Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
blimp / blimp.py
albertvillanova's picture
Support streaming blimp dataset (#4016)
b6b76b7
raw
history blame
7.14 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""BLiMP dataset with minimal pairs of grammatical phenomena in English."""
import json
import datasets
_CITATION = """
@article{warstadt2019blimp,
title={BLiMP: A Benchmark of Linguistic Minimal Pairs for English},
author={Warstadt, Alex and Parrish, Alicia and Liu, Haokun and Mohananey, Anhad and Peng, Wei, and Wang, Sheng-Fu and Bowman, Samuel R},
journal={arXiv preprint arXiv:1912.00582},
year={2019}
}
"""
_DESCRIPTION = """
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
"""
_PROJECT_URL = "https://github.com/alexwarstadt/blimp/tree/master/"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/alexwarstadt/blimp/master/"
class BlimpConfig(datasets.BuilderConfig):
"""BuilderConfig for Blimp."""
def __init__(self, name, version=datasets.Version("0.1.0"), **kwargs):
"""BuilderConfig for Blimp.
Args:
name (str): UID of the linguistic paradigm
**kwargs: keyword arguments forwarded to super.
"""
description = _DESCRIPTION
description += f"This configuration includes the paradigm {name}."
super().__init__(name=name, description=description, version=version, **kwargs)
class Blimp(datasets.GeneratorBasedBuilder):
"""Minimal grammatical and ungrammatical pairs of 67 linguistic paradigms."""
all_paradigms = [
"adjunct_island",
"anaphor_gender_agreement",
"anaphor_number_agreement",
"animate_subject_passive",
"animate_subject_trans",
"causative",
"complex_NP_island",
"coordinate_structure_constraint_complex_left_branch",
"coordinate_structure_constraint_object_extraction",
"determiner_noun_agreement_1",
"determiner_noun_agreement_2",
"determiner_noun_agreement_irregular_1",
"determiner_noun_agreement_irregular_2",
"determiner_noun_agreement_with_adj_2",
"determiner_noun_agreement_with_adj_irregular_1",
"determiner_noun_agreement_with_adj_irregular_2",
"determiner_noun_agreement_with_adjective_1",
"distractor_agreement_relational_noun",
"distractor_agreement_relative_clause",
"drop_argument",
"ellipsis_n_bar_1",
"ellipsis_n_bar_2",
"existential_there_object_raising",
"existential_there_quantifiers_1",
"existential_there_quantifiers_2",
"existential_there_subject_raising",
"expletive_it_object_raising",
"inchoative",
"intransitive",
"irregular_past_participle_adjectives",
"irregular_past_participle_verbs",
"irregular_plural_subject_verb_agreement_1",
"irregular_plural_subject_verb_agreement_2",
"left_branch_island_echo_question",
"left_branch_island_simple_question",
"matrix_question_npi_licensor_present",
"npi_present_1",
"npi_present_2",
"only_npi_licensor_present",
"only_npi_scope",
"passive_1",
"passive_2",
"principle_A_c_command",
"principle_A_case_1",
"principle_A_case_2",
"principle_A_domain_1",
"principle_A_domain_2",
"principle_A_domain_3",
"principle_A_reconstruction",
"regular_plural_subject_verb_agreement_1",
"regular_plural_subject_verb_agreement_2",
"sentential_negation_npi_licensor_present",
"sentential_negation_npi_scope",
"sentential_subject_island",
"superlative_quantifiers_1",
"superlative_quantifiers_2",
"tough_vs_raising_1",
"tough_vs_raising_2",
"transitive",
"wh_island",
"wh_questions_object_gap",
"wh_questions_subject_gap",
"wh_questions_subject_gap_long_distance",
"wh_vs_that_no_gap",
"wh_vs_that_no_gap_long_distance",
"wh_vs_that_with_gap",
"wh_vs_that_with_gap_long_distance",
]
BUILDER_CONFIGS = [BlimpConfig(paradigm) for paradigm in all_paradigms]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence_good": datasets.Value("string"),
"sentence_bad": datasets.Value("string"),
"field": datasets.Value("string"),
"linguistics_term": datasets.Value("string"),
"UID": datasets.Value("string"),
"simple_LM_method": datasets.Value("bool"),
"one_prefix_method": datasets.Value("bool"),
"two_prefix_method": datasets.Value("bool"),
"lexically_identical": datasets.Value("bool"),
"pair_id": datasets.Value("int32"),
}
),
homepage=_PROJECT_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
download_urls = _DOWNLOAD_URL + f"data/{self.config.name}.jsonl"
downloaded_file = dl_manager.download_and_extract(download_urls)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, "r", encoding="utf-8") as f:
for line in f:
line_dict = json.loads(line)
id_ = line_dict["UID"] + "_" + line_dict["pairID"]
feats = {
"sentence_good": line_dict["sentence_good"],
"sentence_bad": line_dict["sentence_bad"],
"field": line_dict["field"],
"linguistics_term": line_dict["linguistics_term"],
"UID": line_dict["UID"],
"simple_LM_method": line_dict["simple_LM_method"],
"one_prefix_method": line_dict["one_prefix_method"],
"two_prefix_method": line_dict["two_prefix_method"],
"lexically_identical": line_dict["lexically_identical"],
"pair_id": int(line_dict["pairID"]),
}
yield id_, feats