - name: premise
35
- dtype: string
36
- - name: premise_binary_parse
37
- dtype: string
38
- - name: premise_parse
39
- dtype: string
40
- - name: hypothesis
41
- dtype: string
42
- - name: hypothesis_binary_parse
43
- dtype: string
44
- - name: hypothesis_parse
45
- dtype: string
46
- - name: genre
47
- dtype: string
48
- - name: label
49
- dtype:
50
- class_label:
51
- names:
52
- 0: entailment
53
- 1: neutral
54
- 2: contradiction
55
- splits:
56
- - name: train
57
- num_bytes: 410211586
58
- num_examples: 392702
59
- - name: validation_matched
60
- num_bytes: 10063939
61
- num_examples: 9815
62
- - name: validation_mismatched
63
- num_bytes: 10610221
64
- num_examples: 9832
65
- download_size: 226850426
66
- dataset_size: 430885746
67
- ---
68
-
69
- # Dataset Card for Multi-Genre Natural Language Inference (MultiNLI)
70
-
71
- ## Table of Contents
72
- - [Dataset Description](#dataset-description)
73
- - [Dataset Summary](#dataset-summary)
74
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
75
- - [Languages](#languages)
76
- - [Dataset Structure](#dataset-structure)
77
- - [Data Instances](#data-instances)
78
- - [Data Fields](#data-fields)
79
- - [Data Splits](#data-splits)
80
- - [Dataset Creation](#dataset-creation)
81
- - [Curation Rationale](#curation-rationale)
82
- - [Source Data](#source-data)
83
- - [Annotations](#annotations)
84
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
85
- - [Considerations for Using the Data](#considerations-for-using-the-data)
86
- - [Social Impact of Dataset](#social-impact-of-dataset)
87
- - [Discussion of Biases](#discussion-of-biases)
88
- - [Other Known Limitations](#other-known-limitations)
89
- - [Additional Information](#additional-information)
90
- - [Dataset Curators](#dataset-curators)
91
- - [Licensing Information](#licensing-information)
92
- - [Citation Information](#citation-information)
93
- - [Contributions](#contributions)
94
-
95
- ## Dataset Description
96
-
97
- - **Homepage:** [https://www.nyu.edu/projects/bowman/multinli/](https://www.nyu.edu/projects/bowman/multinli/)
98
- - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
99
- - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
100
- - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
101
- - **Size of downloaded dataset files:** 216.34 MB
102
- - **Size of the generated dataset:** 73.39 MB
103
- - **Total amount of disk used:** 289.74 MB
104
-
105
- ### Dataset Summary
106
-
107
- The Multi-Genre Natural Language Inference (MultiNLI) corpus is a
108
- crowd-sourced collection of 433k sentence pairs annotated with textual
109
- entailment information. The corpus is modeled on the SNLI corpus, but differs in
110
- that covers a range of genres of spoken and written text, and supports a
111
- distinctive cross-genre generalization evaluation. The corpus served as the
112
- basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
113
-
114
- ### Supported Tasks and Leaderboards
115
-
116
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
117
-
118
- ### Languages
119
-
120
- The dataset contains samples in English only.
121
-
122
- ## Dataset Structure
123
-
124
- ### Data Instances
125
-
126
- - **Size of downloaded dataset files:** 216.34 MB
127
- - **Size of the generated dataset:** 73.39 MB
128
- - **Total amount of disk used:** 289.74 MB
129
-
130
- Example of a data instance:
131
-
132
- ```
133
- {
134
- "promptID": 31193,
135
- "pairID": "31193n",
136
- "premise": "Conceptually cream skimming has two basic dimensions - product and geography.",
137
- "premise_binary_parse": "( ( Conceptually ( cream skimming ) ) ( ( has ( ( ( two ( basic dimensions ) ) - ) ( ( product and ) geography ) ) ) . ) )",
138
- "premise_parse": "(ROOT (S (NP (JJ Conceptually) (NN cream) (NN skimming)) (VP (VBZ has) (NP (NP (CD two) (JJ basic) (NNS dimensions)) (: -) (NP (NN product) (CC and) (NN geography)))) (. .)))",
139
- "hypothesis": "Product and geography are what make cream skimming work. ",
140
- "hypothesis_binary_parse": "( ( ( Product and ) geography ) ( ( are ( what ( make ( cream ( skimming work ) ) ) ) ) . ) )",
141
- "hypothesis_parse": "(ROOT (S (NP (NN Product) (CC and) (NN geography)) (VP (VBP are) (SBAR (WHNP (WP what)) (S (VP (VBP make) (NP (NP (NN cream)) (VP (VBG skimming) (NP (NN work)))))))) (. .)))",
142
- "genre": "government",
143
- "label": 1
144
- }
145
- ```
146
-
147
- ### Data Fields
148
-
149
- The data fields are the same among all splits.
150
-
151
- - `promptID`: Unique identifier for prompt
152
- - `pairID`: Unique identifier for pair
153
- - `{premise,hypothesis}`: combination of `premise` and `hypothesis`
154
- - `{premise,hypothesis} parse`: Each sentence as parsed by the Stanford PCFG Parser 3.5.2
155
- - `{premise,hypothesis} binary parse`: parses in unlabeled binary-branching format
156
- - `genre`: a `string` feature.
157
- - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). Dataset instances which don't have any gold label are marked with -1 label. Make sure you filter them before starting the training using `datasets.Dataset.filter`.
158
-
159
- ### Data Splits
160
-
161
- |train |validation_matched|validation_mismatched|
162
- |-----:|-----------------:|--------------------:|
163
- |392702| 9815| 9832|
164
-
165
- ## Dataset Creation
166
-
167
- ### Curation Rationale
168
-
169
- They constructed MultiNLI so as to make it possible to explicitly evaluate models both on the quality of their sentence representations within the training domain and on their ability to derive reasonable representations in unfamiliar domains.
170
-
171
- ### Source Data
172
-
173
- #### Initial Data Collection and Normalization
174
-
175
- They created each sentence pair by selecting a premise sentence from a preexisting text source and asked a human annotator to compose a novel sentence to pair with it as a hypothesis.
176
-
177
- #### Who are the source language producers?
178
-
179
- [More Information Needed]
180
-
181
- ### Annotations
182
-
183
- #### Annotation process
184
-
185
- [More Information Needed]
186
-
187
- #### Who are the annotators?
188
-
189
- [More Information Needed]
190
-
191
- ### Personal and Sensitive Information
192
-
193
- [More Information Needed]
194
-
195
- ## Considerations for Using the Data
196
-
197
- ### Social Impact of Dataset
198
-
199
- [More Information Needed]
200
-
201
- ### Discussion of Biases
202
-
203
- [More Information Needed]
204
-
205
- ### Other Known Limitations
206
-
207
- [More Information Needed]
208
-
209
- ## Additional Information
210
-
211
- ### Dataset Curators
212
-
213
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
214
-
215
- ### Licensing Information
216
-
217
- The majority of the corpus is released under the OANC’s license, which allows all content to be freely used, modified, and shared under permissive terms. The data in the FICTION section falls under several permissive licenses; Seven Swords is available under a Creative Commons Share-Alike 3.0 Unported License, and with the explicit permission of the author, Living History and Password Incorrect are available under Creative Commons Attribution 3.0 Unported Licenses; the remaining works of fiction are in the public domain in the United States (but may be licensed differently elsewhere).
218
-
219
- ### Citation Information
220
-
221
- ```
222
- @InProceedings{N18-1101,
223
- author = "Williams, Adina
224
- and Nangia, Nikita
225
- and Bowman, Samuel",
226
- title = "A Broad-Coverage Challenge Corpus for
227
- Sentence Understanding through Inference",
228
- booktitle = "Proceedings of the 2018 Conference of
229
- the North American Chapter of the
230
- Association for Computational Linguistics:
231
- Human Language Technologies, Volume 1 (Long
232
- Papers)",
233
- year = "2018",
234
- publisher = "Association for Computational Linguistics",
235
- pages = "1112--1122",
236
- location = "New Orleans, Louisiana",
237
- url = "http://aclweb.org/anthology/N18-1101"
238
- }
239
- ```
240
-
241
- ### Contributions
242
-
243
- Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik), [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "The Multi-Genre Natural Language Inference (MultiNLI) corpus is a\ncrowd-sourced collection of 433k sentence pairs annotated with textual\nentailment information. The corpus is modeled on the SNLI corpus, but differs in\nthat covers a range of genres of spoken and written text, and supports a\ndistinctive cross-genre generalization evaluation. The corpus served as the\nbasis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.\n", "citation": "@InProceedings{N18-1101,\n author = {Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel},\n title = {A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference},\n booktitle = {Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n pages = {1112--1122},\n location = {New Orleans, Louisiana},\n url = {http://aclweb.org/anthology/N18-1101}\n}\n", "homepage": "https://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"promptID": {"dtype": "int32", "id": null, "_type": "Value"}, "pairID": {"dtype": "string", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "premise_binary_parse": {"dtype": "string", "id": null, "_type": "Value"}, "premise_parse": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis_binary_parse": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis_parse": {"dtype": "string", "id": null, "_type": "Value"}, "genre": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "multi_nli", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 410211586, "num_examples": 392702, "dataset_name": "multi_nli"}, "validation_matched": {"name": "validation_matched", "num_bytes": 10063939, "num_examples": 9815, "dataset_name": "multi_nli"}, "validation_mismatched": {"name": "validation_mismatched", "num_bytes": 10610221, "num_examples": 9832, "dataset_name": "multi_nli"}}, "download_checksums": {"https://cims.nyu.edu/~sbowman/multinli/multinli_1.0.zip": {"num_bytes": 226850426, "checksum": "049f507b9e36b1fcb756cfd5aeb3b7a0cfcb84bf023793652987f7e7e0957822"}}, "download_size": 226850426, "post_processing_size": null, "dataset_size": 430885746, "size_in_bytes": 657736172}}
 
 
default/multi_nli-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eb0f4d03ca610aa2801eb8b7300ded24c2fdcf4b37b560cecfcb3726a9113ec
3
+ size 213961662
default/multi_nli-validation_matched.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c70ceb7faad3969a335d6d008467e0fc43753e085a547f784b49cde9c83580
3
+ size 4938567
default/multi_nli-validation_mismatched.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b641d42f0070a04edd17a4bd1c6434f7a33f3b3177bd67c7909b080a1ba7d214
3
+ size 5104991
multi_nli.py DELETED
@@ -1,118 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """The Multi-Genre NLI Corpus."""
18
-
19
-
20
- import json
21
- import os
22
-
23
- import datasets
24
-
25
-
26
- _CITATION = """\
27
- @InProceedings{N18-1101,
28
- author = {Williams, Adina
29
- and Nangia, Nikita
30
- and Bowman, Samuel},
31
- title = {A Broad-Coverage Challenge Corpus for
32
- Sentence Understanding through Inference},
33
- booktitle = {Proceedings of the 2018 Conference of
34
- the North American Chapter of the
35
- Association for Computational Linguistics:
36
- Human Language Technologies, Volume 1 (Long
37
- Papers)},
38
- year = {2018},
39
- publisher = {Association for Computational Linguistics},
40
- pages = {1112--1122},
41
- location = {New Orleans, Louisiana},
42
- url = {http://aclweb.org/anthology/N18-1101}
43
- }
44
- """
45
-
46
- _DESCRIPTION = """\
47
- The Multi-Genre Natural Language Inference (MultiNLI) corpus is a
48
- crowd-sourced collection of 433k sentence pairs annotated with textual
49
- entailment information. The corpus is modeled on the SNLI corpus, but differs in
50
- that covers a range of genres of spoken and written text, and supports a
51
- distinctive cross-genre generalization evaluation. The corpus served as the
52
- basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.
53
- """
54
-
55
-
56
- class MultiNli(datasets.GeneratorBasedBuilder):
57
- """MultiNLI: The Stanford Question Answering Dataset. Version 1.1."""
58
-
59
- def _info(self):
60
- return datasets.DatasetInfo(
61
- description=_DESCRIPTION,
62
- features=datasets.Features(
63
- {
64
- "promptID": datasets.Value("int32"),
65
- "pairID": datasets.Value("string"),
66
- "premise": datasets.Value("string"),
67
- "premise_binary_parse": datasets.Value("string"), # parses in unlabeled binary-branching format
68
- "premise_parse": datasets.Value("string"), # sentence as parsed by the Stanford PCFG Parser 3.5.2
69
- "hypothesis": datasets.Value("string"),
70
- "hypothesis_binary_parse": datasets.Value("string"), # parses in unlabeled binary-branching format
71
- "hypothesis_parse": datasets.Value(
72
- "string"
73
- ), # sentence as parsed by the Stanford PCFG Parser 3.5.2
74
- "genre": datasets.Value("string"),
75
- "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
76
- }
77
- ),
78
- # No default supervised_keys (as we have to pass both premise
79
- # and hypothesis as input).
80
- supervised_keys=None,
81
- homepage="https://www.nyu.edu/projects/bowman/multinli/",
82
- citation=_CITATION,
83
- )
84
-
85
- def _split_generators(self, dl_manager):
86
-
87
- downloaded_dir = dl_manager.download_and_extract("https://cims.nyu.edu/~sbowman/multinli/multinli_1.0.zip")
88
- mnli_path = os.path.join(downloaded_dir, "multinli_1.0")
89
- train_path = os.path.join(mnli_path, "multinli_1.0_train.jsonl")
90
- matched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_matched.jsonl")
91
- mismatched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_mismatched.jsonl")
92
-
93
- return [
94
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
95
- datasets.SplitGenerator(name="validation_matched", gen_kwargs={"filepath": matched_validation_path}),
96
- datasets.SplitGenerator(name="validation_mismatched", gen_kwargs={"filepath": mismatched_validation_path}),
97
- ]
98
-
99
- def _generate_examples(self, filepath):
100
- """Generate mnli examples"""
101
-
102
- with open(filepath, encoding="utf-8") as f:
103
- for id_, row in enumerate(f):
104
- data = json.loads(row)
105
- if data["gold_label"] == "-":
106
- continue
107
- yield id_, {
108
- "promptID": data["promptID"],
109
- "pairID": data["pairID"],
110
- "premise": data["sentence1"],
111
- "premise_binary_parse": data["sentence1_binary_parse"],
112
- "premise_parse": data["sentence1_parse"],
113
- "hypothesis": data["sentence2"],
114
- "hypothesis_binary_parse": data["sentence2_binary_parse"],
115
- "hypothesis_parse": data["sentence2_parse"],
116
- "genre": data["genre"],
117
- "label": data["gold_label"],
118
- }