metadata
size_categories: n<1K
dataset_info:
features:
- name: column_name
dtype: string
- name: id_faker_arguments
struct:
- name: args
struct:
- name: letters
dtype: string
- name: text
dtype: string
- name: type
dtype: string
- name: column_content
dtype: string
splits:
- name: train
num_bytes: 12700
num_examples: 200
download_size: 7382
dataset_size: 12700
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
Dataset Card for faker-example
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml
which can be used to reproduce the pipeline that generated it in distilabel using the distilabel
CLI:
distilabel pipeline run --config "https://huggingface.co/datasets/ninaxu/faker-example/raw/main/pipeline.yaml"
or explore the configuration:
distilabel pipeline info --config "https://huggingface.co/datasets/ninaxu/faker-example/raw/main/pipeline.yaml"
Dataset structure
The examples have the following structure per configuration:
Configuration: default
{
"column_content": "138924849166",
"column_name": "uplift_loan_id",
"id_faker_arguments": {
"args": {
"letters": null,
"text": "############"
},
"type": "id"
}
}
This subset can be loaded as:
from datasets import load_dataset
ds = load_dataset("ninaxu/faker-example", "default")
Or simply as it follows, since there's only one configuration and is named default
:
from datasets import load_dataset
ds = load_dataset("ninaxu/faker-example")