nikolkoo's picture
Update README.md
6109f61 verified
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: mask
      dtype: image
  splits:
    - name: train
      num_bytes: 93594923
      num_examples: 790
  download_size: 93617398
  dataset_size: 93594923
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
license: cc-by-4.0
task_categories:
  - image-segmentation
tags:
  - geodata
  - satellite
  - sentinel2
  - ESA
pretty_name: Simple Satelite Segmentation (Norway)
size_categories:
  - n<1K

Satellite Segmentation

Summary

This dataset contains paired Sentinel-2 RGB tiles and corresponding land-cover masks (derived from ESA WorldCover) prepared for semantic segmentation. Each example has:

  • image: RGB image (PNG)
  • mask: integer-labelled mask (PNG, uint8)

Key details

  • Source imagery: Sentinel-2 L2A via Microsoft Planetary Computer (STAC)
  • Land-cover masks: ESA WorldCover (derived)
  • Spatial resolution: 10 m (aligned to Sentinel-2 grid)
  • CRS: EPSG:4326
  • Number of samples: 790
  • Train/validation split: Train

Provenance & license

This dataset was derived from third‑party datasets:

  • Sentinel‑2 (Copernicus)
  • ESA WorldCover

The user of this dataset must respect the original licenses and terms of use. The repository contains derived files (tiles).

Data format

  • Images: PNG, RGB, 3 channels
  • Masks: PNG, integer values representing classes (do not normalize/convert to RGB)
  • Filenames: {prefix}.png and {prefix}_mask.png (paired by prefix)

How to load

Example (datasets library):

from datasets import load_dataset
ds = load_dataset("nikolkoo/SatelliteSegmentation")

Example evaluation/training snippet

Use CrossEntropyLoss with logits and integer masks:

# pseudocode
images = batch["image"]  # (B,H,W,3) -> to tensor & permute
masks  = batch["mask"]   # (B,H,W) ints
logits = model(images)
loss = torch.nn.CrossEntropyLoss()(logits, masks)

Citation

If you publish results using this dataset, cite the original data providers (Copernicus / ESA / Microsoft Planetary Computer) and this dataset repo.

Contact

Feel free to add a comment in the Community 🤗