Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
acceptability-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""BLiMP dataset with minimal pairs of grammatical phenomena in English.""" | |
import json | |
import datasets | |
_CITATION = """ | |
@article{warstadt2019blimp, | |
title={BLiMP: A Benchmark of Linguistic Minimal Pairs for English}, | |
author={Warstadt, Alex and Parrish, Alicia and Liu, Haokun and Mohananey, Anhad and Peng, Wei, and Wang, Sheng-Fu and Bowman, Samuel R}, | |
journal={arXiv preprint arXiv:1912.00582}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """ | |
BLiMP is a challenge set for evaluating what language models (LMs) know about | |
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each | |
containing 1000 minimal pairs isolating specific contrasts in syntax, | |
morphology, or semantics. The data is automatically generated according to | |
expert-crafted grammars. | |
""" | |
_PROJECT_URL = "https://github.com/alexwarstadt/blimp/tree/master/" | |
_DOWNLOAD_URL = "https://raw.githubusercontent.com/alexwarstadt/blimp/master/" | |
class BlimpConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Blimp.""" | |
def __init__(self, name, version=datasets.Version("0.1.0"), **kwargs): | |
"""BuilderConfig for Blimp. | |
Args: | |
name (str): UID of the linguistic paradigm | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
description = _DESCRIPTION | |
description += f"This configuration includes the paradigm {name}." | |
super().__init__(name=name, description=description, version=version, **kwargs) | |
class Blimp(datasets.GeneratorBasedBuilder): | |
"""Minimal grammatical and ungrammatical pairs of 67 linguistic paradigms.""" | |
all_paradigms = [ | |
"adjunct_island", | |
"anaphor_gender_agreement", | |
"anaphor_number_agreement", | |
"animate_subject_passive", | |
"animate_subject_trans", | |
"causative", | |
"complex_NP_island", | |
"coordinate_structure_constraint_complex_left_branch", | |
"coordinate_structure_constraint_object_extraction", | |
"determiner_noun_agreement_1", | |
"determiner_noun_agreement_2", | |
"determiner_noun_agreement_irregular_1", | |
"determiner_noun_agreement_irregular_2", | |
"determiner_noun_agreement_with_adj_2", | |
"determiner_noun_agreement_with_adj_irregular_1", | |
"determiner_noun_agreement_with_adj_irregular_2", | |
"determiner_noun_agreement_with_adjective_1", | |
"distractor_agreement_relational_noun", | |
"distractor_agreement_relative_clause", | |
"drop_argument", | |
"ellipsis_n_bar_1", | |
"ellipsis_n_bar_2", | |
"existential_there_object_raising", | |
"existential_there_quantifiers_1", | |
"existential_there_quantifiers_2", | |
"existential_there_subject_raising", | |
"expletive_it_object_raising", | |
"inchoative", | |
"intransitive", | |
"irregular_past_participle_adjectives", | |
"irregular_past_participle_verbs", | |
"irregular_plural_subject_verb_agreement_1", | |
"irregular_plural_subject_verb_agreement_2", | |
"left_branch_island_echo_question", | |
"left_branch_island_simple_question", | |
"matrix_question_npi_licensor_present", | |
"npi_present_1", | |
"npi_present_2", | |
"only_npi_licensor_present", | |
"only_npi_scope", | |
"passive_1", | |
"passive_2", | |
"principle_A_c_command", | |
"principle_A_case_1", | |
"principle_A_case_2", | |
"principle_A_domain_1", | |
"principle_A_domain_2", | |
"principle_A_domain_3", | |
"principle_A_reconstruction", | |
"regular_plural_subject_verb_agreement_1", | |
"regular_plural_subject_verb_agreement_2", | |
"sentential_negation_npi_licensor_present", | |
"sentential_negation_npi_scope", | |
"sentential_subject_island", | |
"superlative_quantifiers_1", | |
"superlative_quantifiers_2", | |
"tough_vs_raising_1", | |
"tough_vs_raising_2", | |
"transitive", | |
"wh_island", | |
"wh_questions_object_gap", | |
"wh_questions_subject_gap", | |
"wh_questions_subject_gap_long_distance", | |
"wh_vs_that_no_gap", | |
"wh_vs_that_no_gap_long_distance", | |
"wh_vs_that_with_gap", | |
"wh_vs_that_with_gap_long_distance", | |
] | |
BUILDER_CONFIGS = [BlimpConfig(paradigm) for paradigm in all_paradigms] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence_good": datasets.Value("string"), | |
"sentence_bad": datasets.Value("string"), | |
"field": datasets.Value("string"), | |
"linguistics_term": datasets.Value("string"), | |
"UID": datasets.Value("string"), | |
"simple_LM_method": datasets.Value("bool"), | |
"one_prefix_method": datasets.Value("bool"), | |
"two_prefix_method": datasets.Value("bool"), | |
"lexically_identical": datasets.Value("bool"), | |
"pair_id": datasets.Value("int32"), | |
} | |
), | |
homepage=_PROJECT_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
download_urls = _DOWNLOAD_URL + f"data/{self.config.name}.jsonl" | |
downloaded_file = dl_manager.download_and_extract(download_urls) | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, "r", encoding="utf-8") as f: | |
for line in f: | |
line_dict = json.loads(line) | |
id_ = line_dict["UID"] + "_" + line_dict["pairID"] | |
feats = { | |
"sentence_good": line_dict["sentence_good"], | |
"sentence_bad": line_dict["sentence_bad"], | |
"field": line_dict["field"], | |
"linguistics_term": line_dict["linguistics_term"], | |
"UID": line_dict["UID"], | |
"simple_LM_method": line_dict["simple_LM_method"], | |
"one_prefix_method": line_dict["one_prefix_method"], | |
"two_prefix_method": line_dict["two_prefix_method"], | |
"lexically_identical": line_dict["lexically_identical"], | |
"pair_id": int(line_dict["pairID"]), | |
} | |
yield id_, feats | |