size_categories: n<1K | |
dataset_info: | |
features: | |
- name: column_name | |
dtype: string | |
- name: id_faker_arguments | |
struct: | |
- name: args | |
struct: | |
- name: letters | |
dtype: string | |
- name: text | |
dtype: string | |
- name: type | |
dtype: string | |
- name: column_content | |
sequence: string | |
splits: | |
- name: train | |
num_bytes: 4583 | |
num_examples: 4 | |
download_size: 7535 | |
dataset_size: 4583 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
tags: | |
- synthetic | |
- distilabel | |
- rlaif | |
<p align="left"> | |
<a href="https://github.com/argilla-io/distilabel"> | |
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> | |
</a> | |
</p> | |
# Dataset Card for faker-example | |
This dataset has been created with [distilabel](https://distilabel.argilla.io/). | |
## Dataset Summary | |
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: | |
```console | |
distilabel pipeline run --config "https://huggingface.co/datasets/ninaxu/faker-example/raw/main/pipeline.yaml" | |
``` | |
or explore the configuration: | |
```console | |
distilabel pipeline info --config "https://huggingface.co/datasets/ninaxu/faker-example/raw/main/pipeline.yaml" | |
``` | |
## Dataset structure | |
The examples have the following structure per configuration: | |
<details><summary> Configuration: default </summary><hr> | |
```json | |
{ | |
"column_content": [ | |
"594564793936", | |
"422645724655", | |
"142688374180", | |
"151546611521", | |
"685542688520", | |
"041197636946", | |
"742485071901", | |
"259581023351", | |
"242310937846", | |
"161331443479", | |
"089946558053", | |
"892937709085", | |
"371747353204", | |
"130825763690", | |
"715314093651", | |
"199735005780", | |
"776005192229", | |
"533330763559", | |
"133642433775", | |
"400474040702", | |
"236402665456", | |
"359951161260", | |
"858505534111", | |
"035009831008", | |
"909566483105", | |
"849472289056", | |
"234702877781", | |
"264888822024", | |
"047437476067", | |
"482031650266", | |
"275058435264", | |
"042763642003", | |
"504739016897", | |
"052402347800", | |
"661215629471", | |
"346545308924", | |
"790927754992", | |
"927973073123", | |
"500126151170", | |
"989947453568", | |
"769940564398", | |
"043814193121", | |
"215740713849", | |
"301021291360", | |
"322580292726", | |
"033918946671", | |
"482122191043", | |
"637850719148", | |
"368826758961", | |
"267609231778" | |
], | |
"column_name": "uplift_loan_id", | |
"id_faker_arguments": { | |
"args": { | |
"letters": null, | |
"text": "############" | |
}, | |
"type": "id" | |
} | |
} | |
``` | |
This subset can be loaded as: | |
```python | |
from datasets import load_dataset | |
ds = load_dataset("ninaxu/faker-example", "default") | |
``` | |
Or simply as it follows, since there's only one configuration and is named `default`: | |
```python | |
from datasets import load_dataset | |
ds = load_dataset("ninaxu/faker-example") | |
``` | |
</details> | |