cvdataset-layoutlmv3 / cvdataset-layoutlmv3.py
nvm472001's picture
fix issue dataset split failed
0aa286b
raw
history blame
4.67 kB
import json
import os
from pathlib import Path
import datasets
from PIL import Image
import pandas as pd
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{LayoutLmv3 for CV extractions,
title={LayoutLmv3for Key Information Extraction},
author={MisaR&D Team},
year={2022},
}
"""
_DESCRIPTION = """\
CV is a collection of receipts. It contains, for each photo about cv personal, a list of OCRs - with the bounding box, text, and class. The goal is to benchmark "key information extraction" - extracting key information from documents
https://arxiv.org/abs/2103.14470
"""
def load_image(image_path):
image = Image.open(image_path)
w, h = image.size
return image, (w,h)
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
def _get_drive_url(url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
_URLS = [
_get_drive_url("https://drive.google.com/file/d/11SRDeRKUr8XacB7tauiGjkw1PXDGFKUx/")
_get_drive_url("https://drive.google.com/file/d/1KdDBmGP96lFc7jv2Bf4eqrO121ST-TCh/"),
]
class DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for WildReceipt Dataset"""
def __init__(self, **kwargs):
"""BuilderConfig for WildReceipt Dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DatasetConfig, self).__init__(**kwargs)
class WildReceipt(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
DatasetConfig(name="CV Extractions", version=datasets.Version("1.0.0"), description="CV dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['person_name', 'dob_key', 'dob_value', 'gender_key', 'gender_value', 'phonenumber_key', 'phonenumber_value', 'email_key', 'email_value', 'address_key', 'address_value', 'socical_address_value', 'education', 'education_name', 'education_time', 'experience', 'experience_name', 'experience_time', 'information', 'undefined']
)
),
"image_path": datasets.Value("string"),
}
),
supervised_keys=None,
citation=_CITATION,
homepage="",
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
"""Uses local files located with data_dir"""
downloaded_file = dl_manager.download_and_extract(_URLS)
dest = Path(downloaded_file[0])/'data1'
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train.txt", "dest": dest}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test.txt", "dest": dest}
),
]
def _generate_examples(self, filepath, dest):
df = pd.read_csv(dest/'class_list.txt', delimiter='\s', header=None)
id2labels = dict(zip(df[0].tolist(), df[1].tolist()))
logger.info("⏳ Generating examples from = %s", filepath)
item_list = []
with open(filepath, 'r') as f:
for line in f:
item_list.append(line.rstrip('\n\r'))
for guid, fname in enumerate(item_list):
data = json.loads(fname)
image_path = dest/data['file_name']
image, size = load_image(image_path)
boxes = [[i['box'][6], i['box'][7], i['box'][2], i['box'][3]] for i in data['annotations']]
text = [i['text'] for i in data['annotations']]
label = [id2labels[i['label']] for i in data['annotations']]
boxes = [normalize_bbox(box, size) for box in boxes]
flag=0
for i in boxes:
for j in i:
if j>1000:
flag+=1
pass
if flag>0: print(image_path)
yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}