|
import sys |
|
sys.path.append("..") |
|
import pandas as pd |
|
import numpy as np |
|
import os |
|
import re |
|
import matplotlib.pyplot as plt |
|
import scipy.stats as ss |
|
import scikit_posthocs as sp |
|
import pandas as pd |
|
|
|
def sort_nicely(l): |
|
""" Sort the given list in the way that humans expect. |
|
""" |
|
convert = lambda text: int(text) if text.isdigit() else text |
|
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] |
|
l.sort( key=alphanum_key ) |
|
|
|
return l |
|
|
|
|
|
DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI'] |
|
|
|
|
|
all_methods = ['CHROM','Green','ICA','LGI','PBV','PCA','POS','SSR'] |
|
metrics = ['CC', 'MAE'] |
|
|
|
avg_type = 'mean' |
|
|
|
|
|
data_CC = [] |
|
data_MAE = [] |
|
|
|
for r,DATASET in enumerate(DATASETS): |
|
|
|
|
|
exp_path = '../results/' + DATASET + '/' |
|
files = sort_nicely(os.listdir(exp_path)) |
|
|
|
|
|
|
|
win_to_use = 10 |
|
|
|
f_to_use = [i for i in files if 'winSize'+str(win_to_use) in i][0] |
|
path = exp_path + f_to_use |
|
res = pd.read_hdf(path) |
|
|
|
print('\n\n\t\t' + DATASET + '\n\n') |
|
|
|
if DATASET == 'UBFC1' or DATASET == 'UBFC2' or DATASET == 'Mahnob' or DATASET == 'UBFC_ALL': |
|
|
|
all_vals_CC = [] |
|
all_vals_MAE = [] |
|
curr_dataCC = np.zeros(len(all_methods)) |
|
curr_dataMAE = np.zeros(len(all_methods)) |
|
|
|
for metric in metrics: |
|
for method in all_methods: |
|
|
|
mean_v = [] |
|
raw_values = res[res['method'] == method][metric] |
|
values = [] |
|
for v in raw_values: |
|
if metric == 'CC': |
|
values.append(v[np.argmax(v)]) |
|
else: |
|
values.append(v[np.argmin(v)]) |
|
|
|
if metric == 'CC': |
|
all_vals_CC.append(np.array(values)) |
|
if metric == 'MAE': |
|
all_vals_MAE.append(np.array(values)) |
|
|
|
for c in range(len(all_vals_CC)): |
|
if avg_type == 'median': |
|
curr_dataCC[c] = np.median(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.median(all_vals_MAE[c]) |
|
else: |
|
curr_dataCC[c] = np.mean(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.mean(all_vals_MAE[c]) |
|
|
|
data_CC.append(curr_dataCC) |
|
data_MAE.append(curr_dataMAE) |
|
|
|
|
|
elif DATASET == 'PURE': |
|
|
|
cases = {'01':'steady', '02':'talking', '03':'slow_trans', '04':'fast_trans', '05':'small_rot', '06':'fast_rot'} |
|
all_CC = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]} |
|
all_MAE = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]} |
|
CC_allcases = [] |
|
MAE_allcases = [] |
|
curr_dataCC = np.zeros(len(all_methods)) |
|
curr_dataMAE = np.zeros(len(all_methods)) |
|
|
|
for metric in metrics: |
|
for method in all_methods: |
|
|
|
for curr_case in cases.keys(): |
|
|
|
curr_res = res[res['videoName'].str.split('/').str[5].str.split('-').str[1] == curr_case] |
|
raw_values = curr_res[curr_res['method'] == method][metric] |
|
|
|
values = [] |
|
for v in raw_values: |
|
if metric == 'CC': |
|
values.append(v[np.argmax(v)]) |
|
else: |
|
values.append(v[np.argmin(v)]) |
|
|
|
if metric == 'CC': |
|
all_CC[curr_case].append(np.array(values)) |
|
if metric == 'MAE': |
|
all_MAE[curr_case].append(np.array(values)) |
|
|
|
for curr_case in cases.keys(): |
|
|
|
all_vals_CC = all_CC[curr_case] |
|
all_vals_MAE = all_MAE[curr_case] |
|
|
|
for c in range(len(all_vals_CC)): |
|
if avg_type == 'median': |
|
curr_dataCC[c] = np.median(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.median(all_vals_MAE[c]) |
|
else: |
|
curr_dataCC[c] = np.mean(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.mean(all_vals_MAE[c]) |
|
|
|
data_CC.append(curr_dataCC.copy()) |
|
data_MAE.append(curr_dataMAE.copy()) |
|
|
|
elif DATASET == 'Cohface': |
|
|
|
CC_allcases = [] |
|
MAE_allcases = [] |
|
curr_dataCC = np.zeros(len(all_methods)) |
|
curr_dataMAE = np.zeros(len(all_methods)) |
|
|
|
for metric in metrics: |
|
for method in all_methods: |
|
raw_values = res[res['method'] == method][metric] |
|
|
|
values = [] |
|
for v in raw_values: |
|
if metric == 'CC': |
|
values.append(v[np.argmax(v)]) |
|
else: |
|
values.append(v[np.argmin(v)]) |
|
|
|
if metric == 'CC': |
|
CC_allcases.append(np.array(values)) |
|
if metric == 'MAE': |
|
MAE_allcases.append(np.array(values)) |
|
|
|
for c in range(len(CC_allcases)): |
|
if avg_type == 'median': |
|
curr_dataCC[c] = np.median(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.median(all_vals_MAE[c]) |
|
else: |
|
curr_dataCC[c] = np.mean(CC_allcases[c]) |
|
curr_dataMAE[c] = np.mean(MAE_allcases[c]) |
|
|
|
data_CC.append(curr_dataCC) |
|
data_MAE.append(curr_dataMAE) |
|
|
|
|
|
elif DATASET == 'LGI-PPGI': |
|
|
|
cases = ['gym', 'resting', 'rotation', 'talk'] |
|
|
|
all_CC = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]} |
|
all_MAE = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]} |
|
CC_allcases = [] |
|
MAE_allcases = [] |
|
curr_dataCC = np.zeros(len(all_methods)) |
|
curr_dataMAE = np.zeros(len(all_methods)) |
|
|
|
for metric in metrics: |
|
for method in all_methods: |
|
|
|
for curr_case in cases: |
|
|
|
curr_res = res[res['videoName'].str.split('/').str[6].str.split('_').str[1] == curr_case] |
|
raw_values = curr_res[curr_res['method'] == method][metric] |
|
|
|
values = [] |
|
for v in raw_values: |
|
if metric == 'CC': |
|
values.append(v[np.argmax(v)]) |
|
else: |
|
values.append(v[np.argmin(v)]) |
|
|
|
if metric == 'CC': |
|
all_CC[curr_case].append(np.array(values)) |
|
if metric == 'MAE': |
|
all_MAE[curr_case].append(np.array(values)) |
|
|
|
for curr_case in cases: |
|
all_vals_CC = all_CC[curr_case] |
|
all_vals_MAE = all_MAE[curr_case] |
|
|
|
for c in range(len(all_vals_CC)): |
|
if avg_type == 'median': |
|
curr_dataCC[c] = np.median(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.median(all_vals_MAE[c]) |
|
else: |
|
curr_dataCC[c] = np.mean(all_vals_CC[c]) |
|
curr_dataMAE[c] = np.mean(all_vals_MAE[c]) |
|
|
|
data_CC.append(curr_dataCC.copy()) |
|
data_MAE.append(curr_dataMAE.copy()) |
|
|
|
|
|
data_CC = np.vstack(data_CC) |
|
data_MAE = np.vstack(data_MAE) |
|
n_datasets = data_CC.shape[0] |
|
alpha = '0.05' |
|
|
|
plt.figure() |
|
|
|
plt.subplot(1,2,1) |
|
plt.title('CC Multi Dataset') |
|
plt.boxplot(data_CC, showfliers=True) |
|
plt.xticks(np.arange(1,len(all_methods)+1), all_methods) |
|
|
|
plt.subplot(1,2,2) |
|
plt.title('MAE Multi Dataset') |
|
plt.boxplot(data_MAE, showfliers=True) |
|
plt.xticks(np.arange(1,len(all_methods)+1), all_methods) |
|
|
|
from nonparametric_tests import friedman_aligned_ranks_test as ft |
|
import Orange |
|
|
|
data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods) |
|
print('\nFriedman Test MAE:') |
|
|
|
|
|
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7]) |
|
avranksMAE = list(np.divide(ranks_mae, n_datasets)) |
|
|
|
print('statistic: ' + str(t)) |
|
print('pvalue: ' + str(p)) |
|
print(' ') |
|
pc = sp.posthoc_nemenyi_friedman(data_MAE_df) |
|
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef'] |
|
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]} |
|
|
|
plt.figure() |
|
sp.sign_plot(pc, **heatmap_args) |
|
plt.title('Nemenyi Test MAE') |
|
|
|
|
|
data_CC_df = pd.DataFrame(data_CC, columns=all_methods) |
|
print('\nFriedman Test CC:') |
|
|
|
|
|
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7]) |
|
avranksCC = list(np.divide(ranks_cc, n_datasets)) |
|
|
|
print('statistic: ' + str(t)) |
|
print('pvalue: ' + str(p)) |
|
print(' ') |
|
pc = sp.posthoc_nemenyi_friedman(data_CC_df) |
|
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef'] |
|
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]} |
|
|
|
plt.figure() |
|
sp.sign_plot(pc, **heatmap_args) |
|
plt.title('Nemenyi Test CC') |
|
|
|
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) |
|
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True) |
|
plt.title('CD Diagram MAE') |
|
|
|
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) |
|
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5) |
|
plt.title('CD Diagram CC') |
|
|
|
print(data_MAE_df) |
|
print(' ') |
|
print(data_CC_df) |
|
|
|
plt.show() |