Datasets:
nkjp
/

Modalities:
Text
Formats:
parquet
Languages:
Polish
Libraries:
Datasets
pandas
License:
nkjp-ner / nkjp-ner.py
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
24e1824
raw
history blame
3.48 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NKJP-NER"""
from __future__ import absolute_import, division, print_function
import csv
import os
import datasets
_CITATION = """\
@book{przepiorkowski2012narodowy,
title={Narodowy korpus jezyka polskiego},
author={Przepi{\'o}rkowski, Adam},
year={2012},
publisher={Naukowe PWN}
}
"""
_DESCRIPTION = """\
The NKJP-NER is based on a human-annotated part of National Corpus of Polish (NKJP). We extracted sentences with named entities of exactly one type. The task is to predict the type of the named entity.
"""
_HOMEPAGE = "https://klejbenchmark.com/tasks/"
_LICENSE = "GNU GPL v.3"
_URLs = "https://klejbenchmark.com/static/data/klej_nkjp-ner.zip"
class NkjpNer(datasets.GeneratorBasedBuilder):
"""NKJP-NER"""
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence": datasets.Value("string"),
"target": datasets.ClassLabel(
names=[
"geogName",
"noEntity",
"orgName",
"persName",
"placeName",
"time",
]
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "train.tsv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.tsv"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for id_, row in enumerate(reader):
yield id_, {
"sentence": row["sentence"],
"target": -1 if split == "test" else row["target"],
}